
MG4GPU CMS INTEGRATION STATUS

FOR CMS-MG JOINT MEETING
24.07.26

Jin Choi, Sapta Bhattacharya, Stefan Roiser, Andrea Valassi,
Olivier Mattelaer, Zenny Wettersten

JIN CHOI

CONTENTS

2

Gridpack Production

Event Generation

JIN CHOI 3

GRIDPACK PRODUCTION

JIN CHOI

PHYSICS PROCESS

4

Test Process

Using Drell-Yan process with jet-binned configuration
Most common bkg. in CMS Analyses

Growing complexity - Possible to check improvements & bottlenecks w.r.t. final state multiplicity

No Madspin dep. (Not implemented in GPU yet)

DY+0j DY+1j DY+2j DY+3j DY+4j

diagrams 30 180 3120 27600 412560

processes 15 45 285 435 1455

DY4j_LO_5f_CUDA_proc_card.dat

DY4j_LO_5f_CUDA_customizecards.dat

JIN CHOI

SET-UP

5

Test Process

Using Drell-Yan jet-binned samples [run cards]
Most common bkg. in CMS Analyses

Growing complexity - Possible to check improvements & bottlenecks w.r.t. final state multiplicity

No Madspin dep. (Not implemented to GPU yet)

Comparison
Cross-section: for least validation
Timing: Using time command, compared full production time & ME integration time

DY+0j DY+1j DY+2j DY+3j DY+4j

diagrams 30 180 3120 27600 412560

processes 15 45 285 435 1455

https://github.com/choij1589/genproductions/tree/mg4gpu/bin/MadGraph5_aMCatNLO/cards/13p6TeV/mg4gpu

JIN CHOI

SET-UP

6

Integrating MG4GPU to CMS-genproduction

Based on the master branch(for RUN3 production) - updated patches for MG352/mg4gpu

[genproduction/mg4gpu]

Workflow: Environment setup(e.g. CMSSW / CUDA) - download mg4gpu - apply patches
 - run ./gridpack_generation.sh
Previously used git clone for downloading mg4gpu: large repo, takes ~ 10 min. to clone

Compressed the repo in EOS area, untar the repo rather than downloading: ~ 4 min.

Two major patches for mg4gpu side (for version mg4gpu_2024-03-14.tar.gz)

some files start with "Gpu*" and erased when
clearing some directories like G3*...

https://github.com/choij1589/genproductions.git
http:///eos/user/c/choij/public/Archive/madgraph4gpu/mg4gpu_2024-03-14.tar.gz

JIN CHOI

SET-UP

7

Integrating MG4GPU to CMS-genproduction

Based on the master branch(for RUN3 production) - updated patches for MG352/mg4gpu

[genproduction/mg4gpu]

Workflow: Environment setup(e.g. CMSSW / CUDA) - download mg4gpu - apply patches
 - run ./gridpack_generation.sh
Previously used git clone for downloading mg4gpu: large repo, takes ~ 10 min. to clone

Compressed the repo in EOS area, untar the repo rather than downloading: ~ 4 min.

Two major patches for mg4gpu side (for version mg4gpu_2024-03-14.tar.gz)

self.banner.run_card does not work with use_syst option

https://github.com/choij1589/genproductions.git
http:///eos/user/c/choij/public/Archive/madgraph4gpu/mg4gpu_2024-03-14.tar.gz

JIN CHOI

ENVIRONMENTS

8

HPCs

lxplus800(GPU): AMD EPYC 7313 16-core processor (AVX2 support), A100 GPU repeatedly halted→
SNU-server: Intel(R) Xeon(R) CPU E5-2699 v3 (72 cores, AVX2 support), no GPU

 tested FORTRAN DY+4j gridpacks→

lxplus condor: Randomly matched to
w/o GPU: Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz (48 CPUs)
 Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz (64 CPUs)
w/ GPU: AMD EPYC 7313 16-core processor (AVX2 support), A100 GPU

Sidenotes

For testing CPU usage in lxplus condor,
randomly matches to the nodes with 48/64 cores + AVX2 supports

There is 4 A100 GPU node but the gridpack production failed if there is multiple GPUs

JIN CHOI

ENVIRONMENTS

9

HPCs

lxplus800(GPU): AMD EPYC 7313 16-core processor (AVX2 support), A100 GPU repeatedly halted→

SNU-server: Intel(R) Xeon(R) CPU E5-2699 v3 (72 cores, AVX2 support), no GPU
 tested FORTRAN/CPP gridpacks→

lxplus condor: Randomly matched to
w/o GPU: Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz (48 CPUs)
 Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz (64 CPUs)
w/ GPU: AMD EPYC 7313 16-core processor (AVX2 support), A100 GPU

Sidenotes

For testing CPU usage in lxplus condor,
randomly matches to the nodes with 48/64 cores + AVX2 supports

There is 4 A100 GPU node but the gridpack production failed if there is multiple GPUs

JIN CHOI

XSECS

10

FORTRAN [pb] CPP [pb] CUDA [pb]

DY+0j 5704 \pm 10.11 5711 \pm 1.053 5710 \pm 1.484

DY+1j 3539 \pm 8.096 3535 \pm 1.263 3536 \pm 1.442

DY+2j 2228 \pm 3.143 2236 \pm 0.503 2237 \pm 0.4618

DY+3j 1375 \pm 1.265 1387 \pm 0.3515 1385 \pm 0.3288

DY+4j 883.4 \pm 0.3813 845.8 \pm 0.21 843.8 \pm 0.2022

A bit large errors / different xsecs for FORTRAN?

Least validation
Compatible

FORTRAN: Original MG
CPP: Vectorized CPU
CUDA: GPU

JIN CHOI

PRODUCTION TIME

11

Results (full production)

FORTRAN CPP CUDA

DY+0j 7m 59s 8m 38s 8m 1s

DY+1j 9m 27s 21m 3s 17m 20s

DY+2j 21m 24s 85m 6s 71m 25s

DY+3j 293m 38s 698m 41s 274m 44s

DY+4j 19362m 13s 18509m 11s 7682m 17s

16 AMD + 1 A100 GPU48 Intel 48 Intel, avx2

64 Intel, avx2

FORTRAN / CPP run x3-4 processes in parallel
- production time not differ much with current HPC configuration
Can see x2-3 improvement in DY+4j: ME Integration is much faster for high multiplicity processes

13.5 days... 5.3 days!12.8 days...

72 cms2

JIN CHOI

PRODUCTION TIME

12

Results (full time)

FORTRAN CPP CUDA

DY+0j 11m 31s 6m 32s 8m 1s

DY+1j 9m 28s 11m 7s 17m 20s

DY+2j 17m 15s 39m 33s 71m 25s

DY+3j 185m 35s 316m 58s 274m 44s

DY+4j 19362m 13s 16242m 59s job running (> a week)

Only CUDA environment is isolated - might exist some interruption by other jobs

72 Intel cores 16 AMD cores + 1 A100 GPU72 Intel cores
batch job

13.5 days... 11.3 days... Expecting 8~10 days?

Improvement can only be seen in DY+4j...

Used time command to estimate full production time

Compilation (ME)

Execution (ME)

JIN CHOI

PRODUCTION TIME

13

Results (ME integration)

FORTRAN CPP CUDA

DY+0j 2.4s 1m 5s 17.7s

DY+1j 12.1s 2m 59s 31.6s

DY+2j 38.5s 8m 1s 2m 29s

DY+3j 3h 33m 6h 30m 33m 34s

DY+4j 315h 38m 244h 24m 108h 46m

16 AMD + 1 A100 GPU48 Intel 48 Intel, avx2

64 Intel, avx2

FORTRAN / CPP run x3-4 processes in parallel
- production time not differ much with current HPC configuration
Improvement starts with DY+3j (FORTRAN vs CUDA), ~x3 for DY+4j

72 cms2

JIN CHOI

SUMMARY

14

Comparing timing estimations for FORTRAN/CPP/CUDA

Compared HPC based improvements for gridpack production, for DY+0/1/2/3/4j LO

Major bottleneck is compilation time for CUDA

Both compilation and execution slow in CPP?

With current usage, expecting highest gain in processes with
small no. of procces / >= 6 final states

JIN CHOI 15

EVENT GENERATION

JIN CHOI

EVENT GENERATION

16

From CMS gridpacks

Basic command for evt generation would be:

In this scripts, it does:
1. Set up production environment (i.e. CMSSW)
2. Modify madevent/Cards/me5_configuration.txt (e.g. nb_core...)
3. Determine the no. of evts to be generated in each iteration.
4. Generate events. i.e.

5. Combine events / Check the no. of evts / Add scale and PDF weights to LHE files.

JIN CHOI

EVENT GENERATION

17

From CMS gridpacks

Basic command for evt generation would be

In this scripts, it does:
1. Set up production environment (i.e. CMSSW)
2. Modify madevent/Cards/me5_configuration.txt (e.g. nb_core...)
3. Determine the no. of evts to be generated in each iteration.
4. Generate events. i.e.

5. Combine events / Check the no. of evts / Add scale and PDF weights to LHE files.

Parallelize Event Generation?
- Current version of MG does not support nb_core option
- Results in the slides are based on nb_core=1

JIN CHOI

EVENT GENERATION

18

From CMS gridpacks

Basic command for evt generation would be

In this scripts, it does:
1. Set up production environment (i.e. CMSSW)
2. Modify madevent/Cards/me5_configuration.txt (e.g. nb_core...)
3. Determine the no. of evts to be generated in each iteration.
4. Generate events. i.e.

5. Combine events / Check the no. of evts / Add scale and PDF weights to LHE files.

- Basic blocks are generating 5000 events in each iteration.
- For each iteration, need to prepare running directories again, e.g.
copy & pasting ./madevent executable, ajobs, etc.
- Done by process/madevent/bin/internal/restore_data

JIN CHOI

FIRST BOTTLENECK

19

restore_data: copy & pasting, untarring each subprocess directories

It takes a bit long time to prepare running directories before actual execution of madevent...
e.g. DY+4j has 1455(412560) processes(diagrams)

Has been parallelized by MG team [restore_data]
~ 30m reduced for DY+4j after parallelization with 16 CPUs

http://Here%20is%20the%20link%20to%20the%20PR%20related%20to%20parallelizing%20the%20untar%20operation,%20https//github.com/mg5amcnlo/mg5amcnlo/pull/107

JIN CHOI

EVENT GENERATION

20

From CMS gridpacks

Basic command for evt generation would be

In this scripts, it does:
1. Set up production environment (i.e. CMSSW)
2. Modify madevent/Cards/me5_configuration.txt (e.g. nb_core...)
3. Determine the no. of evts to be generated in each iteration.
4. Generate events. i.e.

5. Combine events / Check the no. of evts / Add scale and PDF weights to LHE files.

This part does not take much time

JIN CHOI

SET-UP

21

Patches

After un-tarring gridpacks, two patches applied:
1. restore_data: To parallelize copy & past subprocesses directory - Utilize full CPU cores in machine
2. runcmsgrid.sh: Max Evts per iteration changed to 500k - avoid repeatedly call restore_data

JIN CHOI

GENERATION TIME

22

Results

Producing 100K events w/ single thread

FORTRAN CPP CUDA

DY+2j 80m 10s 59s 2s 40m 2s

DY+3j 130m 51s 153m 46s 101m 25s

DY+4j never ends (>4000m) 1366m 49s 426m 54s

Improvement starts with DY+2j, ~x10 faster for DY+4j

JIN CHOI

INTEGRATION IN CMS RELVAL WORKFLOW

23

Integrated the workflow updated with GPU gridpack in the standard CMS RelVal workflow

Used the existing DY+4Jet workflow and updated the path to the gridpack
Workflow directed toward GPU node [RelVal]

Successfully produced events [JIRA]

The full chain with pythia works and the gridpacks are now virtually production ready

https://cms-pdmv-prod.web.cern.ch/relval/relvals?prepid=CMSSW_13_2_9__GENonGPU_2023_SpecialRV_UWGPU-LHEProducer_GPU_GEN-00001&shown=1023&page=0&limit=50
https://its.cern.ch/jira/browse/PDMVRELVALS-235

JIN CHOI

SUMMARY

24

Event Generation

Compared thread-based event generation time
Repeatedly copy & pasting subprocess directories matters

Can see x10 improvement comparing DY+4j FORTRAN vs CUDA

Implementation with RelVal chain has been tested

JIN CHOI 25

BACK UP

JIN CHOI

FLAMEGRAPHS - GRIDPACK PRODUCTION

26

FORTRAN

CPP

CUDA

DY+2j Most of the time consuming part is still madevent...
Compilation also takes large portion

All jobs tested in lxplus800 node

JIN CHOI

FLAMEGRAPHS - EVENT GENERATION

27

FORTRAN

CPP

DY+3j (generating 20000 events)

All jobs tested in lxplus8-gpu node

1770.26s

8586.01s

svg files in [lxplus]

http:///afs/cern.ch/work/c/choij/public/mg4gpu/evtgen

JIN CHOI

FLAMEGRAPHS - EVENT GENERATION

28

CUDA

DY+3j (generating 20000 events)

All jobs tested in lxplus8-gpu node

1770.26sFORTRAN

2759.92s

svg files in [lxplus]

http:///afs/cern.ch/work/c/choij/public/mg4gpu/evtgen

