

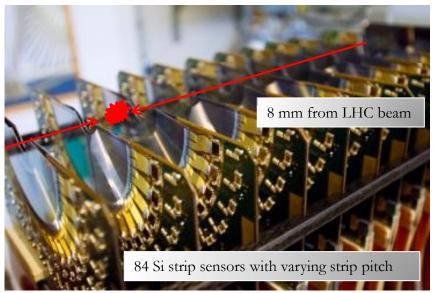
Micro-channel CO₂ cooling for the LHCb VELO upgrade.

R. Dumps, <u>J. Buytaert</u>, A. Mapelli, P. Petagna, B. Verlaat CERN A. Nomerotski

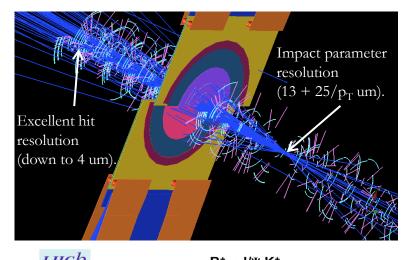
A. Nomerotski

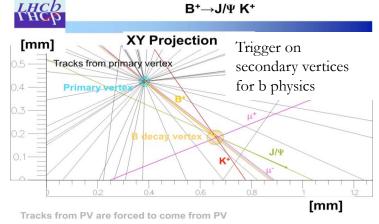
Oxford University

Outline

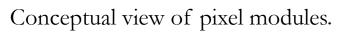

- The VELO detector.
- Key points of the LHCb Upgrade.
- VELO Cooling requirements.
- Micro-channel in Si technology.
- CO₂ cooling principle.
- First prototypes & results.
- Next prototypes.
- Other micro channel cooling projects.
- Summary.

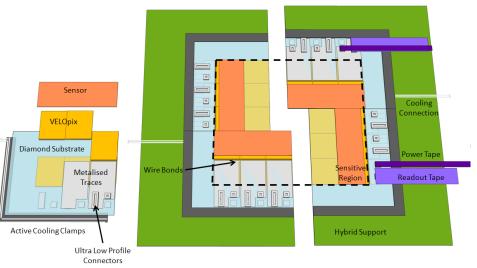
The VELO detector.




Vertex locator of the LHCb detector : select beauty and charm decays. $\frac{Se}{Se}$

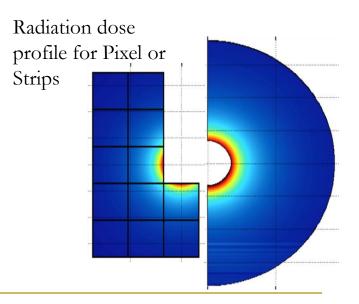
See talk of K. Akiba, Session 2


- Cooling:
 - Module power dissipation ~16W
 - Operates in vacuum.
 - Pioneering use of evaporative CO2 cooling.



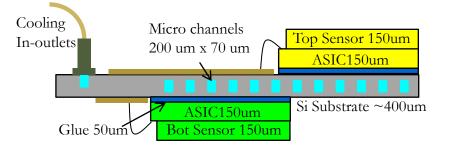
Upgrade of the LHCb detector.

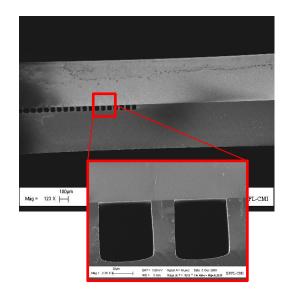
- Key points:
 - 5-fold increase in luminosity:
 - $2 \text{ x} 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
 - 40 MHz event readout.
 - Installation during Long shutdown
 2 in ~ 2018.
- New VELO modules & asics :
- Pixel option is most advanced.
- Also a new strip module is pursued.
- More details were given in talks by M. Van Beuzekom "VeloPix" in session 5)



The cooling requirements

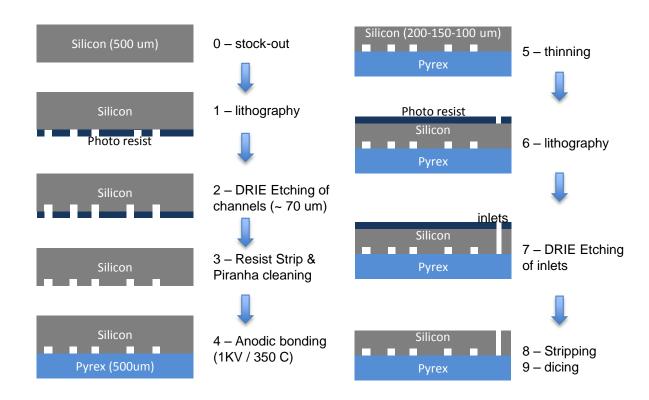
- 12 ASICS: ~ 36W max.
- Sensor heat dissipation:
- Extreme radiation environment After 100 fb⁻¹ sensors accumulate 370 MRad or 8 x 10¹⁵ n_{eq}/cm² at 7 mm from beam.
- High sensor leakage current & power dissipation : ~ 1Wcm⁻² !
- □ The sensor temperature at 7mm must stay below -15 C to avoid thermal run-away.
- The maximal total dissipated power density is ~40 W/24 cm² ~ 2 W.cm⁻²
- This requires a very efficient cooling solution with minimal material impact !





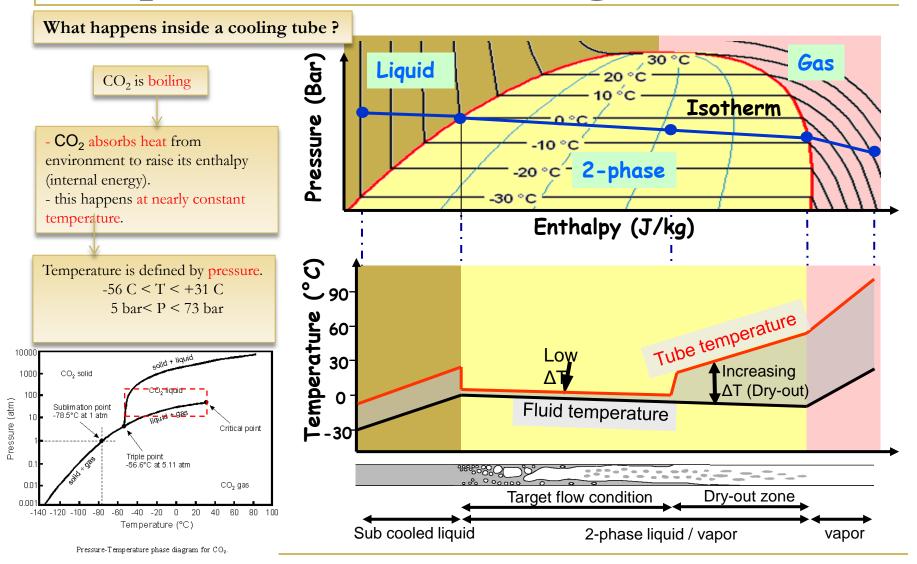
Micro-channels in Si.

Advantages:


Cooling tube is integrated in the substrate:

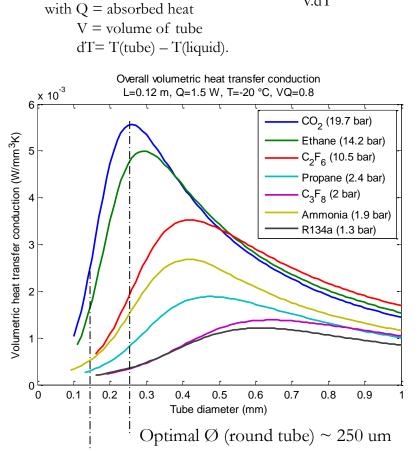
- Can customize the routing of channels to run exactly under the heat sources.
- Many parallel channels:
 - large liquid-to-substrate heat exchange surface.
- Low mass :
 - No extra 'bulky' thermal interface required between cooling channel and substrate.
- No heat flows in the substrate plane:
 - Small thermal gradients across the module.
- All material is silicon :
 - No mechanical stress due to CTE mismatch.

μ channel fabrication.



 Process used for first prototypes
 by CERN/PH DT at CMI at
 EPFL, Lausanne.

Evaporative CO2 cooling.


PIXEL2012. International workshop on semiconductor

pixel detectors for particles and imaging. (Inawashiro, Japan)

PIXEL2012. International workshop on semiconductor pixel detectors for particles and imaging. (Inawashiro, Japan)

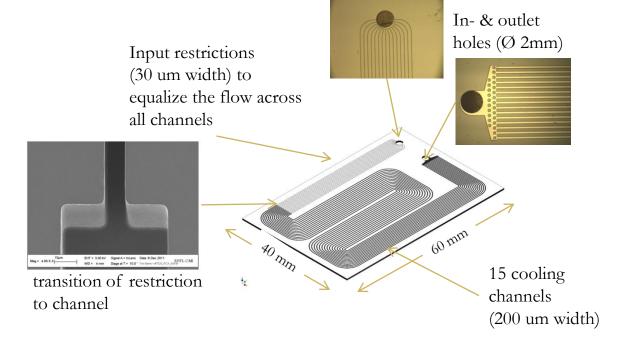
Modeling & channel dimension.

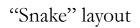
- Model simulation ("CoBra")
 - with channel parameters:
 - length =120 mm,
 - absorbed heat = 1.5W,
 - Temperature at inlet = -20 C
 - Vapor quality at exit =0.8
 - This model does not include :
 - coupling between parallel channels
 - Square tubes.
- CO₂ is optimal for small channels !
- Also CO₂ has a low viscosity and high latent heat, which contributes to less pressure drop and smaller mass flow, leading to smaller channels and lower total mass.

Volumetric heat transfer conduction =

Q VdT

Square tube $70x200 \text{ um2} \sim 133 \text{ um } \emptyset$ (round tube)




September 3-7

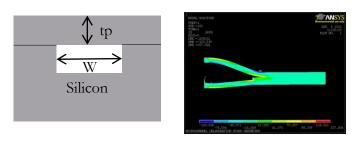
PIXEL2012. International workshop on semiconductor pixel detectors for particles and imaging. (Inawashiro, Japan)

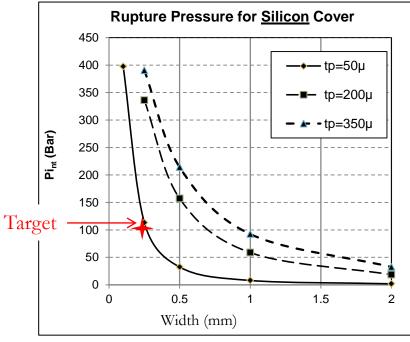
First prototypes

- The aim is to:
 - Demonstrate CO2 circulation in micro channels.
 - Measure
 - the cooling performance
 - the pressure resistance.

Test stand

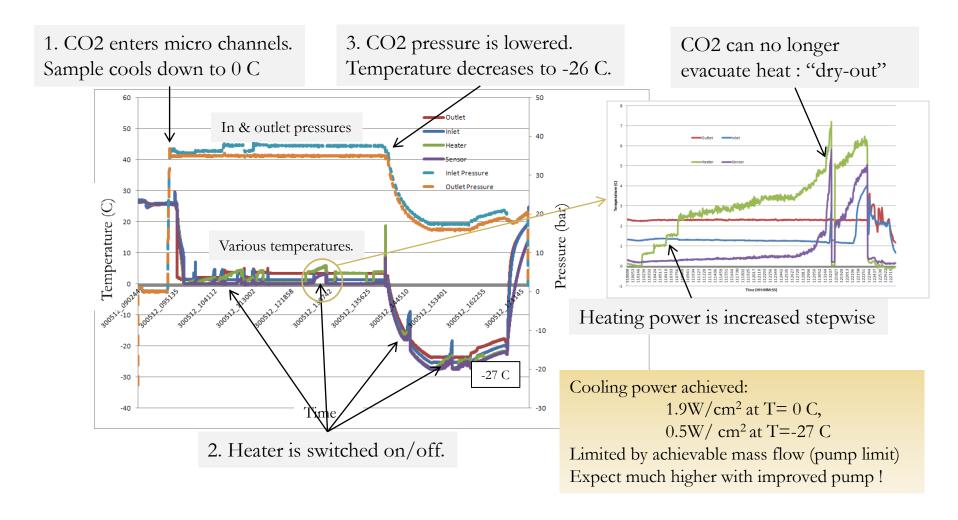
Test sample equipped with cooling tubes, heater and pt100 probes


Infrared camera pictures taken through IR windows Development of a hotspot caused by dry-out of CO2



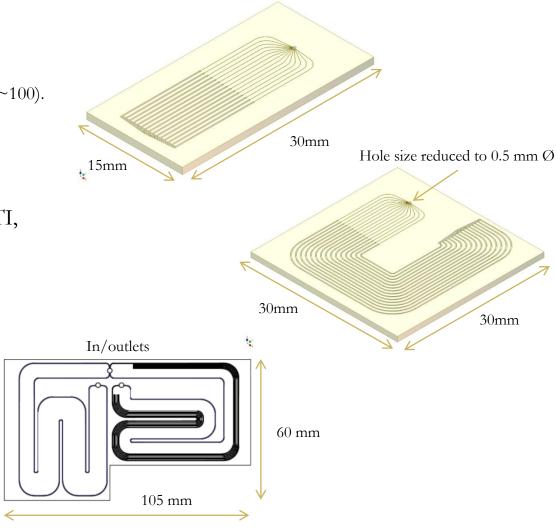
Pressure resistance.

Structural analysis with ANSYS 2D.


First unsuccessful trials with Si-Si bonding : (failure due to contamination in apparatus).

- Then successfully used Si-Pyrex instead (more robust & faster).
- with Pyrex thickness of 500um : pressure tested OK up to 30 bar.
- with Pyrex of 2 mm: OK up to 69 bar. $(=P_{CO2} @ 25 C).$

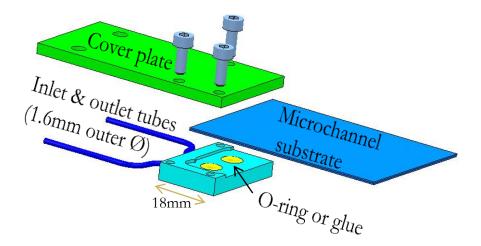
Cooling power test.



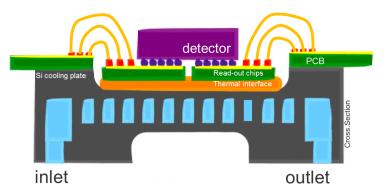
Next prototypes.

- Aim to prove pressure resistance
 - □ Beyond 100 bar
 - on large number of small size samples (~100).
- Experiment with
 - The variation of the channel pitch.
 - The geometry of the outlet manifold
- Must use Si-Si fusion bonding.
- Select a commercial supplier : LETI, Grenoble. (8"wafers)
- Quality assurance.
 - Scanning acoustic microscope
 - □ Knife edge tests, etc...
 - Thermal cycling

Towards a "double snake" for a full module


Custom fluidic connector.

- NanoPort connectors (Upchurch Sientific,UK) are
 - □ guaranteed up to 103 bar,
 - but bonded to surface with adhesive polymer rings : radiation hardness, long term performance are unknown.


- We started a design of a more rugged connector at CERN.
 - Micro-channel substrate is clamped between two metallic pieces, tightened with screws.
 - Tubes are welded in bottom piece.
 - O-rings or glue seal gas tightness.
 - Not yet optimized for lowest mass

Other micro channel projects.

NA62 Gigatracker

- Cooling requirements
 - o minimize material below detector
 - o detector area: 60 x 27 mm
 - T on Si detector: $-20^{\circ}C \div 5^{\circ}C$
 - o ΔT over detector: 6°C
 - Heat dissipation by read-out chips:
 - 4 W/cm^2 in the periphery (Digital)
 - 0.5 W/cm² in the center (Analog)
 - total 48 W
 - o thin silicon plate (130 μ m)
 - o C₆F₁₄ liquid (8bar)

ALICE upgrade pixels

- cooling μ-channels only under asics.
- no material under sensor
- Total heat dissipation 21W.
- T sensor $\sim +20C$
- Evaporative C_4F_{10}
- Pressure 2 bar

Summary.

- The upgraded VELO modules require a very efficient thermal management: low temperature, high power density & low mass.
- The innovative combination of CO2 evaporative cooling and micro channels in Si is a promising solution.
- We are addressing the main outstanding issues of high pressure resistance & connectivity under vacuum conditions.
- Micro channel cooling is rapidly gaining popularity in new pixel detector projects.

Arigato !