
MG4GPU STATUS

FOR CMS-MG JOINT MEETING
24.09.10

JIN CHOI

RECAP

2

Gridpack Production

Baseline MG Repo - Synced on 240819
Most slots in LXPLUS are in use🥲 - moved to the server in SNU for FORTRAN/CPP test

Gain has been calculated based on nb_core (how to make statement okay?)

Event generation

Tested in LXPLUS - requesting single core exclusively

Tested with no. of evts - 5K / 10K / 20K / 50K / 100K / 200K

Partial results have been shown - Why DY+012j takes longer time than DY+0/1/2j?

Tested w/ other backends / TT+0123j

JIN CHOI

GRIDPACK PRODUCTION

3

Drell-yan (high multiplicity)

FORTRAN CPP CUDA

DY+3j 22h 39m 9h 4m 4h 18m

DY+4j - - 3d 22h

DY+01234j - - 2d 10h (H100)

Clearly(!) see the improvements in DY+3j, x2.5 for CPP and x11 for CUDA

Most cores are in use

nb_core = 32 nb_core = 32 nb_core = 16

Regarding DY+4j/01234j - Needs to process O(10k) grids...

For CPP gridpacks, generating in SNU server with 80 cores, need additional 2 weeks

For FORTRAN, tested in several servers...
- SNU (80 cores): ~ 3 months
- NERSC-CPU (256 cores): It is fast, but restricted by time limit (24 / 48 hours, based on QOS)
- cms-connect (256 cores): Hardly matchable (1~2 days), easily disconnected

nb_core = 28

JIN CHOI

GRIDPACK PRODUCTION

4

TTbar - finalized!

FORTRAN CPP CUDA CUDA - H100

TT+0j 5m 47s 7m 15s 4m 41s -

TT+1j 11m 8s 10m 43s 7m 7s -

TT+2j 74m 52s 38m 25s 21m 47s -

TT+3j 2d 4h 15h 51m 8h 11m 4h 53m

TT+0123j 2d 3h 1d 7h 8h 24m 4h 52s

nb_core = 16 nb_core = 16 nb_core = 16 nb_core = 12

nb_core = 6

Improvements observed throughout the whole processes - x2 for CPP / x3.5 for CUDA for TT+2j
Hugh improvement for TT+3j / 0123j! ~ x2 for CPP / x39 for CUDA (for Inclusive, based on nb_core)
Only 6 madevents possible to be submitted for TT+3j/0123j - gg ttxggg takes ~ 6GB GPU memory→
Additional test with 12 madevents using H100 (~ 96 GB)

nb_core = 80nb_core = 80

nb_core = 80nb_core = 80

JIN CHOI

EVENT GENERATION

5

Test Environment
Using single core(requesting 1 CPUs) in lxplus condor
Test timing for 5k, 10k, 20k, 50k, 100k, 200k event generation
Each process x nevt configuration tested 8 times - take avg & stddev

These numbers used for results

Done for TT, Done for low multiplicity DYs, DY+3j

JIN CHOI

EVENT GENERATION

6

Drell-Yan (Backend Comparison)

Clearly see x2-3 improvement in CUDA!
No improvement viable for AVX2 Vectorization - even worse?

JIN CHOI

EVENT GENERATION

7

Drell-Yan (Inclusive vs. Exclusive)

Inclusive sample generation takes more time... or at least comparable with maximum jets

Fortran CPP CUDA

JIN CHOI

EVENT GENERATION

8

TTbar (Backend Comparison)

TT0j TT1j TT2j

TT3j TT0123j

~x2.5(5) improvements from CPP(CUDA) event generation

JIN CHOI

EVENT GENERATION

9

TTbar (Inclusive vs. Exclusive)

For FORTRAN/CPP, inclusive resides b/w 012j & 3j - as expected

FORTRAN CPP CUDA

For CUDA, inclusive comparable with 3j
- Naive guess: Does no. of processes (or grids?) matter?
 More time to spend roaming around subdirectories than Vagas optimization?

Hard to check what's going on behind the scenes - no printing messages

JIN CHOI

ROADMAP

10

For CMS upgrade week (Sep. 17)

For the status talk, I want to make numbers explainable
- For Gridpack Generation, looks okay
- For Event Generation, 1. Why T(inc.) > T(exc.)? 2. Why CPP takes more than FORTRAN for DYs?

We have additional 3 week before pre-approval

For Pre-approval / CHEP (Early Oct. ~)

How we will treat DY+4j/01234j?
- For CPP, might possible to produce gridpacks, but very tight time limits
- For FORTRAN, even 256 parallelization needs about a month...
Several options checked:
- In NERSC Slurm: C/R option with podman-hpc... need super privileged
- Splitting CODGEN and INTEGRATE steps and split the batch jobs:
 no more support or at least need for development
Most of the progress made from ttbar - Is it feasible to drop DY+4j?
(and make inclusive study up to 3 jets)?

For the difference speed for process definition (e.g. uux_epemgg v.s. pp_epemjj),
how it should be treated?
Multi-backend options? (If we have enough time?)

JIN CHOI 11

BACK UP

JIN CHOI

STATUS - GRIDPACK PRODUCTION

12

Drell-yan (low multiplicity)

FORTRAN CPP CUDA

DY+0j 7m 15s 6m 29s 5m 21s

DY+1j 10m 13s 9m 59s 11m 39s

DY+2j 72m 10s 69m 49s 51m 14s

DY+012j 75m 48s 84m 42s 59m 36s

First inclusive results - DY+2j dominates in gridpack production

Compatible timing for FORTRAN ~ CPP (AVX2) - might expect more improvements in AVX512?

nb_core = 16 nb_core = 16 nb_core = 16

JIN CHOI

GRIDPACK PRODUCTION

13

Summary
Improvements from the latest numbers - now also viable in CPP
Some processes (e.g. gg_ttxggg) takes huge amount of GPU memory

Parallelization level (nb_core) resticted by (LargestMadeventMemory / TotalMemory)
Room for improvement in inclusive processes - low multiplicity processes consume low memory,
even though high multiplicity processes are time - consuming
We don't have SUPER MEMORY SINGLE GPU possible to submit O(100) jobs...
Viable for Super fast Gridpack Production if Multi-GPU setup supported!

Experience with single H100 - x2 memory, ~x2 madevent jobs, ~/2 timing
DY4j / TT3j too slow in FORTRAN/CPP set-up, many HPCs are in use:< - hard to produce numbers

JIN CHOI

EVENT GENERATION

14

Summary

Clear improvement (x2-4, depending on the process) shown in CUDA!
Not large (or no) improvement for AVX2 supports....

AVX512 Supports? Again, lack of machines.
DY+012j inclusive sample takes more time than DY+0j/1j/2j
- Comparison flamegraphs for DY+2j / DY+012j would help

Further test with higher multiplicities are on-going

