Study of correlations of nuclear saturation properties and neutron star f mode oscillations from a machine learning



### **Deepak Kumar**

Department of Physics **IISER** Bhopal INDIA

Winter Kindergarten of Theoretical Physics Karpacz, Poland 19-25 May 2024

*The footprint of nuclear saturation properties on the neutron star f mode oscillation frequencies: a machine learning approach* arXiv: 2402.03054 (**DK**, Tuhin Malik, and Hiranmaya Mishra)



### Outline

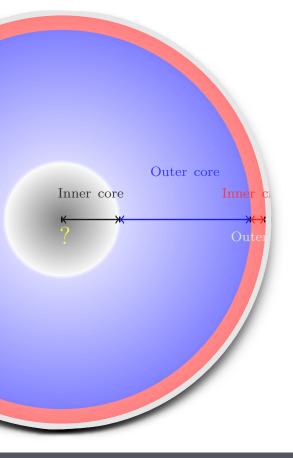
- Introduction
- Equations of states (RMF) for NS
  - Relativistic mean field (RMF) with NL couplings
  - Relativistic mean field (RMF) with DD couplings
- Pearson correlations coefficients
- Relations between NSP and NMP using ML
- Summary and conclusions



2

### Introduction

- Neutron stars (NS)s are the exciting natural astrophysical laboratories to study the behaviour of • matter at extreme densities.
- Astrophysical observations suggest the mass,  $M = (1 2)M_{\odot}$  and radius, R = (10 12) km. •
- Density in the core of NSs is few times the nuclear saturation density,  $\rho_0 = 0.16 \text{ fm}^{-3}$ . At this • density, we may have HQPT in the core of NSs.
- Macroscopic properties of such NS like mass, radius, moment of inertia, tidal deformability depend on the equation of state of matter of NS.


$$\frac{dp}{dr} = -\left(\epsilon + p\right) \frac{m + 4\pi r^3 p}{r(r - 2m)}, \qquad \frac{dm}{dr} = 4\pi r^2 \epsilon,$$

The boundary conditions:

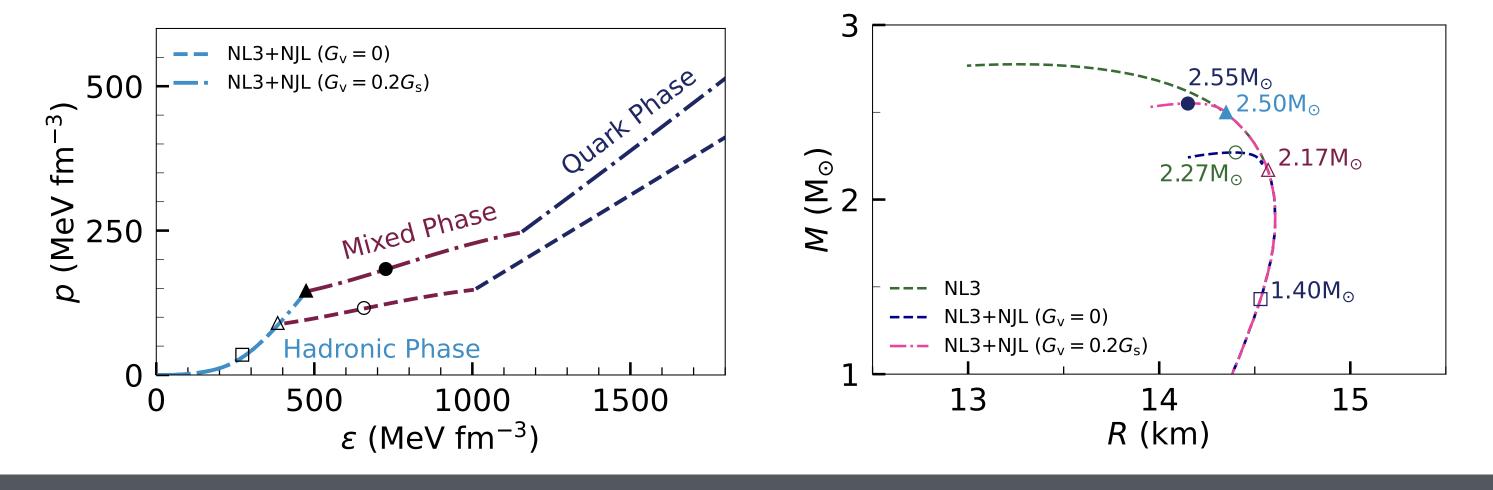
$$m(r=0) = 0$$
 and  $p(r=0) = p_0$ 

Non-radial oscillations can unveil the neutron star matter. 



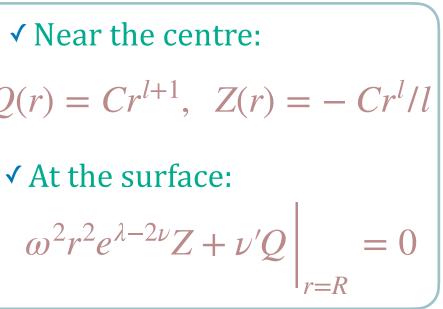





# Introduction

Pulsating equations within Cowling Approximations: 

$$Q' - \frac{1}{c_s^2} \left[ \omega^2 r^2 e^{\lambda - 2\nu} Z + \nu' Q \right] + l(l+1) e^{\lambda} Z = 0$$


$$Z' - 2\nu'Z + e^{\lambda} \frac{Q}{r^2} - \frac{\omega_{BV}^2 e^{-2\nu}}{\nu' \left(1 - \frac{2m}{r}\right)} \left(Z + \nu' e^{-\lambda + 2\nu} \frac{Q}{\omega^2 r^2}\right) = 0$$

✓ Nea
$$Q(r) =$$



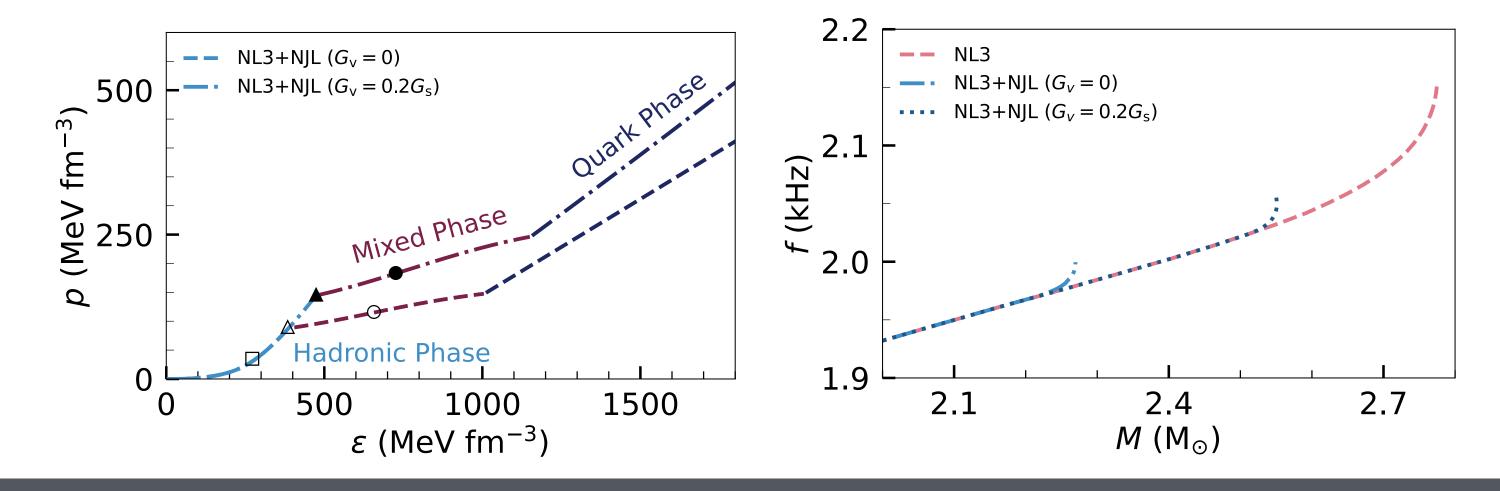


### **AP 02 (2023) 015**



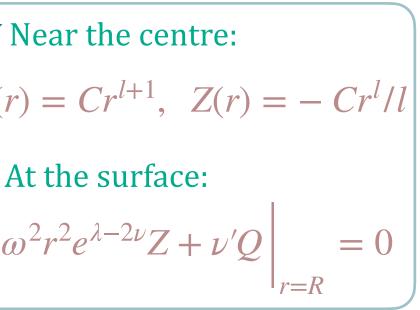
4

# Introduction


Pulsating equations within Cowling Approximations: 

$$Q' - \frac{1}{c_s^2} \left[ \omega^2 r^2 e^{\lambda - 2\nu} Z + \nu' Q \right] + l(l+1) e^{\lambda} Z = 0$$

$$Z' - 2\nu'Z + e^{\lambda} \frac{Q}{r^2} - \frac{\omega_{BV}^2 e^{-2\nu}}{\nu' \left(1 - \frac{2m}{r}\right)} \left(Z + \nu' e^{-\lambda + 2\nu} \frac{Q}{\omega^2 r^2}\right) = 0$$


✓ Nea  
$$Q(r) =$$
  
✓ At th

$$\omega^2 r$$





### **AP 02 (2023) 015**





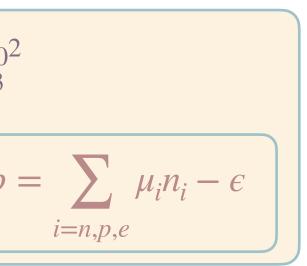
# Equations of states (RMF): NL and DD couplings

### ☑ Nuclear matter (RMF model) EOS

$$\mathscr{L} = \sum_{b} \bar{\Psi}_{b} \left( i\gamma_{\mu}\partial^{\mu} - m_{b} + g_{\sigma}\sigma - g_{\omega}\gamma_{\mu}\omega^{\mu} - g_{\rho}\gamma_{\mu}\vec{I}_{b}\vec{\rho}^{\mu} \right) \Psi_{b} + \mathscr{L}_{mes} - \mathscr{L}_{mes} = \frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \frac{\kappa}{3!}(g_{\sigma N}\sigma)^{3} - \frac{\lambda}{4!}(g_{\sigma N}\sigma)^{4} - \frac{1}{4}\Omega^{\mu\nu}\Omega_{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} - \frac{1}{4}\vec{R}^{\mu\nu}\vec{R}_{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\vec{\rho}_{\mu}\vec{\rho}^{\mu}$$

• At the mean field level i.e.  $\langle \sigma \rangle = \sigma_0$ ,  $\langle \omega_{\mu} \rangle = \omega_0 \delta_{\mu 0}$  and  $\langle \rho_{\mu}^a \rangle = \delta_{\mu 0} \delta_3^a \rho_3^0$ 

$$m_b^* = m_b - g_\sigma \sigma_0$$
 and  $\mu_b^* = \mu_b - g_\omega \omega_0 - g_\rho I_{3b} \rho_3^0$ 


### Equation of state:

$$\epsilon = \frac{1}{\pi^2} \sum_{i=n,p,e} H(m^*/k_F^i) + \frac{1}{2}m_\sigma^2 \sigma_0^2 + \frac{1}{3}g_2 \sigma_0^3 + \frac{1}{4}g_3 \sigma_0^4 + \frac{1}{2}m_\omega^2 \omega_0^2 + \frac{1}{2}m_\rho^2 \rho_3^0 + \frac{1}{2}g_2 \sigma_0^3 + \frac{1}{4}g_3 \sigma_0^4 + \frac{1}{2}g_2 \sigma_0^2 + \frac{1}{2}g_2 \sigma_0^3 + \frac{1}{2}g_2 \sigma_0^4 + \frac{$$



### Annals Phys 83 (1974) pp 491-529

 $\Omega_{\mu\nu} = \partial_{\mu}\omega_{\nu} - \partial_{\nu}\omega_{\mu}$  $\overrightarrow{R}_{\mu\nu} = \partial_{\mu}\overrightarrow{\rho}_{\nu} - \partial_{\nu}\overrightarrow{\rho}_{\mu}$ 





# Equations of states (RMF): NL and DD couplings

### ☑ Nuclear matter properties (NMP)

$$\epsilon(\rho, \delta) \simeq \epsilon(\rho, 0) + S_{\text{sym}}(\rho)\delta^2$$
, where  $\delta = \frac{\rho_n - \rho_p}{\rho}$ 

Symmetric matter properties:

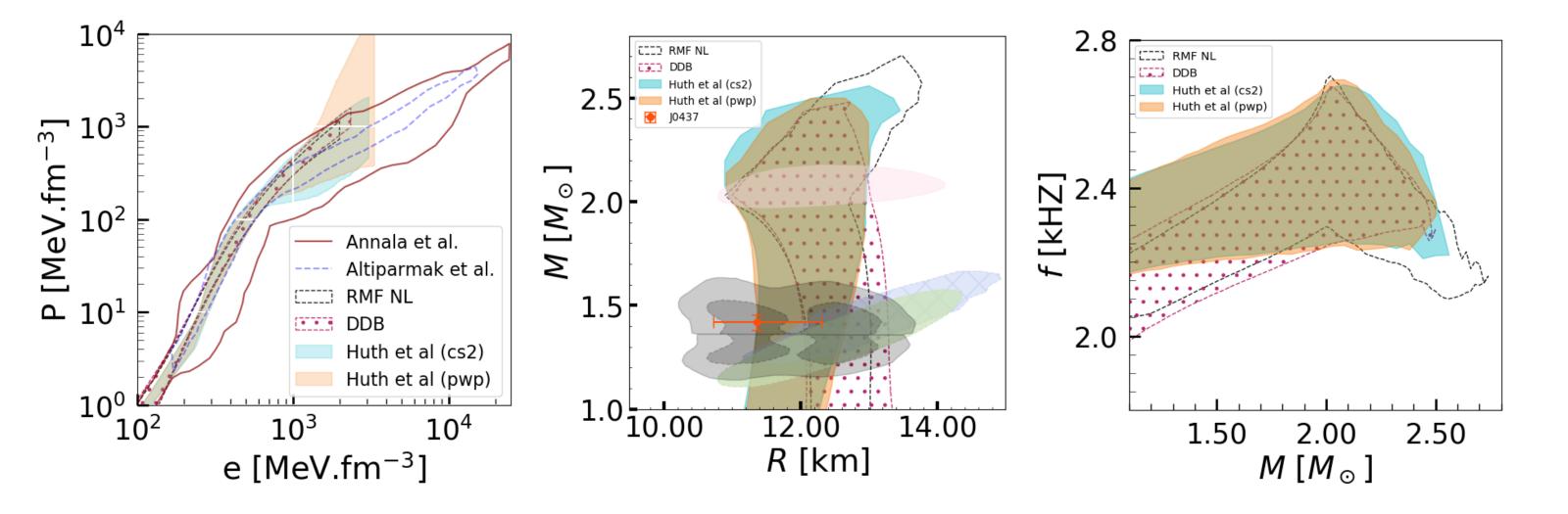
$$X_0^{(n)} = 3^n \rho_0^n \left(\frac{\partial^n \epsilon(\rho, 0)}{\partial \rho^n}\right)_{\rho_0}, \qquad n = 2, 3, 4;$$

Symmetry energy properties:

$$X_{\text{sym},0}^{(n)} = 3^n \rho_0^n \left(\frac{\partial^n S(\rho)}{\partial \rho^n}\right)_{\rho_0}, \qquad n = 1, 2, 3, 4.$$
T. N

Non-linear RMFDensity dependent RMFThe couplings are constant<br/>over the density.The couplings are density<br/>dependent.

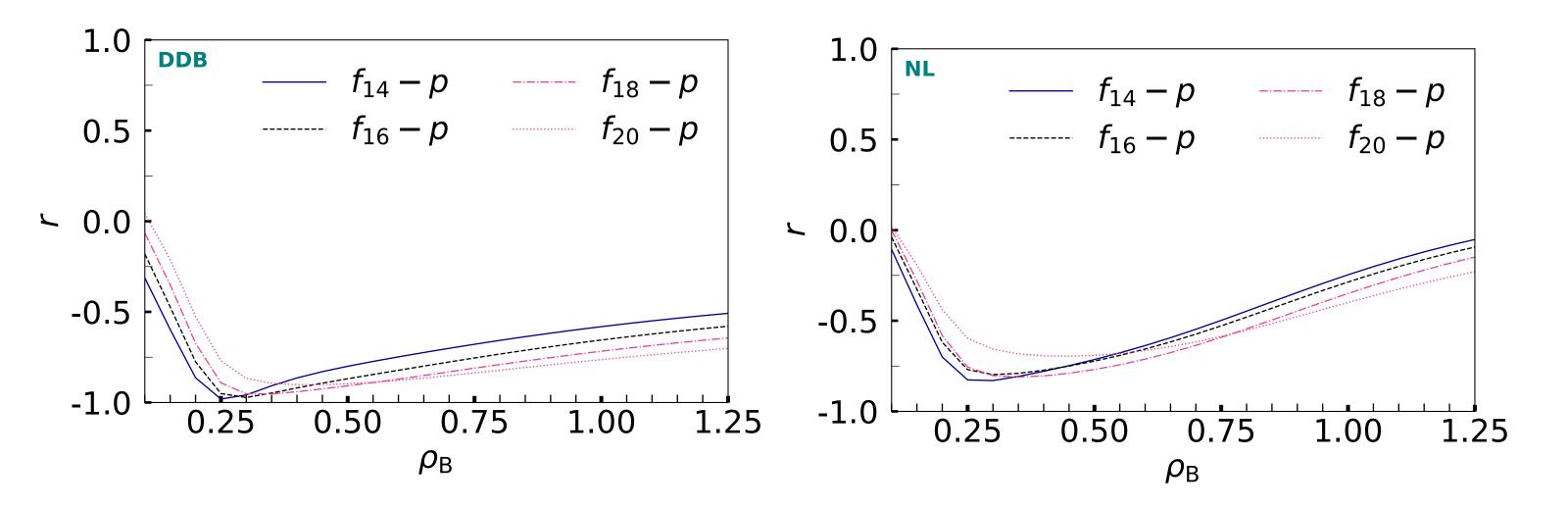



### Typel 10.3390/partícles1010002 Malík etal, ApJ 930 17 (2022)

 $g_{\sigma} = g_{\sigma 0} \ e^{-(x^{a_{\sigma}}-1)}$ 

- $g_{\omega} = g_{\omega 0} \ e^{-(x^{a_{\omega}}-1)}$
- $g_{\rho} = g_{\rho 0} \ e^{-a_{\rho}(x-1)}$ 
  - $\kappa = 0, \quad \lambda = 0$
  - $x = \rho_{\rm B}/\rho_0$

### Neutron star: EOS's, MR curves and *f* modes


 Equation of states, corresponding mass-radius cloud and the non-radial *f*-mode frequency-mass cloud





### **Pearson correlations:**

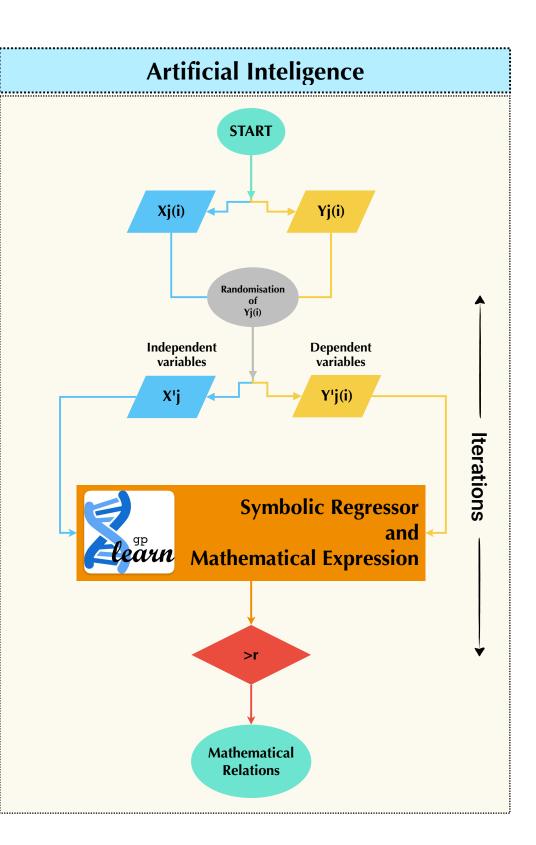

The Pearson correlation coefficient is a **descriptive statistic**, meaning that it summarises the characteristics of a dataset. Specifically, it describes the strength and direction of the linear relationship between two quantitative variables.







### Neutron star: Correlations between NMP and NSP





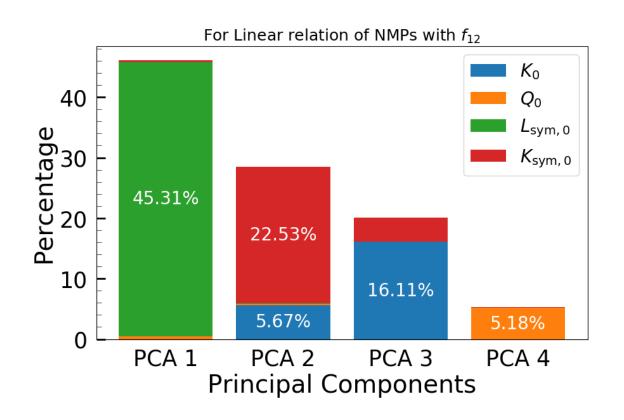


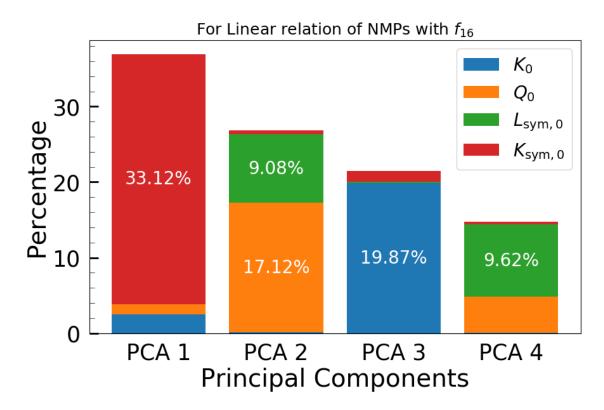

# Machine Learning: Dataset and Algorithm

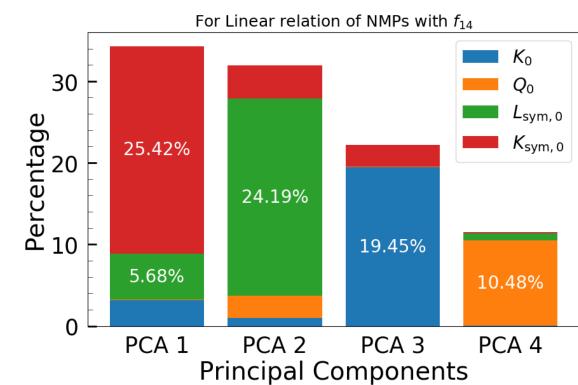
- From both datasets, we generated one dataset containing nuclear saturation properties and neutron star properties.
- ✓ Nuclear saturation properties:
   ☑ Binding energy per nucleon (E)
   ☑ Incompressibility (K)
   ☑ Summative energy (L)
  - Symmetry energy (J)
  - $\blacksquare$  Slope parameter (*L*)
  - etc.
- ✓ Neutron star properties.
  - $\square$  Mass ( $M = (1.0, 1.2, 1.4, 1.6, 1.8, 2.0, M_{MAX})$ )
  - ☑ Radius (corresponding to above star masses)
  - ☑ Square of sound velocity at the centre of corresponding stars
  - $\ensuremath{\ensuremath{\boxtimes}}$  central baryon density
  - $\mathbf{V} f$  mode frequencies
  - etc.

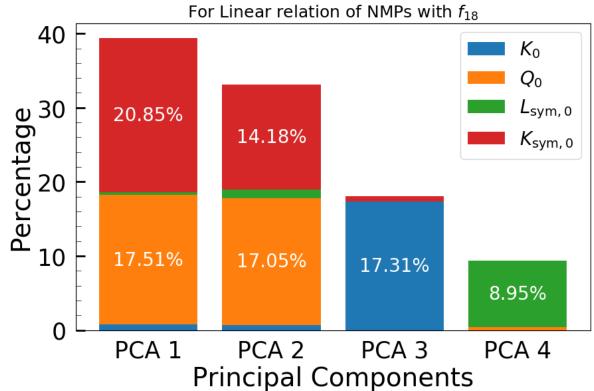





| Sl No | NS mass            | Frequency | Universal Relationship                                                      | Corr | RE % | Huth etal (CSE)       |         | Huth etal (PWP) |              |
|-------|--------------------|-----------|-----------------------------------------------------------------------------|------|------|-----------------------|---------|-----------------|--------------|
|       | $({ m M}_{\odot})$ | ( m kHz)  |                                                                             |      |      | $\operatorname{Corr}$ | RE $\%$ | Corr            | ${ m RE}~\%$ |
| 1     | 1.2                | $f_{12}$  | $0.19 + 17.65 \cdot rac{p_{c,12}}{\epsilon_{c,12}}$                        | 0.98 | 0.5  | 0.94                  | 2.95    | 0.92            | 2.8          |
| 2     |                    | $f_{12}$  | $c_{12}^2 + 2.40 - rac{23.32}{p_{c,12}}$                                   | 0.95 | 0.7  | 0.61                  | 3.3     | 0.64            | 3.8          |
| 3     |                    | $f_{12}$  | $2 \cdot \rho_{c,12} - 0.002 \cdot L_{\mathrm{sym},0} + 1.47$               | 0.94 | 0.8  |                       |         |                 |              |
| 4     | 1.4                | $f_{14}$  | $0.39 + 13.26 \cdot rac{p_{c,14}}{\epsilon_{c,14}}$                        | 0.98 | 0.5  | 0.95                  | 2.4     | 0.94            | 2.5          |
| 5     |                    | $f_{14}$  | $c_{14}^2 + 2.38 - rac{30.51}{p_{c,14}}$                                   | 0.96 | 0.7  | 0.73                  | 3.5     | 0.68            | 4.6          |
| 6     |                    | $f_{14}$  | $1.74 \cdot \rho_{c,14} + c_{14}^2 + 1.08 + \frac{1.29}{L_{\text{sym},0}}$  | 0.97 | 0.6  |                       |         |                 |              |
| 7     | 1.6                | $f_{16}$  | $0.65 + 9.64 \cdot rac{p_{c,16}}{\epsilon_{c,16}}$                         | 0.97 | 0.5  | 0.97                  | 2.2     | 0.94            | 2.5          |
| 8     |                    | $f_{16}$  | $0.006 \cdot p_{c,16} + 1.77$                                               | 0.95 | 0.7  | 0.96                  | 2.6     | 0.94            | 2.5          |
| 9     |                    | $f_{16}$  | $1.55 \cdot  ho_{c,16} + c_{16}^2 + 1.13$                                   | 0.96 | 0.7  | 0.82                  | 3.1     | 0.77            | 4.7          |
| 10    | 1.8                | $f_{18}$  | $rac{5.69 \cdot p_{c,18}}{\epsilon_{c,18} + L_{ m sym,0} + 236.08} + 1.53$ | 0.99 | 0.3  |                       |         |                 |              |
| 11    |                    | $f_{18}$  | $0.004 \cdot p_{c \ 18} + 1.90$                                             | 0.97 | 0.6  | 0.97                  | 1.1     | 0.95            | 1.2          |
| 12    |                    | $f_{18}$  | $1.19 + \frac{0.005 \cdot p_{c,18}}{\rho_{c,18}}$                           | 0.99 | 0.5  | 0.98                  | 2.0     | 0.96            | 2.0          |
| 13    | 2.0                | $f_{20}$  | $0.84 \cdot  ho_{c,20} + 0.45 \cdot c_{20}^2 + 1.62$                        | 0.98 | 0.7  | 0.89                  | 1.9     | 0.83            | 2.9          |
| 14    |                    | $f_{20}$  | $ ho_{c,20}+1.75$                                                           | 0.97 | 1    | 0.94                  | 3.7     | 0.88            | 3.4          |
| 15    |                    | $f_{20}$  | $0.001 \cdot p_{c,20} + 2.12$                                               | 0.96 | 1    | 0.94                  | 5.7     | 0.92            | 5.5          |


We can also find the footprints of different nuclear saturation properties to the nonradial oscillations of neutron stars

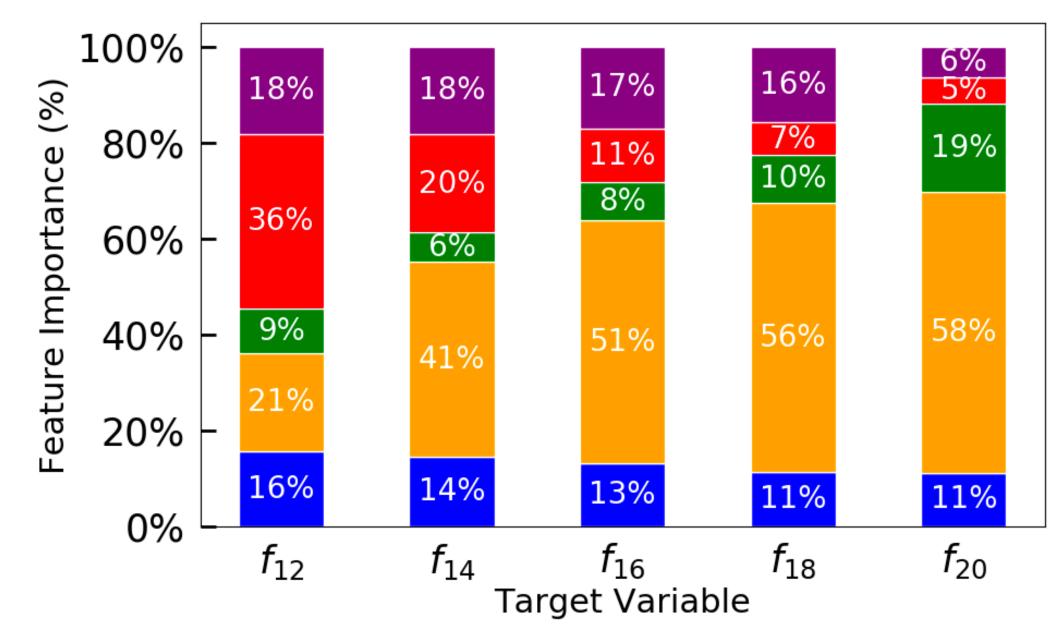



### **Machine Learning: Footprints**

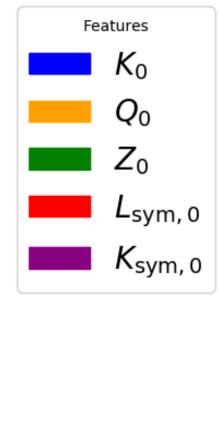











### **Machine Learning: Footprints**



Which says that frequencies of smaller mass NSs are the great observables to constrain the slop parameter ( $L_{sym,0}$ ) of the symmetry energy while the frequencies of high mass NSs are the great observables to constrain the higher moment ( $Q_0$ ) of symmetric matter at saturation density.







- NSs are the exciting natural astrophysical laboratories to study the behaviour of matter at extreme densities.
- We discussed that the *f* mode non-radial oscillation frequencies are more sensitive to the low density part of equation of state.
- We see that both nuclear models (with NL and DD couplings) behave differently.
- We have seen that ML can play very important role to get the hidden universal relations between neutron star and nuclear matter properties.
- We have discussed very important relation between symmetry energy and f mode non-radial oscillation frequency.







# Thank YOU