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Outlook 
•  Part I: Quantum statistics and the method of Green functions, 

Coulomb systems 

•  Part II: Nuclear systems, correlations, bound states and in-medium 
effects, phase transitions, pairing and quartetting 

•  Part III: Nonequilibrium processes and cluster formation, freeze-out 
concept, heavy-ion collisions, fission, astrophysics, transport 
processes 

•  TI: Green functions and Feynman diagrams, partial summations, 
self-energy, polarization function, cluster decomposition 

•  TII: Separable potentials, bound and scattering states, Pauli 
blocking and shift of the binding energy 



Structure of matter 

Fermion systems: ideal Fermi gases 
 
Interaction - correlations 
 
Low densities: bound states, quantum condensates 
High densities: condensed phase 
 
•  Plasma physics:  Ionization potential depression (IPD) 
•  Nuclear physics: Weakly bound nuclei in nuclear systems 
•  QCD:  Deconfinement, Quark – Gluon phase transition in neutron-star mergers 



nucleon-nucleon interaction potential  
•  Effective potentials  
      (like atom-atom potential) 
      binding energies, scattering 

•   non-local, energy-dependent? 
      QCD? 

•  microscopic calculations  
     (AMD, FMD)  

•  single-particle descriptions: 
     Thomas-Fermi approximation 
     shell model  
     density functional theory (DFT) 
 
•  correlations, clustering  
     low-density nα nuclei, Volkov 



Binding energy per nucleon 



Semi-empirical mass formula 
Liquid drop model:     Bethe-Weizsaecker mass formula 

proton fraction 



Models of nuclei 

magic numbers: 
2; 8; 20; 28; 50; 82; 126 

Shell model of nucleus: 
potential well 

Droplet model: 
Bethe-Weizsäcker-Formel 

Hans Jensen, Maria Goeppert-Mayer 

Constituents: 
protons, neutrons 

C. F. von Weizsäcker:  
Zur Theorie der Kernmassen.  
In: Zeitschrift für Physik. 96 (1935), S. 431–458. 

O. Haxel, J.H.D. Jensen, H. E. Suess 
Zur Interpretation der ausgezeichneten Nukleonenzahlen  
im Bau der Atomkerns,  
Die Naturwissenschaften, Band 35, (1949) S.376 



Nuclear radii 
root mean square radius (charge or point): 

I. Angeli, Atomic Data and Nuclear Data Tables 87, (2004) 

mass – radius relation: R = 1.18 A1/3 [fm]      nB = 0.15 fm-3 = ρsat 



Correlations in nuclei 

•  Liquid droplet (Bethe – Weizsaecker) 

•  Shell model (Jensen) 

•  Pairing (odd-even staggering) - quartetting 

•  Hoyle state in 12C 

•  α - formation and  α - decay 



α cluster structure of 8Be  

Contours of constant density, plotted in cylindrical coordinates, for 8Be(0+) .  
The left side is in the laboratory frame while the right side is in the intrinsic frame. 

R.B. Wiringa et al., 
PRC 63, 034605 (01) 



Big-Bang nucleosynthesis: H, He, Li, __________ 

Courtesy: D. Bemmerer, lecture at Karpacz-2019 



The Hoyle state in 12C 

nα nuclei: 8Be,  12C,  16O,  20Ne,  24Mg, … 
cluster type structures near the n α breakup threshold energy 

12C: from astrophysics: excited state predicted near the 3 α threshold energy  
       (F. Hoyle). 
 a 0+ state at 0.39 MeV above the 3 α threshold energy has been found. 

not described by shell structure calculations,  
3 α cluster interact predominantly in relative S waves, 
gas-like structure, THSR state 

α-particle condensation in low-density nuclear matter,  
ρ below ρsat/5 

A. Tohsaki et al., PRL 87, 192501 (2001) 



Excited light nuclei 

decreasing 
density 

systematics in  
weakly bound  
light elements 

Yoshiko Kanada-En'yo  
Cluster2012,Debrecen  

clustering at 
low densities 

clusters disappear  
at increasing density: 
Pauli blocking (see below)  



Decay modes of nuclei 



Island of Stability 



Preformation: α decay of 212Po 

d: 208Pb 

m: 212Po 



Hot and dense matter 

•  Early universe 
 
•  Compact objects in astrophysics 
 
•  Heavy ion collisions 
 
•  Spontaneous fission 



Nuclear matter phase diagram 
Core collapse supernovae 

T. Fischer et al., arXiv 1307.6190, 
EPJA 50, 46 (2014) 



Quantum statistical approach 
The total density as well as the DoS are given by the spectral function A, 

which is related to the Green function and the self-energy as  



Quantum statistical approach 
The total density as well as the DoS are given by the spectral function A, 

A cluster decomposition for the self-energy is possible so that a quasiparticle  
(free) contribution can be separated,  

which is related to the Green function and the self-energy as  



Quasiparticle approach 
The total density as well as the DoS are given by the spectral function A, 

•  generalized Beth-Uhlenbeck formula (quasiparticles) 

In-medium Schrödinger equation for Ei,γ,ν(T,µ),  δi,γ(T,µ), channel (spin…) γ 

•  quasiparticle concept 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 



Partial summations 
•  Dyson equation and self-energy  

•  screening 

•  Debye potential  

•  Hartree-Fock 

screening parameter 

polarization function 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
Skyrme, Gogny, RMF 

medium effects 



Medium effects:  
Quasiparticle approximation 

•  Skyrme / Gogny 

•  relativistic mean field (RMF) 
    Lagrangian: non-linear sigma, TM1 parameters, 
     single particle modifications, energy shift, effective mass 

•  DD-RMF [S.Typel, Phys. Rev. C 71, 064301 (2007)]:  
    expansion of the scalar field and the vector fields  
     in powers of proton/neutron densities 
 
•  Dirac-Brueckner Hartree Fock (DBHF) 

•  Density functional theory 



Quasiparticle picture: RMF and DBHF 

C. Fuchs et al.; 
J.Margueron et al., Phys.Rev.C 76,034309 (2007) 

But: cluster formation 
Incorrect low-density limit 



Quasiparticle approximation for nuclear matter 

Klaehn et al., PRC 2006 

But: 
cluster  
formation 

Incorrect 
low-density  
limit 



Bethe-Salpeter equation 

Ladder summation 

Free two-particle propagator 

Full two-particle 
 propagator 

Solution low-density limit 

Schroedinger equation 

Bethe-Salpeter equation 



cluster decomposition of the self-energy  

Beth-Uhlenbeck formula: second virial coefficient, 

cluster propagator 

Two-particle correlations 

Beth-Uhlenbeck formula 

degeneracy bound states scattering phase shifts 



Cluster decomposition 
 of the self-energy 

Tn-matrices: n-particle Schroedinger equation, 
n-particle bound states, (we neglect here scattering states). 
 
Including clusters like new components 
chemical picture, 
mass action law, nuclear statistical equilibrium (NSE) 



Ideal mixture of reacting nuclides 

mass number A, 
charge ZA, 
energy EA,ν,K, 
ν internal quantum number, 
~K center of mass momentum 

Chemical equilibrium, mass action law, 
Nuclear Statistical Equilibrium (NSE) 



Nuclear statistical equilibrium 
(NSE) 

Chemical picture: 
Ideal mixture of reacting components 
Mass action law 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
Skyrme, Gogny, RMF 

Nuclear statistical equilibrium: 
ideal mixture of all bound states  
(clusters:) chemical equilibrium 

medium effects 

bound state formation 

Inclusion of the light clusters (d,t,3He,4He) 



Composition of symmetric matter 
 Ideal mixture of nuclides 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
Skyrme, Gogny, RMF 

Nuclear statistical equilibrium: 
ideal mixture of all bound states  
(clusters:) chemical equilibrium 

medium effects 

bound state formation 

low density limit saturation density 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
BHF, Skyrme, Gogny, RMF 

Nuclear statistical equilibrium: 
ideal mixture of all bound states  
(clusters:) chemical equilibrium 

Chemical equilibrium  
with quasiparticle clusters: 
self-energy and Pauli blocking 

medium effects 

bound state formation 



Nuclear statistical equilibrium 
(NSE) 

Chemical picture: 
Ideal mixture of reacting components 
Mass action law 

Physical picture: 
"elementary" constituents 
and their interaction 

Interaction between the components 
internal structure: Pauli principle Quantum statistical (QS) approach, 

quasiparticle concept, virial expansion 



Bethe-Salpeter equation 

Ladder summation 

Free two-particle propagator 

Full two-particle 
 propagator 

Solution low-density limit 

Schroedinger equation 

Bethe-Salpeter equation 



Effective wave equation  
for the deuteron in matter 
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phase space occupation: 
Fermi distribution function 

Pauli-blocking self-energy 

In-medium two-particle wave equation in mean-field approximation 

(screening and vertex correction neglected) 



Pauli blocking – phase space occupation 

momentum space 

Fermi sphere 
px 

py 

pz cluster wave function 
 (atoms, ions, …deuteron, alpha,…)  
in momentum space 

P P - center of mass momentum 

The Fermi sphere is forbidden, 
deformation of the cluster wave function 
in dependence on the c.o.m. momentum P 

The deformation is maximal at P = 0. 
It leads to the weakening of the interaction 
(disintegration of the bound state). 



Shift of the deuteron bound state energy 

G.R., Nucl. Phys. A 867, 66 (2011)  

Dependence on nucleon density, various temperatures, 
zero center of mass momentum  

thin lines: 

fit formula  



Shift of Binding Energies of Light Clusters 

G.R., PRC 79, 014002 (2009) 
S. Typel et al.,  
PRC 81, 015803 (2010) 

Symmetric matter 



Full virial expansion 

•  Excited states, resonances, scattering states 

•  Full expression for the second virial coefficient 

•  Scattering phase shifts 

•  Exact in second order of density 

•  Beth-Uhlenbeck equation, Dashen-Ma-Bernstein: S-matrix 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
Skyrme, Gogny, RMF 

Nuclear statistical equilibrium: 
ideal mixture of all bound states  
(clusters:) chemical equilibrium 

Chemical equilibrium  
with quasiparticle clusters: 
self-energy and Pauli blocking 

Second virial coefficient: 
account of continuum contribution, 
scattering phase shifts, Beth-Uhl.E. 

medium effects 

bound state formation 

continuum contribution 



cluster decomposition of the self-energy  

Beth-Uhlenbeck formula: second virial coefficient, 

cluster propagator 

Two-particle correlations 

Beth-Uhlenbeck formula 

degeneracy bound states scattering phase shifts 



Alpha-particle fraction in the low-density limit 
 symmetric matter, T=2, 4, 8 MeV 

C.J.Horowitz, A.Schwenk, Nucl. Phys. A 776, 55 (2006) 



Effective wave equation  
for the deuteron in matter 

€ 

p1
2

2m1
+ Δ1 +

p2
2

2m2

+ Δ 2

# 

$ 
% 

& 

' 
( Ψd ,P (p1, p2) + (1− f p1 − f p2 )V

p1 +,p2 +
∑ (p1, p2;p1+, p2+)Ψd ,P (p1+, p2+)

€ 

= Ed ,PΨd ,P (p1, p2)

€ 

f p = e(p
2 / 2m−µ ) / kBT +1[ ]

−1

phase space occupation: 
Fermi distribution function 

Pauli-blocking self-energy 

In-medium two-particle wave equation in mean-field approximation 

solution for bound and scattering states 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
BHF, Skyrme, Gogny, RMF 

Nuclear statistical equilibrium: 
ideal mixture of all bound states  
(clusters:) chemical equilibrium 

Chemical equilibrium  
of quasiparticle clusters: 
self-energy and Pauli blocking 

Second virial coefficient: 
account of continuum contribution, 
scattering phase shifts, Beth-Uhl.Eq. 

Generalized Beth-Uhlenbeck formula: 
medium modified binding energies, 
medium modified scattering phase shifts 

medium effects 

bound state formation 

continuum contribution 



Levinson’s theorem 
•  Bound states disappear at increasing density, merge with the continuum 

•  No discontinuity in the partition function, jump in the bound state 
contribution is compensated by a jump in the scattering phase contribution 

•  Levinson’s theorem: scattering phase shift at zero energy is given by the 
number of bound states multiplied by pi  



Shift of the deuteron bound state energy 

G.R., Nucl. Phys. A 867, 66 (2011)  

Dependence on nucleon density, various temperatures, 
zero center of mass momentum  

thin lines: 

fit formula  



Scattering phase shifts in matter 



Two-particle correlations 

M. Schmidt, G.R., H. Schulz 
Ann. Phys. 202, 57 (1990) 

Generalized  
Beth-Uhlenbeck Approach 
for Hot Nuclear Matter 



Composition of dense nuclear matter 

mass number A 
charge ZA 
energy EA,ν,K 
ν: internal quantum number  
excited states, continuum correlations 

•  Medium effects: correct behavior near saturation 
  self-energy and Pauli blocking shifts of binding energies, 
  Coulomb corrections due to screening (Wigner-Seitz, Debye) 



Deuteron-like scattering phase shifts 
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G. Roepke, J. Phys.: Conf. Series 569, 012031 (2014) 
Phys. Part. Nucl. 46, 772 (2015) [arXiv:1408.2654] 

deuteron bound state -2.2 MeV 

Virial coeff. ∝  

10

A. Two-nucleon contribution

The virial expansion of the EOS (4) reads [23, 35, 36, 38, 39]

ntot
n (T, µn, µp) =

2
⇤3

h

bn(T )eµn/T + 2bnn(T )e2µn/T + 2bnp(T )e(µn+µp)/T + . . .
i

,

ntot
p (T, µn, µp) =

2
⇤3

h

bp(T )eµp/T + 2bpp(T )e2µp/T + 2bpn(T )e(µn+µp)/T + . . .
i

, (31)

Already the noninteracting, i.e. ideal Fermi gas of nucleons contains two e↵ects in contrast to the standard low-
density, classical limit:
i) The relativistic dispersion relation E⌧ (p) = c

p

(m⌧ c)2 + (~p)2 � m⌧ c2 results in a first virial coe�cient b⌧ 6= 1.
The value b⌧ = 1 follows from the dispersion relation E⌧ (p) = ~2p2/2m⌧ . For a more detailed investigation see [39].
ii) The degeneration of the fermionic nucleon gas leads to the contribution �2�5/2 to b⌧⌧ [35].

The remaining part of the second virial coe�cient is determined by the two-nucleon interaction. We can introduce
di↵erent channels, in particular the isospin triplet (TI = 1, neutron matter) and isospin singlet (TI = 0, deuteron)
channels which are connected with the spin singlet and spin triplet state, respectively, if even angular momentum is
considered, for instance S-wave scattering. The second virial coe�cient in both channels can be derived from bnn and
bnp. Empirical values are given as function of T in Ref. [38] (isospin symmetry is assumed).

B. Generalized Beth-Uhlenbeck formula

The second virial coe�cients bnn and bnp cannot directly used within a quasiparticle approach. Because part of
the interaction is already taken into account when introducing the quasi-particle energy, we have to subtract this
contribution from the second virial coe�cient to avoid double counting, see [32, 36, 39]. We expand the density
with respect to the fugacities within the quasiparticle approximation picture (23), (24). We identify the residual
isospin-triplet contribution v0

TI=1(T ) from the neutron matter case as

ntot
B,neutron m.(T, µn, µp) = nqu

n (T, µn, µp) +
25/2

⇤3
e2µn/T v0

TI=1(T ) + . . . , (32)

and the residual isospin-singlet contribution v0
TI=0(T ) from the symmetric matter case (µp = µn) according to

ntot
B,symmetr.m.(T, µn, µp) = nqu

n (T, µn, µp) + nqu
p (T, µn, µp)

+
25/23
⇤3

e(µn+µp)/T
h

e�E0
d/T � 1 + v0

TI=0(T ) + v0
TI=1(T )

i

+ . . . , (33)

dots indicate higher orders in densities. The residual second virial coe�cients v0
c (T ) are given by [36]

v0
c (T ) =

1
⇡T

Z 1

0

dE e�E/T

⇢

�c(E)� 1
2

sin[2�c(E)]
�

. (34)

Comparing (33) with the ordinary Beth-Uhlenbeck formula (8) there are two di↵erences:
i) After integration by parts, the derivative of the scattering phase shift is replaced by the phase shift, and according
to the Levinson theorem for each bound state the contribution �1 appears.
ii) The contribution � 1

2 sin[2�c(E)] appears to avoid double counting [32, 36] when introducing the quasiparticle
picture. E denotes the relative energy in the c.o.m. system.

The EOS (4) is not free of ambiguities with respect to the subdivision into bound state contributions and continuum
contributions, compare (33), (34) with (7), (8). The continuum correlations in b⌧,⌧ 0(T ) are reduced to the residual part
v0

c (T ) if the quasiparticle picture is introduced. The remaining contribution to the second virial coe�cient b⌧,⌧ 0(T ) is
absorbed in the quasiparticle shift. This has been discussed in detail in [32, 36, 39].

To give an approximation for v0
c (T ), we performed calculations within the generalized Beth-Uhlenbeck approach

[36] for a simple separable potential,

Vc(12, 1020) = ��ce
� (p1�p2)2

4�2 e
� (p01�p02)2

4�2 ��,�0�⌧,⌧ 0 (35)

with �d = 1287.37 MeV for the deuteron (isospin 0) channel, � = 1.474 fm�1, see [34], adapted to binding energy and
point rms radius of the deuteron. After evaluating the T-matrix, the scattering phase shifts are obtained, and v0

d(T )
has been evaluated. For details see [36]. The result is approximated by

v0
d(T ) = v0

TI=0(T ) ⇡ 0.30857 + 0.65327 e�0.102424 T/MeV . (36)

Tamm-Dancoff 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
BHF, Skyrme, Gogny, RMF 

Nuclear statistical equilibrium: 
ideal mixture of all bound states  
(clusters:) chemical equilibrium 

Chemical equilibrium  
of quasiparticle clusters: 
self-energy and Pauli blocking 

Second virial coefficient: 
account of continuum contribution, 
scattering phase shifts, Beth-Uhl.Eq. 

Generalized Beth-Uhlenbeck formula: 
medium modified binding energies, 
medium modified scattering phase shifts 

Cluster virial approach: 
all bound states (clusters) 
scattering phase shifts of all pairs  

medium effects 

bound state formation 

continuum contribution 

chemical & physical picture 
Correlated medium: 
phase space occupation by all bound states 
in-medium correlations, quantum condensates 



EOS: continuum contributions 
Partial density of channel A,c at P (for instance, 3S1= d): 

separation: bound state part – continuum part ? 

parametrization (d – like): 

G. Roepke, PRC 92,054001 (2015) 



Single nucleon distribution function 
Dependence on temperature  

Alm et al., PRC 53, 2181 (1996) 

 

saturation density 



Pauli blocking, correlated medium 

effective occupation numbers 

In-medium Schroedinger equation 

effective Fermi distribution 

effective temperature 

G. Roepke, PRC 92,054001 (2015) 

blocking by all nucleons 



In-medium effects 

•  Self energy, mean-field approximation 
•  Quasiparticle picture of elementary particles 
•  Full antisymmetrization: Pauli blocking 
•  Bound states as new quasiparticles 
•  Continuum correlations 
•  Correlated medium 

•  Quantum statistical approach.  
•  Excluded volume (Hempel, Schaffner-Bielich,…) 
•  Generalized relativistic mean field:  
     clusters as quasiparticles (Typel, Pais,…) 



EoS including correlations 

•  Composition 
 
•  Chemical potential, nuclear matter and stellar matter (β equilibrium) 
 
•  Free energy and related quantities, symmetry energy,… 
 
•  Phase transition 
 
•  Quantum condensates: pairing, quartetting,… 



Light Cluster Abundances 

Composition of symmetric matter in dependence on the baryon density nB, T = 5 MeV.  
Quantum statistical calculation (full) compared with NSE (dotted).  

G. R., PRC 92, 054001 (2015) 



Pauli blocking in symmetric matter 
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Free proton fraction as function of density and temperature in symmetric matter. 
QS calculations (solid lines) are compared with the NSE results (dotted lines). 
Mott effect in the region nsaturation/5.  



Equation of state: chemical potential  

Chemical potential for symmetric matter. T=1, 5, 10, 15, 20 MeV. 
QS calculation compared with RMF (thin) and NSE (dashed).  
Insert: QS calculation without continuum correlations (thin lines).  


