Karpacz, May 16-25, 2024

Correlations, Cluster Formation, and Phase Transitions in Dense Fermion Systems

Gerd Röpke, Rostock

Outlook

- Part I: Quantum statistics and the method of Green functions, Coulomb systems
- Part II: Nuclear systems, correlations, bound states and in-medium effects, phase transitions, pairing and quartetting
- Part III: Nonequilibrium processes and cluster formation, freeze-out concept, heavy-ion collisions, fission, astrophysics, transport processes
- TI: Green functions and Feynman diagrams, partial summations, self-energy, polarization function, cluster decomposition
- TII: Separable potentials, bound and scattering states, Pauli blocking and shift of the binding energy

Structure of matter

energy scale	fermions	interaction	bound states	density effects	condensed phase
$1 \dots 10 \text{ meV}$	electrons, holes	Coulomb	$\operatorname{excitons}$	screening	electron-hole liquid
$1 \dots 10 \mathrm{eV}$	electrons, nuclei	Coulomb	ions, atoms	screening	liquid metal
$1 \dots 10 \text{ MeV}$	protons, neutrons	N-N int.	nuclei	Pauli blocking	nuclear matter
$0.1 \dots 1 { m GeV}$	quarks	QCD	hadrons	deconfinement	quark-gluon plasma

Fermion systems: ideal Fermi gases

Interaction - correlations

Low densities: bound states, quantum condensates High densities: condensed phase

- Plasma physics: Ionization potential depression (IPD)
- Nuclear physics: Weakly bound nuclei in nuclear systems
- QCD: Deconfinement, Quark Gluon phase transition in neutron-star mergers

nucleon-nucleon interaction potential

- Effective potentials (like atom-atom potential) binding energies, scattering
- non-local, energy-dependent? QCD?
- microscopic calculations (AMD, FMD)
- single-particle descriptions: Thomas-Fermi approximation shell model density functional theory (DFT)
- correlations, clustering low-density nα nuclei, Volkov

Binding energy per nucleon

Semi-empirical mass formula

Liquid drop model: Bethe-Weizsaecker mass formula

$$B(A,Z) = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_A \frac{(A-2Z)^2}{A} + a_P \frac{1}{A^{1/2}}$$

bulk contribution: $a_V = 15.75$ MeV surface contribution: $a_S = 17.8$ MeV Coulomb repulsion: $a_C = 0.711$ MeV asymmetry term: $a_A = 23.7$ MeV pairing: $a_P = 11.18$ MeV (even-even), = 0 (even-odd), = -11.18 MeV (odd-odd) shell structure and magic numbers

proton fraction
$$Y_p = \frac{Z}{A} = \frac{Z}{N+Z}, \quad \frac{N}{Z} = 1 + \frac{a_C}{2a_A}A^{2/3}$$

Models of nuclei

Constituents: protons, neutrons

Shell model of nucleus: potential well

Droplet model: Bethe-Weizsäcker-Formel

C. F. von Weizsäcker: *Zur Theorie der Kernmassen.* In: *Zeitschrift für Physik.* **96** (1935), S. 431–458.

magic numbers: 2; 8; 20; 28; 50; 82; 126

Hans Jensen, Maria Goeppert-Mayer

O. Haxel, J.H.D. Jensen, H. E. Suess *Zur Interpretation der ausgezeichneten Nukleonenzahlen im Bau der Atomkerns*, Die Naturwissenschaften, Band **35**, (1949) S.376

Nuclear radii

ms² =
$$\frac{\int_0^\infty dr \ r^4 \ \rho(r)}{\int_0^\infty dr \ r^2 \ \rho(r)}$$

root mean square radius (charge or point): rms

mass – radius relation: R = 1.18 A^{1/3} [fm] \rightarrow n_B = 0.15 fm⁻³ = ρ_{sat}

I. Angeli, Atomic Data and Nuclear Data Tables 87, (2004)

Correlations in nuclei

- Liquid droplet (Bethe Weizsaecker)
- Shell model (Jensen)
- Pairing (odd-even staggering) quartetting
- Hoyle state in ¹²C
- α formation and α decay

α cluster structure of ⁸Be

R.B. Wiringa et al., PRC **63**, 034605 (01)

Contours of constant density, plotted in cylindrical coordinates, for ⁸Be(0+). The left side is in the laboratory frame while the right side is in the intrinsic frame.

Big-Bang nucleosynthesis: H, He, Li, ____

Take home textbook knowledge

- Three minutes after the Big Bang
- Three chemical elements: H, He, Li
- Three observed abundances: ²H, ⁴He, ⁷Li

The Hoyle state in ¹²C

¹²C: from astrophysics: excited state predicted near the 3 α threshold energy (F. Hoyle).

a 0⁺ state at 0.39 MeV above the 3 α threshold energy has been found.

not described by shell structure calculations, 3α cluster interact predominantly in relative S waves, gas-like structure, THSR state

A. Tohsaki et al., PRL 87, 192501 (2001)

 α -particle condensation in low-density nuclear matter, ρ below $\rho_{sat}/5$

n α nuclei: ⁸Be, ¹²C, ¹⁶O, ²⁰Ne, ²⁴Mg, ... cluster type structures near the n α breakup threshold energy

Excited light nuclei

Decay modes of nuclei

Preformation: α decay of ²¹²Po

Hot and dense matter

- Early universe
- Compact objects in astrophysics
- Heavy ion collisions
- Spontaneous fission

Nuclear matter phase diagram

Quantum statistical approach

The total density as well as the DoS are given by the spectral function A,

$$n_e^{\text{total}}(T,\mu_e,\mu_a) = \frac{1}{\Omega} \sum_{1} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \hat{f}_e(\omega) A_e(1,\omega) = \int_{-\infty}^{\infty} d\omega \hat{f}_e(\omega) D_e(\omega)$$
$$|1\rangle = |\mathbf{p}_1,\sigma_1\rangle$$

which is related to the Green function and the self-energy as

$$A(1,\omega) = 2 \operatorname{Im} G(1,\omega-i0) = 2 \operatorname{Im} \frac{1}{\omega - E(1) - \Sigma(1,\omega-i0)} \qquad E(1) = p_1^2/(2m)$$

Quantum statistical approach

The total density as well as the DoS are given by the spectral function A,

$$n_e^{\text{total}}(T,\mu_e,\mu_a) = \frac{1}{\Omega} \sum_{1} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \hat{f}_e(\omega) A_e(1,\omega) = \int_{-\infty}^{\infty} d\omega \hat{f}_e(\omega) D_e(\omega)$$
$$|1\rangle = |\mathbf{p}_1,\sigma_1\rangle$$

which is related to the Green function and the self-energy as

$$A(1,\omega) = 2 \operatorname{Im} G(1,\omega-i0) = 2 \operatorname{Im} \frac{1}{\omega - E(1) - \Sigma(1,\omega-i0)} \qquad E(1) = p_1^2/(2m)$$

A cluster decomposition for the self-energy is possible so that a quasiparticle (free) contribution can be separated,

$$A_e(1,\omega) \approx \frac{2\pi \,\delta(\omega - E_e^{\text{quasi}}(1))}{1 - \frac{d}{dz} \text{Re} \,\Sigma_e(1,z)|_{z=E_e^{\text{quasi}}-\mu_e}} - 2\text{Im} \,\Sigma_e(1,\omega+i0) \frac{d}{d\omega} \frac{\mathcal{P}}{\omega + \mu_e - E_e^{\text{quasi}}(1)}$$
$$E^{\text{quasi}}(1) = p_1^2/(2m) + \text{Re}\Sigma(1,\omega)|_{\omega = E^{\text{quasi}}(1)}$$

Quasiparticle approach

The total density as well as the DoS are given by the spectral function A,

$$n_e^{\text{total}}(T,\mu_e,\mu_a) = \frac{1}{\Omega} \sum_{1} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \hat{f}_e(\omega) A_e(1,\omega) = \int_{-\infty}^{\infty} d\omega \hat{f}_e(\omega) D_e(\omega)$$

$$A_e(1,\omega) \approx \frac{2\pi \,\delta(\omega - E_e^{\text{quasi}}(1))}{1 - \frac{d}{dz} \text{Re} \,\Sigma_e(1,z)|_{z = E_e^{\text{quasi}} - \mu_e}} - 2\text{Im} \,\Sigma_e(1,\omega + i0) \frac{d}{d\omega} \frac{\mathcal{P}}{\omega + \mu_e - E_e^{\text{quasi}}(1)}$$

• quasiparticle concept

$$E^{\text{quasi}}(1) = p_1^2/(2m) + \text{Re}\Sigma(1,\omega)|_{\omega = E^{\text{quasi}}(1)}$$

• generalized Beth-Uhlenbeck formula (quasiparticles)

$$n_e^{\text{total}}(T,\mu_e,\mu_a) = \frac{1}{\Omega} \sum_{1} f_e(E^{\text{quasi}}(1))$$

+
$$\frac{1}{\Lambda^3} \sum_{i,\gamma} Z_i e^{\beta\mu_i} \left[\sum_{\nu}^{\text{bound}} (e^{-\beta E_{i,\gamma,\nu}} - 1) + \frac{\beta}{\pi} \int_0^\infty dE e^{-\beta E} \left\{ \delta_{i,\gamma}(E) - \frac{1}{2} \sin[2\delta_{i,\gamma}(E)] \right\} \right]$$

In-medium Schrödinger equation for $E_{i,\gamma,\nu}(T,\mu)$, $\delta_{i,\gamma}(T,\mu)$, channel (spin...) γ

Different approximations

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

Partial summations

Different approximations

medium effects

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

Quasiparticle quantum liquid: mean-field approximation Skyrme, Gogny, RMF

Medium effects: Quasiparticle approximation

- Skyrme / Gogny
- relativistic mean field (RMF)

Lagrangian: non-linear sigma, TM1 parameters, single particle modifications, energy shift, effective mass

- DD-RMF [S.Typel, Phys. Rev. C 71, 064301 (2007)]: expansion of the scalar field and the vector fields in powers of proton/neutron densities
- Dirac-Brueckner Hartree Fock (DBHF)
- Density functional theory

Quasiparticle picture: RMF and DBHF

Quasiparticle approximation for nuclear matter Equation of state for symmetric matter

10NLo NLoð DBHF DD $D^{2}C$ KVR KVOR DD-F E_0 [MeV] But: cluster -10 formation Incorrect low-density -20^L 0.3 0.2 limit 0.1n [fm⁻³] Klaehn et al., PRC 2006

Bethe-Salpeter equation

Beth-Uhlenbeck formula

Cluster decomposition of the self-energy

T_n-matrices: n-particle Schroedinger equation, n-particle bound states, (we neglect here scattering states).

Including clusters like new components chemical picture, mass action law, nuclear statistical equilibrium (NSE)

Ideal mixture of reacting nuclides

$$n_p(T,\mu_p,\mu_n) = \frac{1}{V} \sum_{A,\nu,K} Z_A f_A \{ E_{A,\nu K} - Z_A \mu_p - (A - Z_A) \mu_n \}$$

$$n_n(T,\mu_p,\mu_n) = \frac{1}{V} \sum_{A,\nu,K} (A - Z_A) f_A \{ E_{A,\nu K} - Z_A \mu_p - (A - Z_A) \mu_n \}$$

mass number A, charge Z_A , energy $E_{A,v,K}$, v internal quantum number, $\sim K$ center of mass momentum

$$f_{A(z)} = \frac{1}{\exp(z/T) - (-1)^A}$$

Chemical equilibrium, mass action law, Nuclear Statistical Equilibrium (NSE)

Nuclear statistical equilibrium (NSE)

Chemical picture:

Ideal mixture of reacting components Mass action law

Different approximations

medium effects

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

bound state formation

Nuclear statistical equilibrium: ideal mixture of all bound states (clusters:) chemical equilibrium

Quasiparticle quantum liquid: mean-field approximation Skyrme, Gogny, RMF

Inclusion of the light clusters (d,t,³He,⁴He)

Composition of symmetric matter Ideal mixture of nuclides

Different approximations

medium effects

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

bound state formation

Nuclear statistical equilibrium: ideal mixture of all bound states (clusters:) chemical equilibrium

Quasiparticle quantum liquid: mean-field approximation Skyrme, Gogny, RMF

Different approximations

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

bound state formation

Nuclear statistical equilibrium: ideal mixture of all bound states (clusters:) chemical equilibrium

medium effects

Quasiparticle quantum liquid: mean-field approximation BHF, Skyrme, Gogny, RMF

Chemical equilibrium with quasiparticle clusters: self-energy and Pauli blocking

Nuclear statistical equilibrium (NSE)

Chemical picture:

Ideal mixture of reacting components Mass action law

Interaction between the components internal structure: Pauli principle

Physical picture:

"elementary" constituents and their interaction

Quantum statistical (QS) approach, quasiparticle concept, virial expansion

Bethe-Salpeter equation

Effective wave equation for the deuteron in matter

In-medium two-particle wave equation in mean-field approximation

$$\left(\frac{p_1^2}{2m_1} + \Delta_1 + \frac{p_2^2}{2m_2} + \Delta_2 \right) \Psi_{d,P}(p_1, p_2) + \sum_{p_1', p_2'} (1 - f_{p_1} - f_{p_2}) V(p_1, p_2; p_1', p_2') \Psi_{d,P}(p_1', p_2')$$
self-energy Pauli-blocking
$$= E_{d,P} \Psi_{d,P}(p_1, p_2)$$

phase space occupation: Fermi distribution function

$$f_p = \left[e^{(p^2/2m - \mu)/k_B T} + 1 \right]^{-1}$$

(screening and vertex correction neglected)

Pauli blocking – phase space occupation

cluster wave function (atoms, ions, ...deuteron, alpha,...) in momentum space

P - center of mass momentum

The Fermi sphere is forbidden, deformation of the cluster wave function in dependence on the c.o.m. momentum *P*

momentum space

The deformation is maximal at P = 0. It leads to the weakening of the interaction (disintegration of the bound state).

Shift of the deuteron bound state energy

Dependence on nucleon density, various temperatures, zero center of mass momentum

G.R., Nucl. Phys. A 867, 66 (2011)

Shift of Binding Energies of Light Clusters

Full virial expansion

- Excited states, resonances, scattering states
- Full expression for the second virial coefficient
- Scattering phase shifts
- Exact in second order of density
- Beth-Uhlenbeck equation, Dashen-Ma-Bernstein: S-matrix

Different approximations

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

bound state formation

Nuclear statistical equilibrium: ideal mixture of all bound states (clusters:) chemical equilibrium

continuum contribution

Second virial coefficient: account of continuum contribution, scattering phase shifts, Beth-Uhl.E.

medium effects

Quasiparticle quantum liquid: mean-field approximation Skyrme, Gogny, RMF

Chemical equilibrium with quasiparticle clusters: self-energy and Pauli blocking

Beth-Uhlenbeck formula

Alpha-particle fraction in the low-density limit

symmetric matter, T=2, 4, 8 MeV

C.J.Horowitz, A.Schwenk, Nucl. Phys. A 776, 55 (2006)

Effective wave equation for the deuteron in matter

In-medium two-particle wave equation in mean-field approximation

$$\left(\frac{p_1^2}{2m_1} + \Delta_1 + \frac{p_2^2}{2m_2} + \Delta_2 \right) \Psi_{d,P}(p_1, p_2) + \sum_{p_1', p_2'} (1 - f_{p_1} - f_{p_2}) V(p_1, p_2; p_1', p_2') \Psi_{d,P}(p_1', p_2')$$
self-energy Pauli-blocking
$$= E_{d,P} \Psi_{d,P}(p_1, p_2)$$

phase space occupation: Fermi distribution function

$$f_p = \left[e^{(p^2/2m - \mu)/k_B T} + 1 \right]^{-1}$$

solution for bound and scattering states

Different approximations

Ideal Fermi gas: protons, neutrons, (electrons, neutrinos,...)

bound state formation

Nuclear statistical equilibrium: ideal mixture of all bound states (clusters:) chemical equilibrium

continuum contribution

Second virial coefficient: account of continuum contribution, scattering phase shifts, Beth-Uhl.Eq.

medium effects

Quasiparticle quantum liquid: mean-field approximation BHF, Skyrme, Gogny, RMF

Chemical equilibrium of quasiparticle clusters: self-energy and Pauli blocking

Generalized Beth-Uhlenbeck formula:

medium modified binding energies, medium modified scattering phase shifts

Levinson's theorem

- Bound states disappear at increasing density, merge with the continuum
- No discontinuity in the partition function, jump in the bound state contribution is compensated by a jump in the scattering phase contribution
- Levinson's theorem: scattering phase shift at zero energy is given by the number of bound states multiplied by pi

Shift of the deuteron bound state energy

Dependence on nucleon density, various temperatures, zero center of mass momentum

G.R., Nucl. Phys. A 867, 66 (2011)

Scattering phase shifts in matter

Two-particle correlations

M. Schmidt, G.R., H. Schulz Ann. Phys. **202**, 57 (1990)

FIG. 7. The composition of nuclear matter as a function of the density n for given temperature T = 10 MeV. The solid and dashed lines show the results of the generalized and classical Beth-Uhlenbeck approach, respectively. Note the distinct behavior of n_{free} and n_{corr} predicted by the two approaches in the low and high density limit!

Composition of dense nuclear matter

$$n_p(T,\mu_p,\mu_n) = \frac{1}{V} \sum_{A,\nu,K} Z_A f_A \{ E_{A,\nu K} - Z_A \mu_p - (A - Z_A) \mu_n \}$$

$$n_n(T,\mu_p,\mu_n) = \frac{1}{V} \sum_{A,\nu,K} (A - Z_A) f_A \{ E_{A,\nu K} - Z_A \mu_p - (A - Z_A) \mu_n \}$$

mass number A
charge
$$Z_A$$

energy $E_{A,v,K}$
 $f_{A(z)} = \frac{1}{\exp(z/T) - (-1)^A}$

v: internal quantum number excited states, continuum correlations

 Medium effects: correct behavior near saturation self-energy and Pauli blocking shifts of binding energies, Coulomb corrections due to screening (Wigner-Seitz, Debye)

deuteron bound state -2.2 MeV

G. Roepke, J. Phys.: Conf. Series 569, 012031 (2014) Phys. Part. Nucl. 46, 772 (2015) [arXiv:1408.2654]

Different approximations

Ideal Fermi gas: protons, neutrons, (electrons, neutrinos,...)

bound state formation

Nuclear statistical equilibrium: ideal mixture of all bound states (clusters:) chemical equilibrium

continuum contribution

Second virial coefficient: account of continuum contribution, scattering phase shifts, Beth-Uhl.Eq.

chemical & physical picture

Cluster virial approach: all bound states (clusters) scattering phase shifts of all pairs

medium effects

Quasiparticle quantum liquid: mean-field approximation BHF, Skyrme, Gogny, RMF

Chemical equilibrium of quasiparticle clusters: self-energy and Pauli blocking

Generalized Beth-Uhlenbeck formula:

medium modified binding energies, medium modified scattering phase shifts

Correlated medium:

phase space occupation by all bound states in-medium correlations, quantum condensates

EOS: continuum contributions

Partial density of channel A,c at P (for instance, ${}^{3}S_{1} = d$):

$$z_{A,c}^{\text{part}}(\mathbf{P}; T, \mu_n, \mu_p) = e^{(N\mu_n + Z\mu_p)/T} \left\{ \sum_{\nu_c}^{\text{bound}} g_{A,\nu_c} \ e^{-E_{A,\nu_c}(\mathbf{P})/T} \ \Theta \left[-E_{A,\nu_c}(\mathbf{P}) + E_{A,c}^{\text{cont}}(\mathbf{P}) \right] + z_{A,c}^{\text{cont}}(\mathbf{P}) \right\}$$

separation: bound state part – continuum part ?

$$z_{c}^{\text{part}}(\mathbf{P};T,n_{B},Y_{p}) = e^{[N\mu_{n}+Z\mu_{p}-NE_{n}(\mathbf{P}/A;T,n_{B},Y_{p})-ZE_{p}(\mathbf{P}/A;T,n_{B},Y_{p})]/T} \times g_{c} \left\{ \left[e^{-E_{c}^{\text{intr}}(\mathbf{P};T,n_{B},Y_{p})/T} - 1 \right] \Theta \left[-E_{c}^{\text{intr}}(\mathbf{P};T,n_{B},Y_{p}) \right] + v_{c}(\mathbf{P};T,n_{B},Y_{p}) \right\}$$

parametrization (d – like):

$$v_c(\mathbf{P}=0;T,n_B,Y_p) \approx \left[1.24 + \left(\frac{1}{v_{T_I=0}(T)} - 1.24\right)e^{\gamma_c n_B/T}\right]^{-1}$$

 $v_d^0(T) = v_{T_I=0}^0(T) \approx 0.30857 + 0.65327 \ e^{-0.102424 \ T/\text{MeV}}$

G. Roepke, PRC 92,054001 (2015)

Single nucleon distribution function

Dependence on temperature

saturation density

Alm et al., PRC 53, 2181 (1996)

Pauli blocking, correlated medium

In-medium Schroedinger equation

$$[E_{\tau_1}(\mathbf{p}_1; T, \mu_n, \mu_p) + \dots + E_{\tau_A}(\mathbf{p}_A; T, \mu_n, \mu_p) - E_{A\nu}(\mathbf{P}; T, \mu_n, \mu_p)]\psi_{A\nu\mathbf{P}}(1 \dots A) + \sum_{1' \dots A'} \sum_{i < j} [1 - n(i; T, \mu_n, \mu_p) - n(j; T, \mu_n, \mu_p)]V(ij, i'j') \prod_{k \neq i, j} \delta_{kk'}\psi_{A\nu\mathbf{P}}(1' \dots i' \dots j' \dots A') = 0$$

effective occupation numbers

$$n(1) = f_{1,\tau_1}(1) + \sum_{B=2}^{\infty} \sum_{\bar{\nu},\bar{\mathbf{P}}} \sum_{2...B} B f_B \left(E_{B,\bar{\nu}}(\bar{\mathbf{P}};T,\mu_n,\mu_p) \right) |\psi_{B\bar{\nu}\bar{\mathbf{P}}}(1\ldots B)|^2$$

effective Fermi distribution

$$\begin{split} n(1;T,\mu_n,\mu_p) &\approx f_{1,\tau_1}(1;T_{\rm eff},\mu_n^{\rm eff},\mu_p^{\rm eff}) & \mbox{blocking by all nucleons} \\ n(1;T,\mu_n,\mu_p) &\approx \tilde{f}_{1,\tau_1}(1;T_{\rm eff},n_B,Y_p) \\ & \mbox{effective temperature} & T_{\rm eff} &\approx 5.5 \, {\rm MeV} + 0.5 \, T + 60 \, n_B \, \, {\rm MeV} \, {\rm fm}^3 \end{split}$$

G. Roepke, PRC 92,054001 (2015)

In-medium effects

- Self energy, mean-field approximation
- Quasiparticle picture of elementary particles
- Full antisymmetrization: Pauli blocking
- Bound states as new quasiparticles
- Continuum correlations
- Correlated medium
- Quantum statistical approach.
- Excluded volume (Hempel, Schaffner-Bielich,...)
- Generalized relativistic mean field: clusters as quasiparticles (Typel, Pais,...)

EoS including correlations

- Composition
- Chemical potential, nuclear matter and stellar matter (β equilibrium)
- Free energy and related quantities, symmetry energy,...
- Phase transition
- Quantum condensates: pairing, quartetting,...

Light Cluster Abundances

Composition of symmetric matter in dependence on the baryon density n_B , T = 5 MeV. Quantum statistical calculation (full) compared with NSE (dotted).

G. R., PRC 92, 054001 (2015)

Pauli blocking in symmetric matter

Free proton fraction as function of density and temperature in symmetric matter. QS calculations (solid lines) are compared with the NSE results (dotted lines). Mott effect in the region $n_{\text{saturation}}/5$.

Equation of state: chemical potential

Chemical potential for symmetric matter. T=1, 5, 10, 15, 20 MeV. QS calculation compared with RMF (thin) and NSE (dashed). Insert: QS calculation without continuum correlations (thin lines).