Cooking nuclear pasta at zero temperature: from semi-classical to fully microscopic recipes

Nikolai Shchechilin

with Nicolas Chamel¹, Wouter Ryssens¹, Michael Pearson²

¹Universite Libre de Bruxelles ²Universite de Montreal

Karpacz school on theoretical physics, June 6, 2024

• • • • • • • • • • • •

Neutron star schematic structure

Nikolai Shchechilin (ULB)

Nuclear pastas in neutron stars

Karpacz school 2024 2 / 13

Role of pasta phases

Transport properties

Thermal and electrical conductivities are determined by electron scattering on pasta structures.

Possible manifestations:

- NS thermal evolution
- Magnetic field evolution

Topological defects in pasta [Horowitz+'15]

Nikolai Shchechilin (ULB)

Role of pasta phases

 Mechanical properties In response to deformations pasta behave like liquid crystals.

Possible manifestations:

- NS oscillation frequencies
- Gravitational waves emission

Pasta deformations [Pethick&Potekhin'98]

• • • • • • • • • •

Modelling pasta

- It is assumed that matter is in its ground state at $T = 0 \Rightarrow$ cold catalyzed matter
- Matter is divided into identical cells
- Energy per particle is minimized at given density

Body-centered cubic lattice of quasi-spherical nuclei [Chamel&Haensel'08]

Spherical Wigner-Seitz approximation

[Chamel&Haensel'08]

Recipe I. Liquid drop models

Pasta shapes [Hashimoto+'84]

- First predicted in liquid-drop models [Ravenhall+'83], [Hashimoto+'84]
- $\blacktriangleright E_{\rm tot} = E_{\rm bulk} + E_{\rm surf} + E_{\rm coul}$
- ▶ At certain filling factor $u = V_{cl}/V$, E_{surf} is reduced by shape rearrangements

イロト イヨト イヨト イ

Recipe II. Semi-classical models

Extended Thomas-Fermi (ETF) method

- Describes smooth nucleons distributions ρ
- Surface energy is included self-consistently
- lack of shell effects

Recipe II*. Semi-classical with microscopic corrections

Extended Thomas-Fermi + Strutinsky Integral (ETFSI)

- Construct central and Coulomb fields $U_{\rm ETF}$ from the ETF density profiles ρ
- Solve Hartree-Fock equations for ψ with $U_{\rm ETF}$
- Add microscopic (shell) effects pertubatively

[Pearson&Chamel'22], [Shchechilin+'24]

Semi-classical models with microscopic corrections

- Allows <u>fast</u> estimation of the role of the nuclear interaction employed
- ▶ Microscopic effects are important ⇒ call for the fully quantum calculations

Pasta sequences with nuclear functionals differing in symmetry energy [Shchechilin+'23]

< □ > < □ > < □ > < □ > < □ >

Recipe III. Microscopic models

- Hartree-Fock-Bogoliubov method
 - Mean-field approach for finding self-consistent solution for ψ
 - Pairing correlations are included
- 3D HFB code MOCCa [Ryssens+'15]
 - tool of choice for deformed nuclei
- BSkG3 parametrization of generalized Skyrme force [Grams+'23]
 - rms (exp masses): 0.631 MeV
 - Max NS mass: 2.3 M_{\odot}
 - \Rightarrow suitable for unified EOS

MOCCa code generalization

- We implement periodic boundary conditions
 - Pure neutron matter energy tends to analytical result at large box sizes
 - Lattice energy agrees with analytic expression for simple cubic lattice
- We scale the problem for the large number of particles $\mathcal{N} \sim 5000$

Karpacz school 2024

Microscopic models for pasta

Proof of principle calculations with maximal symmetries and no pairing (Hartree-Fock in 1/8 of the full box).

(Spherical shape) $Z=40,~A=1318,~\bar{\rho}=0.05~{\rm fm}^{-3}$

(Spaghetti shapes) $Z=160,\,A=5240,\,\bar{\rho}=0.05\,{\rm fm}^{-3}$

・ロト ・日下・ ・ ヨト・

Conclusions

- Motivation
 - Pasta in neutron stars can impact: cooling, gravitational waves, etc.
 - Reliable calculations of pasta are needed
- Main results
 - We show within the pertubative approach that microscopic effects are important
 - To take them into account fully self-consistently we adapt the 3D Hartree-Fock-Bogoliubov code MOCCa for pasta calculations
- Perspectives
 - Calculation of the mantle composition and equation of state
 - Investigation of dynamics and stability of pasta structures

