
MG4GPU STATUS

FOR CMS-MG JOINT MEETING
24.06.04

JIN CHOI

CONTENTS

2

Summary of steps in Event Generation

Inspecting Potential Bottlenecks

Discussion

JIN CHOI

EVENT GENERATION

3

From CMS gridpacks

Basic command for evt generation would be:

In this scripts, it does:
1. Set up production environment (i.e. CMSSW)
2. Modify madevent/Cards/me5_configuration.txt (e.g. nb_core...)
3. Determine the no. of evts to be generated in each iteration.
4. Generate events. i.e.

5. Combine events / Check the no. of evts / Add scale and PDF weights to LHE files.

JIN CHOI

EVENT GENERATION

4

From CMS gridpacks

Basic command for evt generation would be

In this scripts, it does:
1. Set up production environment (i.e. CMSSW)
2. Modify madevent/Cards/me5_configuration.txt (e.g. nb_core...)
3. Determine the no. of evts to be generated in each iteration.
4. Generate events. i.e.

5. Combine events / Check the no. of evts / Add scale and PDF weights to LHE files.

How to parallelize events?
- nb_core setting not working in current version
- Submitting many evts with single thread only utilize <500MB of GPU
- submitting multiple times requires modification in the CMS workflow,
especially in the steps afterward / or maybe just parallelize iteration loop?

JIN CHOI

EVENT GENERATION

5

From CMS gridpacks

Basic command for evt generation would be

In this scripts, it does:
1. Set up production environment (i.e. CMSSW)
2. Modify madevent/Cards/me5_configuration.txt (e.g. nb_core...)
3. Determine the no. of evts to be generated in each iteration.
4. Generate events. i.e.

5. Combine events / Check the no. of evts / Add scale and PDF weights to LHE files.

- Basic blocks are generating 5000 events in each iteration.
- For each iteration, need to prepare running directories again, e.g.
copy & pasting ./madevent executable, ajobs, etc.
- Done by process/madevent/bin/internal/restore_data

JIN CHOI

FIRST BOTTLENECK

6

restore_data: copy & pasting, untarring each subprocess directories

It takes a bit long time to prepare running directories before actual execution of madevent...
e.g. DY+4j has 1455(412560) processes(diagrams)

JIN CHOI

FIRST BOTTLENECK

7

Simple Test - Parallelizing restore_data

Used GNU parallelize command for restoring each subprocesses

Generating 5k evts for each using condor, compared w/ and w/o parallelized restore_data setup

FORTRAN CPP CUDA

DY+2j 6m 8s 10m 51s 9m 20s

DY+3j 19m 29s 38m 32s 25m 1s

DY+4j 180m 18s 106m 19s

FORTRAN CPP CUDA

DY+2j 5m 12s 10m 33s 8m 14s

DY+3j 17m 50s 35m 32s 21m 11s

DY+4j 202m 16s 64m 33s

w/o parallelization

w/ parallelization

Production time reduced a lot for DY+4j CUDA

Not much for CPP:
this is not a major bottleneck

x3 execution speed?🙃

JIN CHOI

EVENT GENERATION

8

From CMS gridpacks

Basic command for evt generation would be

In this scripts, it does:
1. Set up production environment (i.e. CMSSW)
2. Modify madevent/Cards/me5_configuration.txt (e.g. nb_core...)
3. Determine the no. of evts to be generated in each iteration.
4. Generate events. i.e.

5. Combine events / Check the no. of evts / Add scale and PDF weights to LHE files.

This part does not take much time

JIN CHOI

DISCUSSION

9

Running event generation

Most of the bottlenecks coming from I/O bounds readonly gridpacks could be the option→
No need to restore data,
No need to change from the options in CMS side

Not sure if vectorized_cpu options are I/O bounded or slow itself
 will try to measure actual timing for step by step→

Regarding the physics processes
Most speed-ups are observed for high-multiplicity final states (DY+4j),
both for the gridpack production and the event generation.
Might useful in 2D-binned central samples(e.g. DY with (jet, HT)-binned)

For BSM cases with high final-state multiplicity? (e.g. pp > go go > 6j...)

How will going to utilize parallelization in event generation tasks?
Making nb_core option runnable would seamlessly intergrated to CMS workflow (e.g. Hadronization...)
If not, we might have to change the workflow from the CMS side itself
Best choice (and the simplest) would be readonly + parallelize iterations

JIN CHOI

BACK UPS

10

BACK UPS

JIN CHOI

BACK UPS

11

GRIDPACK PRODUCTION

JIN CHOI

ENVIRONMENTS

12

HPCs

lxplus800(GPU): AMD EPYC 7313 16-core processor (AVX2 support), A100 GPU repeatedly halted→

SNU-server: Intel(R) Xeon(R) CPU E5-2699 v3 (72 cores, AVX2 support), no GPU
 tested FORTRAN/CPP gridpacks→

lxplus condor: possible to use A100 GPU nodes with 16 AMD cores with isolated environment
 restriction - 100 GB storage(based on AFS area), job halted after 3 days
 more than O(100) GB storage can be used in the node
 can access EOS area via xrootd
 still testing on > a week usage

NEW!

Sidenotes

For testing CPU usage in lxplus condor,
randomly matches to the nodes with 48/64 cores + AVX2 supports

There is 4 A100 GPU node but the gridpack production failed if there is multiple GPUs

Might possible to use it for further testing....?

JIN CHOI

PRODUCTION TIME

13

Environments

Two HPCs used

lxplus801(GPU): AMD EPYC 7313 16-core processor (AVX2 support), A100 GPU repeatedly halted→

SNU-server: Intel(R) Xeon(R) CPU E5-2699 v3 (72 cores, AVX2 support), no GPU
 tested CPP gridpacks→

lxplus condor: possible to use A100 GPU nodes with 16 AMD cores with isolated environment
 restriction - 100 GB storage(based on AFS area), job halted after 3 days
 more than O(100) GB storage can be used in the node
 can access EOS area via xrootd
 still testing on > a week usage

Sidenotes:
- For testing CPU usage in condor, it randomly matches the machine with different CPUs...
 even if I set required_cpus=16, it matches to with 48/64 cores
- When the jobs are matched to multiple GPU nodes(typically a 4 A100 GPUs node),
 the production failed with invalid to access to GPU memory

JIN CHOI

XSECS

14

FORTRAN [pb] CPP [pb] CUDA [pb]

DY+0j 5704 \pm 10.11 5711 \pm 1.053 5710 \pm 1.484

DY+1j 3335 \pm 7.462 3535 \pm 1.263 3536 \pm 1.442

DY+2j 2228 \pm 3.143 2236 \pm 0.503 2237 \pm 0.4618

DY+3j 1375 \pm 1.265 1387 \pm 0.3515 1385 \pm 0.3288

DY+4j 883.4 \pm 0.3813 845.8 \pm 0.21 job running (> a week)

A bit large errors / different xsecs for FORTRAN?

Least validation
Compatible

JIN CHOI

PRODUCTION TIME

15

Results (full time)

FORTRAN CPP CUDA

DY+0j 11m 31s 6m 32s 8m 1s

DY+1j 9m 28s 11m 7s 17m 20s

DY+2j 17m 15s 39m 33s 71m 25s

DY+3j 185m 35s 316m 58s 274m 44s

DY+4j 19362m 13s 16242m 59s 7682m 17s

Only CUDA environment is isolated - might exist some interruption by other jobs

72 Intel cores 16 AMD cores + 1 A100 GPU72 Intel cores
batch job

13.5 days... 11.3 days... 5.3 days

Improvement can only be seen in DY+4j...

Used time command to estimate full production time The only improvement...why?

JIN CHOI

FLAMEGRAPHS

16

FORTRAN

CPP

CUDA

DY+2j Most of the time consuming part is still madevent...
Compilation also takes large portion

All jobs tested in lxplus800 node

JIN CHOI

PRODUCTION TIME

17

Results (full time)

FORTRAN CPP CUDA

DY+0j 11m 31s 6m 32s 8m 1s

DY+1j 9m 28s 11m 7s 17m 20s

DY+2j 17m 15s 39m 33s 71m 25s

DY+3j 185m 35s 316m 58s 274m 44s

DY+4j 19362m 13s 16242m 59s job running (> a week)

Only CUDA environment is isolated - might exist some interruption by other jobs

72 Intel cores 16 AMD cores + 1 A100 GPU72 Intel cores
batch job

13.5 days... 11.3 days... Expecting 8~10 days?

Improvement can only be seen in DY+4j...

Used time command to estimate full production time

Compilation (ME)

Execution (ME)

JIN CHOI

PRODUCTION TIME

18

Results (ME calculation - execution)

FORTRAN CPP CUDA

DY+0j 1.1s 24.4s 17.7s

DY+1j 4.9s 48.4s 31.6s

DY+2j 20.3s 4m 44s 2m 29s

DY+3j 1h 59m 3h 19m 33m 34s

DY+4j 315h 38m 247h 45m 108h 45m

Only CUDA environment is isolated - might exist some interruption by other jobs

72 Intel cores (AVX2) 16 AMD cores + 1 A100 GPU72 Intel cores
batch job

Checked x4(x3) improvement in DY+3j(4j)
Compilation also takes big portion of the production

JIN CHOI

SUMMARY

19

Comparing timing estimations for FORTRAN/CPP/CUDA

Not much, even worse timing improvement compared to FORTRAN

Major bottleneck is compilation time for CUDA

Both compilation and execution slow in CPP?

With current usage, expecting highest gain in processes with
small no. of diagrams / >= 6 final states

JIN CHOI

PREVIOUS PARTIAL RESULTS

20

Standalone

JIN CHOI

PRODUCTION TIME (ALL LXPLUS CONDOR BATCH)

21

Results

FORTRAN CPP CUDA

DY+0j 7m 59s 8m 38s 8m 1s

DY+1j 9m 27s 21m 3s 17m 20s

DY+2j 21m 24s 85m 6s 71m 25s

DY+3j 293m 38s 698m 41s 274m 44s

DY+4j job running (> a week) 18509m 11s 7682m 17s

16 AMD + 1 A100 GPU48 Intel 48 Intel, avx2

64 Intel, avx2

JIN CHOI

BACK UP: HOW TO PRODUCE CMS GRIDPACKS

22

1. clone genproduction repo
git clone https://github.com/choij1589/genproductions.git
checkout mg4gpu

2. go to /bin/Madgraph5_aMCatNLO
cd /bin/Madgraph5_aMCatNLO

Assuming running the scripts in lxplus (but the only requirement is cvmfs)

3. Basic usage of the gridpack_generation script is
 ./gridpack_generation $PROCESSNAME $CARDDIR

4. I have put the GPU cards in cards/13p6TeV/mg4gpu, for DY+0j with CUDA just run
 ./gridpack_generation DY0j_LO_5f_CUDA cards/13p6TeV/mg4gpu/DY0j_LO_5f_CUDA

https://github.com/choij1589/genproductions.git

JIN CHOI

PROJECT UPDATES

23

Integrating MG4GPU to CMS-genproduction

Based on the master branch(for RUN3 production) - updated patches for MG352 / mg4gpu

[genproduction/mg4gpu]

Workflow: Environment setup(e.g. CMSSW / CUDA) - download MG - apply patches
 - compile processes - ME calc. - systematic calc. - tarring gridpack

Major bottlenecks for large gridpacks

Previously used git clone for downloading mg4gpu: large repo, takes ~ 10 min. to clone
Compressed the repo in EOS area, untar the repo rather than downloading: ~ 4 min.
No change in tarring gridpack, can be improved by removing unnecessary files / multithreading

Two major patches for mg4gpu side

self.banner.run_card does not work with use_syst option

https://github.com/madgraph5/madgraph4gpu

JIN CHOI

PROJECT UPDATES

24

Integrating MG4GPU to CMS-genproduction

Based on the master branch(for RUN3 production) - updated patches for MG352 / mg4gpu

[genproduction/mg4gpu]

Workflow: Environment setup(e.g. CMSSW / CUDA) - download MG - apply patches
 - compile processes - ME calc. - systematic calc. - tarring gridpack

Major bottlenecks for large gridpacks

Previously used git clone for downloading mg4gpu: large repo, takes ~ 10 min. to clone
Compressed the repo in EOS area, untar the repo rather than downloading: ~ 4 min.
No change in tarring gridpack, can be improved by removing unnecessary files / multithreading

Two major patches for mg4gpu side

some files start with "Gpu*" and erased when
clearing some directories like G3*...

https://github.com/madgraph5/madgraph4gpu

JIN CHOI

PROJECT UPDATES

25

Integrating MG4GPU to CMS-genproduction

Based on the master branch(for RUN3 production) - updated patches for MG352 / mg4gpu

[genproduction/mg4gpu]

Workflow: Environment setup(e.g. CMSSW / CUDA) - download MG - apply patches
 - compile processes - ME calc. - systematic calc. - tarring gridpack

Major bottlenecks for large gridpacks

Previously used git clone for downloading mg4gpu: large repo, takes ~ 10 min. to clone
Compressed the repo in EOS area, untar the repo rather than downloading: ~ 4 min.
No change in tarring gridpack, can be improved by removing unnecessary files / multithreading

Two major patches for mg4gpu side
Tested gridpack generation time with DY+0/1/2/3/4j processes [run cards]

DY4j_LO_5f_CUDA_proc_card.dat

DY4j_LO_5f_CUDA_customizecards.dat

https://github.com/madgraph5/madgraph4gpu
https://github.com/choij1589/genproductions/tree/mg4gpu/bin/MadGraph5_aMCatNLO/cards/13p6TeV/mg4gpu

JIN CHOI

FLAMEGRAPHS

26

FORTRAN

CPP

DY+3j (generating 20000 events)

All jobs tested in lxplus8-gpu node

1770.26s

8586.01s

svg files in [lxplus]

http:///afs/cern.ch/work/c/choij/public/mg4gpu/evtgen

JIN CHOI

FLAMEGRAPHS

27

CUDA

DY+3j (generating 20000 events)

All jobs tested in lxplus8-gpu node

1770.26sFORTRAN

2759.92s

svg files in [lxplus]

http:///afs/cern.ch/work/c/choij/public/mg4gpu/evtgen

