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Two physicists are having coffee on the Piazza San Marco in Venice.
The Piazza is densely populated by pigeons, moving here and there
in a random way, picking up bits of food.

The set of pigeons has rotational symmetry.
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Suddenly there is a loud bang, the pigeons all fly straight up and
then depart in a big swarm in one direction.

The rotational symmetry is spontaneously broken.
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The physicists protest: the birds are not allowed to do that, the
Mermin-Wagner theorem forbids it!

A continuous symmetry in 2D cannot be spontaneously broken.

How did the pigeons manage to get around Mermin-Wagner?
→ are birds smarter then nerds?
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The physicists protest: the birds are not allowed to do that, the
Mermin-Wagner theorem forbids it:

A continuous symmetry in 2D cannot be spontaneously broken.

How did the pigeons manage to get around Mermin-Wagner?
→ are birds smarter then nerds?

The answer was given 1995 by Tamás Vicsek and collaborators, in
Phys. Rev. Lett. 75 (1995) 1226 (> 4500 citations):

NOVEL TYPE OF PHASE TRANSITION IN A SYSTEM

OF SELF-DRIVEN PARTICLES

Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen

and Ofer Shochet

That will be the subject of this talk.
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Recall critical behavior in 2D spin systems

• Ising model: N 2 lattice, si = ±1, N → ∞, n.n. interaction

H = −J
∑

{i,j}
sisj − H

∑

i
si;

Z(T, H, N) =
N2
∏

i=1

∑

si=±1
exp {−H/T }

aligned spins energetically favored; for H = 0 with decreasing T
continuous transition from disordered (paramagnetic) to ordered
(ferromagnetic) state; order parameter

m(T, N) =
1

Z(T, N)

N2
∏

i=1

∑

i







∑

i si
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 exp{ − (J/T )
nn
∑

i,j
sisj}

defines transition point T = Tc = 2J/ln[1 +
√

2]

m(T ) =



























(1 − (T/Tc))
β ∀ T < Tc

0 ∀ T > Tc
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NB: interaction range vs. correlation range

interaction range: nearest neighbor interactions

correlation range: define Γi,j(t, H = 0) = 〈sisj〉 − 〈si〉〈sj〉
average over all i, j with i − j = r to get

correlation function Γ(r, T ) ∼ e−r/ξ

rp

with correlation length ξ ∼ |1 − (T/Tc)|−ν ≫ interaction range.

ξ specifies how many spins can “see” each other, for a given
two-body nearest neighbor interaction range.

At critical point, T = Tc, correlation length ξ diverges,

Γ(r, Tc) ∼ 1

rp

scale-free system, everybody is connected to everybody (swarm!).
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• q-state Potts model, N 2 lattice, θi(n) = 2πn/q, n = 1, 2, ..., q

H = − J
∑

{i,j}
cos(θi − θj) − H

∑

i
cos(θi);

For q = 2: Ising model

q=3 q=4

....

q=2 q

In general, discrete Zq symmetry, spontaneously broken

at transition temperature Tc = 2J/ ln(1 +
√

q ) (for 2D),

for q ≤ 4, continuous transition; for q > 4, first order.

The larger q, the lower the transition temperature,

the smaller the temperature range of long-range order
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consider transition in discrete 2D spin models:

Peierls formulation

Ising model: island of down spins in sea of up spins, N sites

change up spin to down spin: ∆E = 2J

perimeter (“domain wall”) Γ

build Γ from given site:

three possibilities (can’t go back)

hence ∼ 3ΓN possibilities for Γ steps

(N to start from); entropy S = T log 3ΓN
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change in free energy to get island (F = E−TS; assume 3Γ ≫ N)

∆F ≃ Γ(2J − T log 3)

hence transition temperature Tc ≃ 2J/ log 3.
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q-state Potts model: ∆E ≃ (1 − cos[2π/q])J

→ 0 with large q: the larger q, the cheaper spin flip

hence Tc ≃ J(1 − cos[2π/q])/ log 3 vanishes for q → ∞

For q → ∞, Tc(q) → 0, no long-range order at finite T ,

T
order

disorder

5 4 3 2...

1

0

m(T)

and Potts model becomes

• X−Y model, continuous rotational symmetry:

H = − J
∑

{i,j}
cos(θi − θj) − H

∑

i
cos(θi)

but now 0 ≤ θi ≤ 2π.
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For 2D: Mermin-Wagner theorem

– no spontaneous symmetry breaking,

– no state of long range order for T > 0,

– state of long range order only for T = 0.

(NB: finite temperature Kosterlitz-Thouless transition...)

At finite T > 0, ferromagnetic

transition not possible: there is

no state with m(T ) 6= 0 for T > 0

How can the birds fly away all in one direction?

T > Tc T < Tc
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Experiment: Rome 2005, The EU Starflag Project
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European Starling
(sturnus vulgaris)
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Palazzo Massimo alle Terme
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• Two high speed cameras, 30m above ground, 25m apart, ∼ 100m
from swarm, taking 10 frames/second for 8 seconds ≡ event, 500
events, of 24 swarms from 100 up to 4000 birds.
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• Stereoscopic analysis (APE computers, CERN programs) iden-
tified each bird and allowed swarm structure determination.

CERN particle tracks
in AA collision
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• Stereoscopic analysis (APE computers, CERN programs) iden-
tified each bird and allowed swarm structure determination.

• Swarm (N birds) is approximately 2D: flat re gravity, area L.

• Each bird interacts with six other birds = interaction range.
Topological, not metric, independent of swarm size, density.

• Each bird is correlated to many other birds in the swarm (cor-
relation length ∼ L ≫ interaction range ∼ “stille Post”).

• Some obserables:

- order parameter, polarization φ = || 1

N

N
∑

1
[~vi/|vi|]||

φ = 0 for rotational invariance;

- cms velocity of bird i, velocity fluctuation ~ui = ~vi − 1

N

N
∑

1
~vi

- correlation function, C(r) =
∑

ij ~ui · ~ujδ(r − rij)
∑ δ(r − rij)
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C(r) ≫ 0: i, j distance r apart fly parallel, ≪ 0 anti-parallel, 0
uncorrelated, cross-over defines correlation length ξ

correlation length ξ ∼ L
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interaction range determined by neighbor anisotropy:
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interaction range ≃ six birds ≪ correlation range

correlation range ξ determined by C(r = ξ) = 0, grows with swarm
size ξ(bL) = bξ(L); result for L → ∞

C(r) =
1

rγ
exp −(r/ξ) → 1

rγ
with γ ≃ 0.2

non-critical behavior: exponential decay of C(r)

critical behavior: power-law decay.
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Conclude: Bird swarm correlation is based on critical behavior with
very weak decay, extremely long-range effect.

STARFLAG: “how starlings achieve such a strong correlation re-
mains a mystery to us”.
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Conclude: Bird swarm correlation is based on critical behavior with
very weak decay, extremely long-range effect.

STARFLAG: “how starlings achieve such a strong correlation re-
mains a mystery to us”.

→ mathematical models of swarm behavior.

Vicsek Model

basic idea: velocity vectors of birds ∼ spins in spin models

• 2D surface of area A = L2, periodic boundary conditions

• N birds move in time, at constant speed, over surface

• each bird tries to follow its neigbors = birds within fixed distance
R around it; R is independent of L

• following is subject to stochastic noise ∼ temperature for spins

• ∃ rotational symmetry; no Galilei-invariance, momentum not
conserved
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Rules for bird motion:

• initial state: random space distribution of N birds, random ori-
entation of velocity vectors of unit length

• start time evolution

~xi(t + 1) = ~xi(t) + ~vi(t)∆t

• velocity ~vi(t + 1) is average over all bird vectors within a radius
R around i, with noise ∆θi:

θi(t + 1) =< θi(t) >i⊂Ri
+∆θi

with 0 ≤ θ ≤ 2π measured re some arbitrary reference direction

• noise is random value subject to −η ≤ ∆θi ≤ η ∀i

• two parameters: density ρ = N/A and noise η ∼ temperature

• iterate in unit time steps ∆t = 1 until equilibration
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• order parameter φ = | 1

N

∑

i
~vi|
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φ

η

ηc

ρ=0.4

magnetization (average velocity φ) vs.
temperature (orientational noise η)
of a bird swarm; get ηc

similar φ vs. ρ to get ρc

0
0

ordered

disordered

ρ
(n)

η (T)

first interpretation:
continuous transition, ρ vs. η
like n vs. T phase diagram
in condensed matter
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Lessons for phase structure from Vicsek model:

• 2d Vicsek model - spontaneous breaking of rotational symmetry,
long range order, in contrast to

• 2d x − y model - no spontaneous symmetry breaking, no long
range order

• non-equilibrium (motion, change of momentum): ordering effect

But: subsequent studies showed

• theory: transition is discontinuous, intermediate (“coexistence”)
stage of band structures

• experiment (STARFLAG results): neighbor definition is topo-
logical, not metric
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return to experimental (bird) interaction range
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interaction range ≃ six birds, 6= x m, nn can be 1 m or 10 m away,
range size ∼ swarm density: topological, not metric

consider average next nearest neighbor
distance r1 as function of swarm density:

r1 = aρ−1/3

ρ−1/3
swarm density      (m)
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how does interaction range depend on density?

0.40.2 0.6 0.8

ρ −3

0.25

0.5

0.75

1.0

nc
−1/3

density    (m   )

high ρ low ρ

Topological range (6 nearest birds) remains constant under density
change, interaction structure unchanged as flock expands or con-
tracts.

Need topological Vicsek model, with only noise η as parameter;
density is irrelevant:

F. Ginelli and H. Chaté, PRL 105 (2010) 168103

Relevance of Metric-Free Interactions in Flocking Phenomena
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Original Vicsek model: transition line ρ−η, discontinuous transition

topological flock model:
critical transition point ηc, continuous transition, no density depen-
dence

0.4

0.6

0.8

1.0

φ

0.2

ηc

0.620.610.60 0.63

η

result of numerical simulation (Ginelli & Chaté); why ηc ≃ 0.615?

determine critical exponents;
not mean field, not any known universality class
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Topological definition: what are neighbors and why six?
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Topological definition: what are neighbors and why six?

Voronoi tesselation

- consider random distribution of N particles in a plane of area A
- define as neighborhood of any particle all points closer to it than
to any other particle

- result: coverage of the plane (“tesselation”) by areas
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Topological definition: what are neighbors and why six?

Voronoi tesselation

- consider random distribution of N particles in a plane of area A
- define as neighborhood of any particle all points closer to it than
to any other particle

- result: coverage of the plane (“tesselation”) by areas

for N → ∞, N/A = const.:

what is the average number
of neighbors for each particle?
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Delaunay Triangulation

triangles have
number of faces F,
of vertices/particles V, of edges E

Euler characteristic formula gives

χ = V − E + F = 2

neglect borders:
face has three edges, edge touches two faces: 3F=2E

V = (1/3)E + 2

since each edge ∼ two vertices, from each vertex emerge ∼ six lines.

⇒ each Voronoi area has on the average six neighbors

NB: actual bird flocks are flat, but not 2d!
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Conclusions

• behavior of natural flocks of birds can be accounted for in terms
of non-equilibrium statistical mechanics;

• it arises through self-organization based on local interactions of
nearest neigbors only;

• observed global behavior is emergent.
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