Progress on DY+jets for CMS

Andrea Valassi
(CERN IT-GOV-ENG)

With many thanks especially to Jin Choi, Olivier Mattelaer, Daniele Massaro!

Madgraph on GPU meeting with CMS, 13" August 2024
https://indico.cern.ch/event/1373474

C\E/RW Andrea Valassi — progress on DY+jets for CMS 13 August 2024

~Z_

https://indico.cern.ch/event/1373474

Overview: follow-up on Jin’s reports in July

« Jin reported several issues during the last meetings in July
— https://indico.cern.ch/event/1373473/ (July 30)
— https://indico.cern.ch/event/1441554/ (July 26, CMS gen meeting)
— https://indico.cern.ch/event/1373472/ (July 16)

» Here | describe some followup on those issues (which | linked to github tickets)
— Also profiting from work and results by Olivier and Daniele (thanks!)

* (1) CMS sees some Floating Point Exceptions in various DY processes
— Details on https://github.com/madgraph5/madgraph4gpu/issues/942

* (2) CMS sees a discrepancy in DY+4 jets cross section for Fortran vs Cuda/C++
— Details on https://github.com/madgraph5/madgraph4gpu/issues/944

* (3) CMS sees a speedup for DY+4 jets, but not for DY+3 jets
— Details on https://github.com/madgraph5/madqgraph4gpu/issues/943

C\E/RW Andrea Valassi — progress on DY+jets for CMS 13 August 2024

~Z_

https://indico.cern.ch/event/1373473/
https://indico.cern.ch/event/1441554/
https://indico.cern.ch/event/1373472/
https://github.com/madgraph5/madgraph4gpu/issues/942
https://github.com/madgraph5/madgraph4gpu/issues/944
https://github.com/madgraph5/madgraph4gpu/issues/943

(1) Floating Point Exceptions in DY

https://github.com/madgraph5/madgraph4gpu/issues/942

C\E/RW Andrea Valassi — progress on DY+jets for CMS 13 August 2024

~Z_

https://github.com/madgraph5/madgraph4gpu/issues/942

Followup of FPEs in DY

« | initially thought this might be related to SIMD (we saw many FPEs in SIMD code)
— | asked Jin to do various tests with —O3 and —O flags (thanks Jin!)
— But it soon was clear that this is not the source of the problem

« Later on | generated and tested some DY processes and | also saw the issue
— Details: reproducible; at events 11 and 12; also without —O3; comes from pdf=0 (!?)
— Many suggestions by Olivier (thanks!), e.g. check if this comes from a reset after 10 events
— Status: reproducible bug, need to follow up (e.g. | will check this reset after 10 events)

« Work around: must disable FPE crashes to be able to do anything with DY
— Essentially, comment out or remove “feenableexcept” calls
— | understand that this is what Jin has done (modifying all code manually?)

— For convenience: | added an env variable CUDACPP_RUNTIME_DISABLEFPE
» This is in a WIP PR, not yet merged (but Jin ask me if you are interested...)

C\E/RW Andrea Valassi — progress on DY+jets for CMS 13 August 2024

~Z_

(2) Cross-section mismatch in DY+4jets

https://github.com/madgraph5/madgraph4gpu/issues/944

| XSECS
® Least validation C::-ﬂie
FORTRAN [pb] CPP [pb] CUDA [pb]
DY+0j 5704 \pm 10.11 5711 \pm 1.053 5710 \pm 1.484
DY+1j 3539 \pm 8.096 3535 \pm 1.263 3536 \pm 1.442
DY+2j 2228 \pm 3.143 2236 \pm 0.503 2237 \pm 0.4618
DY+3j 1375 \pm 1.265 1387 \pm 0.3515 1385 \pm 0.3288
DY+4j 883.4\pm 0.3813 845.8 \pm 0.21 843.8 \pm 0.2022

?

A bit large errors / different xsecs for FORTRAN?

FORTRAN: Original MG
CPP: Vectorized CPU
CUDA: GPU

JIN CHOI 10

CERN

\w Andrea Valassi — progress on DY+jets for CMS

~Z_

13 August 2024

https://github.com/madgraph5/madgraph4gpu/issues/944

Followup of cross-section mismatch in DY+4|

« My doubt is whether the statistical (MC) errors quoted are reliable or underestimated

— We know there is a large systematic bias, but this should be the same for all results?
« Zenny (thanks!) suggests that this is not necessarily the case (each event has a different scale)

« My approach: use different random numbers and observe the distribution!

— | only had time for a first quick test (DY + 0,1,2 jets), results not really conclusive?
 But my first impression is that the errors are somewhat underestimated — some big outliers
* https://github.com/madgraph5/madgraph4gpu/issues/944#issuecomment-2271099576

— Status: to be followed up...
* | need to repeat this for DY+2 alone or DY+3, and with more than 10 data points...

more tlau/logs ppdy@12j.mad fortran/*txt | egrep '(Current est)'

- Current estimate of cross-section: 22684.882597000003 +- 25.69693417269259
- Current estimate of cross-section: 22736.487131999995 +- 26.02223931415431
- Current estimate of cross-section: 22606.672284000004 +- 25.982101016390413
- Current estimate of cross-section: 22680.418818000002 +- 30.296789851771535
- current estimate of cross-section: 22598.979159 +- 29.0895684586947588

- Current estimate of cross-section: 22661.842675000004 +- 28.504426906822836
- Current estimate of cross-section: 22594.760607 +- 25.320150482309723

- Current estimate of cross-section: 22562.885393999994 +- 27.53350228395446
- Current estimate of cross-section: 22783.444705999995 +- 24.879796947884447
- Current estimate of cross-section: 22699.778944 +- 24.8383887513199372

— Aside: #959 new bug found? DY+3j xsection changes by x10 depending on vector_size?

» NB: Daniele is also doing tests with a different approach (e.g. try SDE flags etc)...

C\E/RW Andrea Valassi — progress on DY+jets for CMS 13 August 2024

~Z_

https://github.com/madgraph5/madgraph4gpu/issues/944#issuecomment-2271099576
https://github.com/madgraph5/madgraph4gpu/issues/959

(3) No speedup from SIMD/GPU in DY +3jets?

https://github.com/madgraph5/madgraph4gpu/issues/943

.y 5
|\ GENERATION TIME
<8> Results
&/ Producing 100K events w/ single thread
FORTRAN CPP CUDA

DY+2j 80m 10s 59s 2s 40m 2s
DY +3j 130m 51s 153m 46s 101m 25s
DY+4j never ends (>4000m) 1366m 49s 426m 54s

&7 Improvement starts with DY+2j, ~x10 faster for DY+4;j

JIN CHOI 22

C\E/RW Andrea Valassi — progress on DY+jets for CMS 13 August 2024

~Z_

https://github.com/madgraph5/madgraph4gpu/issues/943

SIMD/GPU speedups — preliminary work

» To follow up on the CMS DY+3jet speed issue | did a lot of (general) preliminary work
— Condensed summary below — NB these are all WIP PRs (not yet reviewed or merged...)

* (1) Multi-backend gridpacks
— Create gridpacks that contain Fortran, CUDA and all SIMD builds; the madevent executable
symlink is updated when running the gridpack (issue #945, WIP PR #948)

 (2) Profiling infrastructure for python/bash orchestrator of many madevent processes
— Special gridpack creation in private “tlau/gridpacks” scripts; modified python scripts keep,
parse and aggregate individual madevent logs (issue #957, WIP PR #948)

 (3) Performance bug fix: compute MEs for only ~16 events during helicity filtering
— Only 16 events were used in SIMD to filter good helicities, but MEs were computed for 16k
events; now fixed with “compute good helicities only” flag (issue #958, WIP PR #960)
— Notel: this improves SIMD runs with vector_size=16384; less relevant if vector_size=32
— Note2 (to do): maybe a similar bug is lurking for CUDA too, but is probably less relevant?

* (4) More fine-grained profiling of fortran/cudacpp components in a madevent process
— Progressively identified all major scalar bottlenecks and added individual timers/counters for
all of them (WIP PR #962, generic; WIP PR #946, CMS DY+jets)
— Note: this also benefits from earlier profiling flamegraphs by Daniele (thanks!)

CERN

\w Andrea Valassi — progress on DY+jets for CMS 13 August 2024

~Z_

https://github.com/madgraph5/madgraph4gpu/issues/945
https://github.com/madgraph5/madgraph4gpu/issues/948
https://github.com/madgraph5/madgraph4gpu/issues/957
https://github.com/madgraph5/madgraph4gpu/issues/948
https://github.com/madgraph5/madgraph4gpu/issues/958
https://github.com/madgraph5/madgraph4gpu/issues/960
https://github.com/madgraph5/madgraph4gpu/issues/962
https://github.com/madgraph5/madgraph4gpu/issues/946

Tuning fine-grained madevent profiling

* | progressively added individual timers/counters to new distinct code sections
— Goal: reduce generic “Fortran Other” contribution to negligible (say <2% of total time)...
* ... while taking care to avoid double counting (which would make “Fortran Other” negative)

— | used a very simple gg to tt process for this exercise (fast MEs, high non-MEs contribution)
* https://github.com/madgraph5/madgraph4gpu/pull/962#issuecomment-2284597295

— NB: the relative weight of each contribution is highly process-dependent! (see DY later...)

./build.cuda_d_inl@_hrd@/madevent_cuda < ,‘tmp,’avalasn{mput_ggtt ¥l _cudacpp Fortran driver initialization (6%):
[COUNTERS] PROGRAM TOTAL : 1.8988s I/O (read initialization flleS)
[COUNTERS] Fortran Other (@) : 9.0117s
[COUNTERS] Fortran Initialise(I/0) { 1) : @.0697s)
[COUNTERS] Fortran Random2Momenta {(3) : 8.8167s for 16399 events Fortran pf(]jase Spage sampling (2%):
[COUNTERS] Fortran PDFs (4) : 8.09168s for 32768 events map random numbers to momenta
[COUNTERS] Fortran UpdateScaleCouplings { 5) : ©8.00898s for 16384 events
[COUNTERS] Fortran Reweight (6): ©8.0473s for 16384 events Fortran PDFs [in dsig1] (9%):
[COUNTERS] Fortran Unweight(LHE-I/0) (7)) : 0.1488s for 16384 events PDF interpolation
[COUNTERS] Fortran SamplePutPoint { 8) : 8.2702s for 16399 events
[COUNTERS] CudaCpp Initialise (112) : 0.4077s Fortran update scales [in dsig1] (1%):
[COUNTERS] CudaCpp Finalise {12) : @.0250s determine coupling scale
[COUNTERS] CudaCpp MEs { 19) : 8.00816s for 16384 events
[COUNTERS] OVERALL NON-MEs (21): 1.0979s Fortran reweight [in dsigl] (5%):
[COUNTERS] OVERALL MEs {22) : 8.0910s for 16384 events internally, more PDFs and scales

(move to the two above instead?)

CUDA initialization (41%): .
initialize GPU (one-off) Fortran unweight (15%):
I/O (write LHE files)

CUDACPP finalization (3%):

reset GPU, clean up Fortran sample_put_point (27%):

I/0 (update Vegas grids?)

C_E/RW Andrea Valassi — progress on DY+jets for CMS 13 August 2024
N

https://github.com/madgraph5/madgraph4gpu/pull/962#issuecomment-2284597295

Followup of SIMD/GPU speedups in DY+3j (1)

* | prepared a multi-backend gridpack (vegas optimized in fortran)
— Then | executed the gridpack on all Fortran and SIMD backends (no CUDA on this node)

» Overall results for the different backends
— https://github.com/madgraph5/madgraph4gpu/issues/94 3#issuecomment-2284882990
— Total time of gridpack including python/back orchestrator
— Total aggregated time of madevent executables only
— First observation: python/bash contribution is negligible (gridpack minus madevent)

— Second observation: | do see a speedup by a factor x2.5 from SIMD!? To cross check...
* Note: this includes the helicity filtering fix (but irrelevant for Jin who already uses vector_size=327?)
» Note: maybe this is using a more recent version of the code with fixes which Jin is missing?

pp_dy3j.mad// fortran/output . txt

[GridPackCmd. launch] GRIDPCEK TOTAL 447.7169 seconds
[madewvent COUHNTERS] PROGRAM TOTAL 443.48
pp_dy3j.mad//eppnone/output . txt

[GridPackCmd. launch] GRIDPCE TOTAL 448.1598 seconds
[madewvent COUHTERS] PROGRAM TOTAL 443.898
pPr_dy¥3j.mad/fcppssed/output .. txt

[GridPackCmd. launch] GRIDPCEKE TOTAL 295.7847 seconds
[madevent COUNTERS] PROGRAM TOTAL 291.523

pp_dy3j . mad/feppavx?2foutput . txt

[GridPackCmd. launch] GRIDPCEK TOTAL 204.7001 seconds
[madevent COUHTERS] PROGRAM TOTAL 200. 453
pPr_dy¥3j.mad/fepphl2y/output . txt

[GridPackCmd. launch] GRIDPCKE TOTAL 201.0406 seconds
[madewvent COUHNTERS] PROGRAH TOTAL 196.745

pp_dy3j. mad//feppbl2z/output . txt

[GridPackCmd. launch] GRIDPCK TOTAL 176.8891 seconds
[madewvent COUHTERS] PROGRAM TOTAL 172. 637

C\E/RW Andrea Valassi — progress on DY+jets for CMS 13 August 2024 10

~Z_

https://github.com/madgraph5/madgraph4gpu/issues/943#issuecomment-2284882990

Followup of SIMD/GPU speedups in DY+3j (2)

» Results of fine-grained madevent profiling
— The profile is VERY different from that of a simpler gg to tt!
— Observation 1 (not shown here): the overall non-ME contribution is identical in all backends
— Observation 2: the scalar bottleneck is phase space sampling! (~50% for AVX512)
— Observation 3: PDFs scalar contribution is important but not dominant! (~5% for AVX512)

pp_dy3j.mad//cpp512z/output.txt

GridPackCmd.launch] GRIDPCK TOTAL 176.8891 seconds
madevent COUNTERS] PROGRAM TOTAL 172.637

madevent COUNTERS] Fortran Other 6.5768

Fortran driver initialization (6%):
I/O (read initialization files)

Fortran phase space sampling (2%):
madevent COUNTERS] Fortran InltlallSE{I;{O) 4,486 map random numbers to momenta

[

[

[

[

[madevent COUNTERS] | Fortran Random2Momenta 93.29097
[madevent COUNTERS] Fortran PDFs 8.2998

[madevent COUNTERS] Fortran UpdateScaleCouplings 7.2827
[madevent COUNTERS] Fortran Reweight 3.7045
[
[
[
[
[
[
[

Fortran PDFs [in dsigl] (9%):
PDF interpolation

madevent COUNTERS] Fortran Unweight(LHE-I/0) 4.8719
madevent COUNTERS] Fortran SamplePutPoint 8.2892
madevent COUNTERS] CudaCpp Initialise @.3619
madevent COUNTERS] CudaCpp Finalise ©.0221 Fortran reweight [in dsigl1] (5%):

madevent COUNTERS] | cudacpp MEs 35.4557 internally, more PDFs and scales
(move to the two above instead?)

Fortran update scales [in dsig1] (1%):
determine coupling scale

madevent COUNTERS] OVERALL NOM-MEs 137.181
madevent COUNTERS] OVERALL MEs 35.4557

Fortran unweight (15%):
I/O (write LHE files)

CUDACPP initialization (0%): CUDACPP finalization (0%):
initialize Bridge reset Bridge, clean up Fortran sample_put_point (27%):
I/0 (update Vegas grids?)

C\E/RW Andrea Valassi — progress on DY+jets for CMS 13 August 2024 11

~Z_

Outlook: vectorizing other components

» Further speedup for DY+3 jets would require vectorizing other components
— (Or speeding them up in much more trivial ways, if low hanging fruits exist...)

* Phase space sampling (random to momenta mapping) is the first IMO
— It represents a very significant fraction (~50% in DY+3 jets with AVX512/zmm)

— And it should normally be “easy” to parallelize with lockstep processing? (few branches)
* Probably a few months of work, anyway...

2. NEW MADEVENT

(GOAL: LHC PROD)
MULTI-EVENT API

FORTRAN:

FORTRAN:

(Amdabhl...)

RANMAR RANMAR
wﬂ w SCALAR:
NEW . .
FORTRAN: FORTRAN: BOTTLENECK? I.e. replace this Fortran component
MADEVENT MADEVENT .
i — (random number to momenta mapping)
- ST by a new CudaCpp kernel for SIMD/GPU

FORTRAN:
MATRIX1

PARALLEL:
MUCH FASTER!

MAT MENTS

MATRIX ELEMENTS

Compute Accelerator Forum — CERN, & February 2023 30

« PDFs are certainly another very important component to parallelize
— Work in this direction already exists and/or is already planned

« Other components
— Update of coupling scales? Too many branches for lockstep data parallelism?
—1/O (Vegas grids and LHE files) also need optimization...

C\E/RW Andrea Valassi — progress on DY+jets for CMS

~Z_

13 August 2024 12

