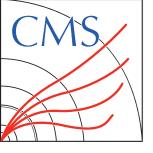


MG4GPU STATUS

FOR CMS-MG JOINT MEETING 24.08.13

OVERVIEW

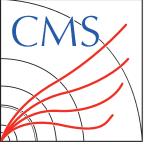


Gridpack Production

- Synced MG4GPU repo just after the last meeting (Aug 13th) Regenerated numbers!
- \checkmark Most slots in LXPLUS are in use1 moved to the server in SNU for FORTRAN/CPP test
- Timing based on "nb_core" i.e. no. of submitted madevents
 - ⇒ Synced nb_core with request_cpus in condor submission scripts
 - → 100% CPU usage for FORTRAN/CPP observed (based on htop)

Event generation

- Tested in LXPLUS requesting single core exclusively
- Tested with no. of evts 5K / 10K / 20K / 50K / 100K / 200K

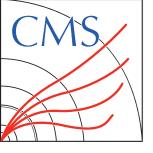


Drell-yan (low multiplicity)

·	nb_core = 16	nb_core = 16	nb_core = 16
	FORTRAN	СРР	CUDA
DY+0j	7m 15s	6m 29s	5m 21s
DY+1j	10m 13s	9m 59s	11m 39s
DY+2j	72m 10s	69m 49s	51m 14s
DY+012j	75m 48s	84m 42s	59m 36s

First inclusive results - DY+2j dominates in gridpack production

Compatible timing for FORTRAN ~ CPP (AVX2) - might expect more improvements in AVX512?

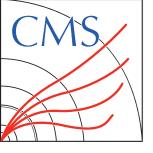


Drell-yan (low multiplicity)

	FORTRAN	СРР	CUDA	
DY+0j		48 Intel	48 Intel, <u>avx2</u>	
DY+1j		FORTRAN	СРР	
DY+2j	DY+0j	7m 59s	8m 38s	
DY+012j	DY+1j	9m 27s	21m 3s	
🔗 First inclusive resu	DY+2j	21m 24s	85m 6s	
🖋 Compatible timing	DY+3j	293m 38s	698m 41s	
	DY+4j	72 cms2 64 19362m 13s 13.5 days	Intel, <u>avx2</u> 18509m 11s 12.8 days	

Previously it took longer...

🕸 Drell-yan (low multiplicity)

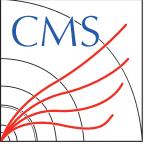

	FORTRAN	СРР	CUDA	
DY+0j	7m 15s	6m 29s	5m 21s	
DY+1j	10m 13s	9m 59s	11m 39s	
DY+2j	72m 10s	69m 49s	51m 14s	
DY+012j	75m 48s	84m 42s	59m 36s	

First inclusive results - DY+2j dominates in gridpack production

Compatible timing for FORTRAN ~ CPP (AVX2) - might expect more improvements in AVX512?

Possible to find slots with AVX512 supports in LXPLUS condor - but hardly matchable:(

<pre>> condor_status -avail -const 'TotalCPUs == 48' -af Name TotalCPUs CPUs</pre>
slot1@b9g11p0067.cern.ch 48.0 1
slot1@b9g11p0080.cern.ch 48.0 1
slot1@b9g11p0183.cern.ch 48.0 1
slot1@b9g11p0258.cern.ch 48.0 1
slot1@b9g11p0279.cern.ch 48.0 2 Most cores are in use
slot1@b9g11p0432.cern.ch 48.0 1
slot1@b9g11p0544.cern.ch 48.0 1
slot1@b9g11p0887.cern.ch 48.0 1
slot1@b9g11p1207.cern.ch 48.0 6
slot1@b9g11p1287.cern.ch 48.0 12



Drell-yan (high multiplicity)

·	nb_core = 32	nb_core = 32	nb_core = 16	
	FORTRAN	СРР	CUDA	
DY+3j	22h 39m	9h 4m	4h 18m	
DY+4j	> 114h(3% done)	> 103h(6% done)	3d 22h	
DY+01234j	> 113h(2% done)	>89h(5.5% done)	Not submitted yet	

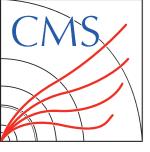
- Clearly(!) see the improvements in DY+3j, x2.5 for CPP and x8 for CUDA
- Question arises What happens if I increase nb_core in CUDA? (Faster Production?)
 - Possible to submit nb_core > total_threads (16), since threads are not fully used in CUDA case
 - ➡> Memory exceeds in GPU side (2~3 GB for single madevent, 40 GB in A100)
- Possible to set-up in low-multiplicity cases (lower memory usage for single madevent)
- Better GPU? Multiple GPUs? Reachable in LXPLUS

H100 IN LXPLUS

condor_status -avail -const 'TotalCPUs == 48 && TotalGPUs == 1' -af Name TotalCPUs CPUs GPUs_DeviceName slot1@b9pgpun005.cern.ch 48.0 48 NVIDIA H100 NVL slot1@b9pgpun007.cern.ch 48.0 48 NVIDIA H100 NVL slot1@b9pgpun008.cern.ch 48.0 48 NVIDIA H100 NVL slot1@b9pgpun009.cern.ch 48.0 48 NVIDIA H100 NVL slot1@b9pgpun010.cern.ch 48.0 48 NVIDIA H100 NVL slot1@b9pgpun012.cern.ch 48.0 48 NVIDIA H100 NVL condor_status -avail -const 'TotalCPUs == 192 && TotalGPUs == 4' -af Name TotalCPUs CPUs GPUs_DeviceName slot1@b9pgpun001.cern.ch 192.0 192 NVIDIA H100 NVL slot1@b9pgpun002.cern.ch 192.0 192 NVIDIA H100 NVL slot1@b9pgpun003.cern.ch 192.0 192 NVIDIA H100 NVL slot1@b9pgpun004.cern.ch 192.0 128 NVIDIA H100 NVL slot1@b9pgpun013.cern.ch 192.0 192 NVIDIA H100 NVL slot1@b9pgpun014.cern.ch 192.0 192 NVIDIA H100 NVL slot1@b9pgpun015.cern.ch 192.0 192 NVIDIA H100 NVL slot1@b9pgpun016.cern.ch 192.0 192 NVIDIA H100 NVL

Are these machines reachable? - Yes!

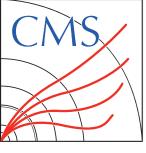
Example submit.jds	1 executable	= gridpack_generation.sh
	2 jobbatchname	= TT3j_CKM <mark>_L0</mark> _5f_CUDA_H100
	3 arguments	= \$(ClusterId).\$(ProcId)
	4 output	<pre>= job.\$(ClusterId).\$(ProcId).out</pre>
	5 error	<pre>= job.\$(ClusterId).\$(ProcId).err</pre>
	6 log	<pre>= job.\$(ClusterId).\$(ProcId).log</pre>
	7 request_CPUs	= 48
	<pre>8 request_GPUs</pre>	= 1
	9 +requirements	<pre>= regexp("H100", TARGET.GPUs_DeviceName)</pre>
	10 +JobFlavour	= "nextweek"
	11 +MaxRuntime	= 1814400
	12 +SingularityImage	= "/cvmfs/singularity.opensciencegrid.org/opensciencegrid/osgvo-el8:latest"
	13 queu <mark>e</mark>	



H100 IN LXPLUS

VIDIA-SMI 550.90.07 Driver Version: 550.90.07	CUD	DA Versi	on: 12.4	i i						
PU Name Persistence-M Bus-Id Dis an Temp Perf Pwr:Usage/Cap Memory-Usa			Comput		4	8 Int	el core	s + 1 H10	0 GPU	
0 NVIDIA H100 NVL Off 00000000:06:00.00 /A 34C P0 61W / 400W 4MiB / 95830 	MiB _ .Apptai		_Disa							
rocesses:	.+		550.90.0			Driver	Version: 5	550.90.07	CUDA Versio	n: 12.4
GPU GI CI PID Type Process name ID ID No running processes found		Name Temp	Perf		Persiste Pwr:Usag		Bus-Id	Disp.A Memory-Usage	Volatile	Uncorr. ECC
		NVIDIA 60C	H100 N\ P0	'L	299W /	0ff 400W		00:3A:00.0 Off iB / 95830MiB		0 Default Disabled
		NVIDIA 36C	H100 N\ P0		61W /	0ff 400W		00:3B:00.0 Off iB / 95830MiB		0 Default Disabled
	+ 2 N/A 	NVIDIA 38C	H100 N\ P0	′L	63W /	Off 400W		00:AD:00.0 Off iB / 95830MiB		0 Default Disabled
192 Intel cores + 4 H100 GPU	+ 3 N/A 	NVIDIA 38C	H100 N\ P0	/L	64W /	Off 400W		00:AE:00.0 Off iB / 95830MiB		 Ø Default Disablea
Can't find anyone using it	+ +	 					·		·+	
	I GPU		CI ID	PID	Туре	Proces	ss name			GPU Memory Usage

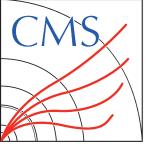
8



🗞 TTbar

• 	nb_core = 16 FORTRAN	nb_core = 16 CPP	nb_core = 16 CUDA	nb_core = 12 CUDA - H100
TT+0j	5m 47s	7m 15s	4m 41s	-
TT+1j	11m 8s	10m 43s	7m 7s	-
TT+2j	74m 52s	38m 25s	21m 47s <u>nb_core = 6</u>	-
TT+3j	> 119h(19%)	> 19h (6%)	8h 11m	4h 53m
TT+0123j	> 118h(20%)	31h 6m	8h 24m	4h 52s

- M Improvements observed throughout the whole processes x2 for CPP / x3.5 for CUDA for TT+2j
- Expecting huge improvements in TT+3j/0123j!
- ✓ Only 6 madevents possible to be submitted for TT+3j/0123j gg \rightarrow ttxggg takes ~ 6GB GPU memory
- Additional test with 12 madevents using H100 (~ 96 GB)
- Super-fast gridpack production viable if multi-gpu supports available! (H100 x 4 ~ 384 GB)
- ✓ Madevents in TT+3j possesses 2~6 GB for GPU memory → could it be allocated dynamically? e.g. Check the remaining memory in GPU and submit the madevent...

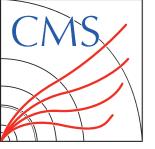


GRIDPACK PRODUCTION

> Summary

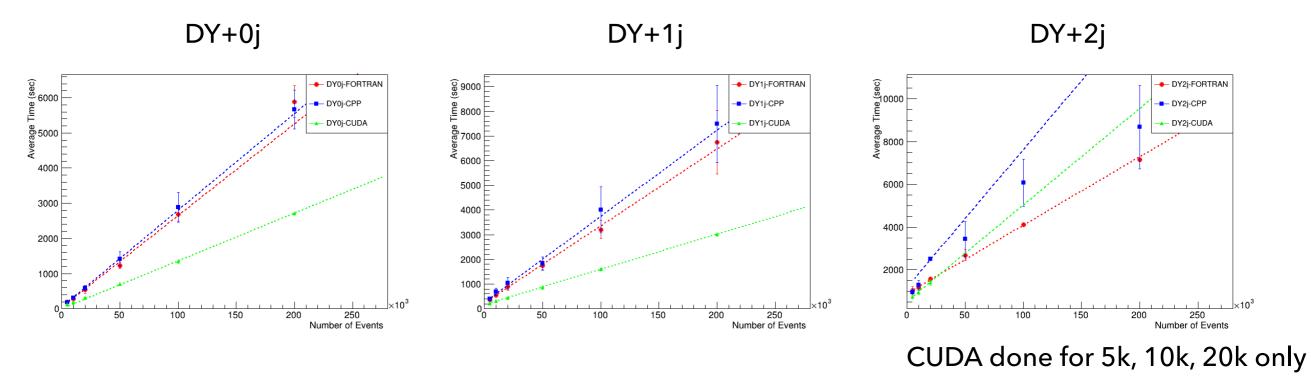
- Improvements from the latest numbers now also viable in CPP
- Some processes (e.g. gg_ttxggg) takes huge amount of GPU memory
 - Parallelization level (nb_core) resticted by (LargestMadeventMemory / TotalMemory)
 - Room for improvement in inclusive processes low multiplicity processes consume low memory, even though high multiplicity processes are time consuming
 - We don't have SUPER MEMORY SINGLE GPU possible to submit O(100) jobs... Viable for Super fast Gridpack Production if Multi-GPU setup supported!
- Experience with single H100 x2 memory, ~x2 madevent jobs, ~/2 timing
- DY4j / TT3j too slow in FORTRAN/CPP set-up, many HPCs are in use:< hard to produce numbers</p>

Test Environment

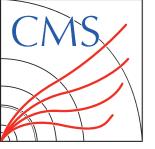

- Using single core(requesting 1 CPUs) in Ixplus condor
- Test timing for 5k, 10k, 20k, 50k, 100k, 200k event generation
- Each process x nevt configuration tested 8 times take avg & stddev

	FORTRAN		CPP		CUDA	
0	28m9.804s	1689.804	20m38.510s	1238.51	6m47.389s	407.389
1	29m8.745s	1748.745	20m2.217s	1202.217	7m45.196s	465.196
2	28m45.357s	1725.357	19m54.762s	1194.762	6m53.662s	413.662
3	27m32.752s	1652.752	19m52.637s	1192.637	7m50.752s	470.752
4	28m22.442s	1702.442	21m0.456s	1260.456	6m18.169s	378.169
5	27m29.009s	1649.009	19m47.381s	1187.381	6m43.447s	403.447
6	27m21.541s	1641.541	20m11.514s	1211.514	6m0.925s	360.925
7	28m47.916s	1727.916	20m31.408s	1231.408	6m19.430s	379.43
avg		1692.196		1214.861		409.871
err		40.832		26.011		19.770

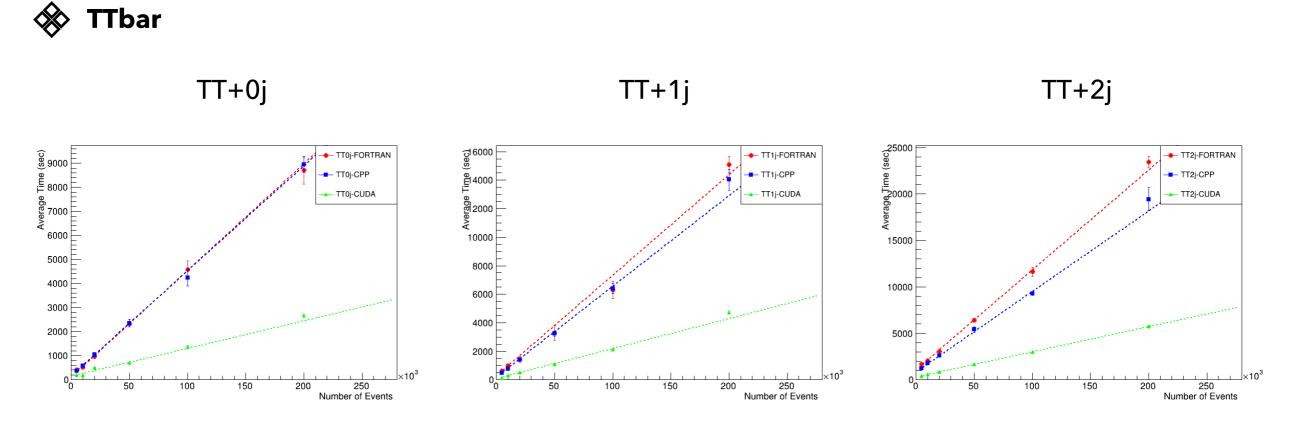
TT2j - 5000


These numbers used for results

Done for DY+0j/1j, TT+0j/1j/2j, Partially done for DY+2j, DY+012j

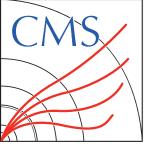


🕸 Drell-Yan

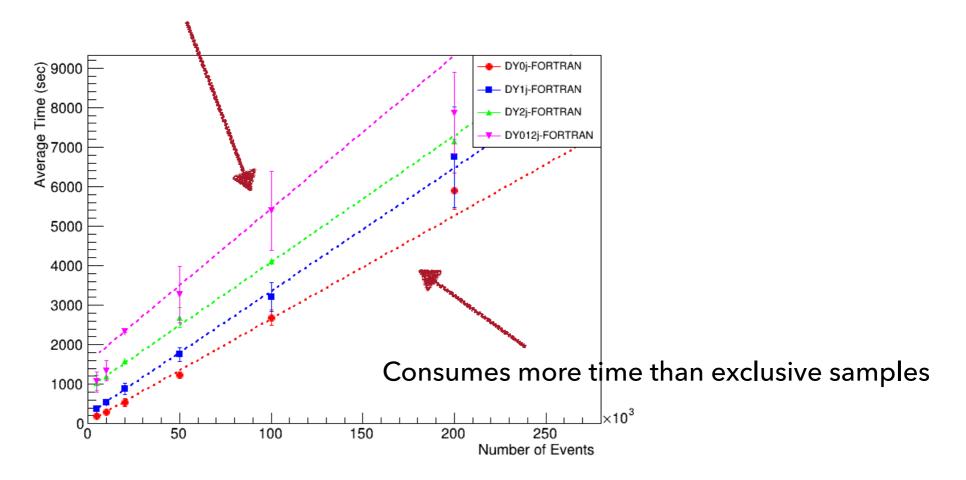


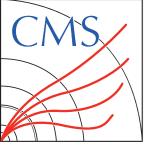
Clearly see x2-3 improvement in CUDA! No improvement viable for AVX2 Vectorization

12



x4 improvement in CUDA. SOME improvement viable for AVX2 vectorization... but not large.
 Improve increases with final state multiplicity...Will be checked with TT+3j


13



Partial results with inclusive sample

Large fluctuation & Not linearly scalable?

🚸 Summary

- Clear improvement (x2-4, depending on the process) shown in CUDA! Not large (or no) improvement for AVX2 supports....
- AVX512 Supports? Again, lack of machines.
- DY+012j inclusive sample takes more time than DY+0j/1j/2j
 Comparison flamegraphs for DY+2j / DY+012j would help
- Surther test with higher multiplicities are on-going