
559 frequency of radial oscillations vanishes. This special mass
560 is characteristic for the class of hybrid EOS and amounts to
561 0.75M⊙ for the hybrid EOS considered in the present work
562 [79], where the hadronic phase is described by the DD2p40
563 model and the quark matter phase by the covariant nlNJL
564 model. More details on SPs are given in Appendix A.
565 Together with the lines of theoretical NS sequences, each
566 of which correspond to a hybrid EOS characterized by a
567 parameter pair (ηV , ηD), we show recent observational
568 constraints for NS radii at different mass regions. For the
569 high-mass region at 2M⊙, the results of two NICER teams
570 for the radius of PSR J0740þ 6620 are indicated as blue
571 [1] and green [2] areas; for the typical binary radio pulsar
572 mass region of 1.4M⊙, the combined multimessenger
573 analysis of Ref. [3] is shown as a green bar, and for the
574 low-mass region we show the recent result of a mass and
575 radius determination on the neutron star HESS J1731-347
576 reported in [74]. Since the status of this measurement is yet
577 not well accepted in the community, we give this result only
578 for orientation, but do not include it into our Bayesian
579 analysis. One could argue that the small radius for this very
580 light object could be indicative for a color superconducting
581 quark matter interior since only for the strongest diquark
582 coupling parameters there is a sufficiently early onset of
583 deconfinement and softening of the EOS, which provides
584 some overlap with the mass-radius range of this object.
585 Finally, in Fig. 5 we show the tidal deformability as a
586 function of M=M⊙ including the Λ1.4 constraint from the
587 low-spin prior analysis from GW170817 [4].

588 IV. BAYESIAN ANALYSIS

589 For the Bayesian analysis we have applied two con-
590 straints from neutron star observations. The first one is the

591mass-radius constraint from PSR J0740þ 6620, the neu-
592tron star component of a binary system with a white dwarf
593companion. Its gravitational mass has been measured with
594the relativistic Shapiro time delay effect based on data from
595the 100-m Green Bank Telescope and the Canadian
596Hydrogen Intensity Mapping Experiment telescope and
597it is 2.08þ0.07

−0.07M⊙ (68.3% credibility) [5,68]. Its radius has
598been estimated with fits of rotating hot spot patterns to data
599from the Neutron Star Interior Composition Explorer

F5:1 FIG. 5. Dimensionless tidal deformability Λ as a function of the
F5:2 star mass for the Maxwell construction of hybrid EOS over the
F5:3 whole range of ηV and ηD. The description of different line colors
F5:4 and different line styles are the same as Fig. 2. The black circle
F5:5 with vertical error bars shows the Λ1.4 constraint at 1σ from the
F5:6 low-spin prior analysis of GW170817 [4].

F6:1FIG. 6. Bayesian analysis using the mass-radius measurement
F6:2for PSR J0740þ 6620 and the radius constraint for a 1.4M⊙
F6:3mass neutron star for the class of hybrid EOS obtained within a
F6:4Maxwell construction between DD2p40 and nlNJL in the two-
F6:5dimensional EOS parameter plane, ηV and ηD without a constraint
F6:6on the onset density for quark deconfinement. On the lower panel,
F6:7a contour plot is derived from the upper panel and a line indicates
F6:8the 1σ region in the parameter space over which the integrated
F6:9probability reaches 68.3% of the total probability.
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Astro phenomena
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Comparison results 
with available data

Bayes theorem

Refinement of EoS: 
measure effects on 
QCD phase diagram 

phenomenology

Posterior

Hypothesis (H1 = EoS parameter set 1)

In Bayesian inference, two main approaches exist for studying equations of 
state: the 'agnostic' and 'educated' methods:
• The 'agnostic' approach treats the equation of state merely as a relation  

between pressure and density, making minimal assumptions about 
underlying physics. It relies solely on observational or experimental data to 
inform the probabilistic distribution of possible equations of state.

• Conversely, the 'educated' approach analyzes the physical parameters 
defining the equation of state, incorporating prior knowledge from physical 
laws or empirical observations to constrain possible equations of state. This 
method is advantageous when theoretical foundations are well-established, 
and significant empirical evidence is available.

In our Bayesian analysis, we employ the 'educated' approach. Here, we focus on 
analyzing the physical parameters that define the equation of state.
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The dependence of particular properties of compact stars (maximum mass and radius) is presented,
influenced by different saturation parameters of the symmetric nuclear matter.

2. The extended s-w in the mean field approximation

Here we apply the most common mean field model of the dense nuclear matter, formulating the
extended s-w model [20,21] with the Lagrange-function taken from Refs. [22,23],

L = Nf Y (i/∂ � mN + gss � gw /w)Y +
1
2

s
⇣

∂2 � m2
s

⌘
s � Ui(s)�

1
4

wµnwµn +
1
2

m2
ww2, (1)

where Y is the fermionic nucleon field, Nf = 2 is the number of nucleons, and mN , ms, and mw are the
nucleon, sigma, and omega masses, respectively, for the usual scalar and vector fields. We introduced
the wµn = ∂µwn � ∂nwµ, and the Yukawa coupling corresponding to the s-nucleon and w-nucleon
interactions is given by gs and gw . We denote the general bosonic interaction terms with Ui(s) which
can have thee different forms as the considered modified model cases for certain i,

U3 = l3s3,

U4 = l4s4,

U34 = l3s3 + l4s4.

(2)

In the mean field (MF) approximation the kinetic terms are zero for the mesons and only the
fermionic path integral has to be calculated at finite chemical potential and temperature. We consider
here the symmetric nuclear matter to be in equilibrium which includes the baryon number conservation.
Taking into account this, the standard procedure were applied by minimizing the free energy of the
infinite symmetric nuclear matter at the zero temperature limit, where for the proton (np) and neutron
(nn) number densities are equal, such as the proper chemical potentials, µp and µn respectively.

np = nn �! µp = µn = µ . (3)

After applying this for all the three cases in eq. (2) substituting into eq. (1), numerical solution can be
obtained after parameter fitting.

3. Parameter fitting in the extended s-w model

As the general procedure, all the models considered cases in eq. (2) need to fit to the nucleon
saturation data found in e.g. Refs. [22,24]. In parallel to the effective mass, we introduced the definition
of the Landau mass

mL =
kF
vF

with vF =
∂Ek
∂k

����
k=kF

. (4)

Where k = kF the Fermi-surface and Ek is the dispersion relation of the nucleons. The Landau mass
(mL) and the effective mass (m⇤) are not independent in relativistic mean field theories,

mL =
q

k2
F + m⇤2 . (5)

This is the reason why the Landau mass and the effective mass of the nucleons can not be fitted
simultaneously in the models we consider [24]. In this paper we deal with this problem in the
following way. We fit all of the models two times: using the effective mass value from Table 1 and one
calculated from eq. (5) to reproduce the Landau mass value from Table 1.
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Fig. 3. Posterior probabilities of the Landau mass mL, symmetry energy S0 and the
nuclear compressibility K0 at saturation resulting from a Bayesian analysis. The upper
figures represent the marginalised probabilities, while the lower ones correspond to two-
parameter probability distributions marginalised over a third one.

as the excluded high mass region do not favour the sti↵est EoS models in our sample.
Thus, there is an existing an interplay between these constraints.

The Landau mass mL is the best determined parameter whereas the remaining
two have probabilities distributions peak at the lowest values we have considered.
Therefore, the values of K0 and S0 found by our analysis have been compared with
empirical values found in the laboratory. We find that probability distributions do not
exactly peak at their measured value, however they lie within the one sigma confidence
region of their posterior distribution. Moreover, their influence on the neutron star
properties results to be negligible with respect to mL. Our one and two parameter
study corroborates that it is reliable to set K0 and S0 within their empirical values,
therefore entrusting the impact on neutron stars to the Landau mass mL whose values
are inversely proportional to Mmax. Moreover, the Bayesian study of [67] considers an
inversion of the TOV equations in order to study a set of nuclear parameters derived
from an expansion of the EoS functional under three di↵erent scenarios for DUrca
cooling activation. For the first set DUrca is activated for masses below 2 M�, for their
intermediate set DUrca holds within 1.8 < M/M� < 2, and within 1.8 < M/M� < 2
for the last one. They corroborate the hypothesis of a universal contribution from the
symmetry energy under the DUrca constraint [68] and find the corresponding results
for these three categories: a) K0 = 232.5 ± 18.0 MeV & S0 = 31.9 ± 2.0 MeV, b)
K0 = 231.7 ± 18.3 MeV & S0 = 31.6 ± 1.9 MeV and, c) K0 = 231.6 ± 18.2 MeV &
S0 = 31.8± 3.8 MeV, values that fully fall within our study range.

All in all, we find that within the set of most probable neutron star sequences the
values of 13 km < R1.4 < 13.5 km and Mmax ⇡ 2.2 M� hold for the sti↵est EoS
models. The latter quantity is in agreement with estimations on the bound for the
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ity to mimic the nlNJL results with a simpler approach,

the constant-sound-speed (CSS) EoS model [57, 58].

The CSS approach is widely used in the literature,

in particular, for the classification [57] and systematics

[59, 60] of hybrid neutron stars. Among the applications

of the CSS model is also the investigation of the third and

fourth families of compact stars for which stable branches

have been verified as well [61–63]. The work of Ref. [58]

demonstrates the possibility for NJL model-based ap-

proaches to color-superconducting cold quark matter to

be well approximated by CSS parameterization. It was

shown that the EoS for quark matter developed for the

nonlocal separable NJL model with formfactors depend-

ing on the three-momentum in [64, 65] can be well fitted

with the CSS model, see also [44].

It is worth mentioning that the CSS extrapolation be-

comes necessary for nlNJL models of certain values of

⌘V and ⌘D parameters due to the limitation of its co-

variant formfactor realization [42] to chemical potentials

up to ⇠ 1600 MeV. However, we would like to map the

nlNJL EoS to the CSS EoS for the whole range of chem-

ical potentials in the quark matter phase, and not only

for µB > 1600 MeV, as it was previously done [56]. This

mapping would enable a replacement of the complicated

quark matter EoS by a simple model which gives the

EoS of quark matter not only in the two-flavor color-

superconducting (2SC) phase but also at higher densities

for the color-flavor-locked (CFL) phase.

Moreover, another significant aspects of employing the

CSS EoS at high densities is appearance of the special

point on the Mass-Radius (M-R) diagram of the hybrid

stars. An analytical study has been performed employing

a CSS EoS that explains the existence of a very small

region on the M-R plot of hybrid stars where all of the

lines representing the sequences of models with di↵erent

constant values of the bag pressure intersect [66].

The main idea of this work is to provide a system-

atic study on the parameters of nlNJL model that vary

in the range 0.10 < ⌘V < 0.20 and 0.70 < ⌘D < 0.80

based on Bayesian analysis which are performed with re-

spect to the modern mass and radius constraints of NS.

We find the most probable parameters of quark matter

model in hybrid EoS using a Maxwell construction which

is very well compatible with the observed constraints and

in particular, with the most recent results of NICER for

the radius of NS.

Moreover, a simple functional form is found in this

work that enables a mapping between the two parame-

ter spaces, the nlNJL model parameters ⌘V and ⌘D and

the parameters of the CSS model: the slope parameter

A, the squared speed of sound c2s and the bag pressure

B. With the simplified description of the quark phase in

hybrid NS, its EoS would become easier to handle and

would at the same time have strong microphysical justi-

fication. Following the fact that the nlNJL EoS appears

to be isomorph to a CSS parameterization for the high-

density phase, we show that the special point properties

discussed in [66] generalizes to a set of lines consisting

of special points, when two parameters (⌘V and ⌘D) are

changed instead of one parameter (bag pressure).

The structure of the present paper is as follows: in Sec.

II we introduce the formulations of both nlNJL and CSS

models and their parameters. The results for mass, ra-

dius and tidal deformability of obtained hybrid stars are

shown in Sec. III. The results of the Bayesian analysis

with the astrophysical inputs for these analysis are pre-

sented in Sec. IV. Finally, we provide the conclusion of

this study in Sec. V. The functional dependence between

the two parameter sets of the CSS and nlNJL models is

found and the parameter mapping between the two mod-

els is discussed in Appendix A. We present our analysis

on special points in the mass-radius diagram in Appendix

B. Moreover, in Appendix C, a phenomenological EoS is

introduced to be investigated how well nlNJL EoS is fit

to it compared to CSS parameterization.

II. EQUATION OF STATE MODELS FOR THE

QUARK MATTER PHASE OF A NEUTRON

STAR

A. Generalized nlNJL model with ⌘V and ⌘D
parameters

For the microphysical description of the quark mat-

ter phase we consider a chiral quark model that in-

cludes nonlocal separable interactions and can be consid-

ered as a nonlocal extension of the NJL model (nlNJL).

We employ the two-flavor SU(2)f model, developed in

Refs. [23, 42, 43], that is described by the Lagrangian

L =  ̄
�
�i/@ +mc

�
 � GS

2
jfSj

f
S � GD

2
[jaD]†jaD +

GV

2
jµV j

µ
V ,

(1)
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with the nonlocal generalizations of the quark currents

jfS(x) =

Z
d4zg(z) ̄(x+

z

2
)�f (x� z

2
) , (2)

jaD(x) =

Z
d4zg(z) ̄C(x+

z

2
)i�5⌧2�

a (x� z

2
) , (3)

jµV (x) =

Z
d4zg(z) ̄(x+

z

2
)i�µ (x� z

2
) , (4)

in the scalar meson, scalar diquark and vector meson

channels, respectively. The grand canonical partition

function of the quark matter system,

Z =

Z
D ̄D exp

(
�
Z �

0
d⌧

Z
d3x

⇥
L� µ ̄�0 

⇤
)

,

(5)

after bosonization by the Hubbard-Stratonovich trans-

formation, can be evaluated in the mean field approxi-

mation (MFA) with the result for the thermodynamical

potential

⌦MFA = �T lnZMFA (6)

=
�̄2

2G
+

�̄2

2H
� !̄2

2GV

�1

2

Z
d4p

(2⇡)4
ln det

⇥
S�1(�̄, �̄, !̄, µfc)

⇤
, (7)

see Refs. [42, 43] for details.

The inclusion of the scalar diquark channel together

with the repulsive vector interaction channel, plays an

important role in the phenomenology of hybrid EoS of

compact stars.

The diquark condensate gives rise to color supercon-

ductivity (2SC) and is responsible for lowering the onset

of the phase transition from the phase with broken chiral

symmetry to the 2SC phase. The vector interaction in-

duces a sti↵ening behaviour in the EoS, that is essential

to reach compact stars masses above 2M�. Systematic

investigation of hybrid NS properties reveals [41, 56] that

phenomenological constraints from mass and radius mea-

surements are optimally fulfilled when an increase in the

diquark coupling is accompanied by a simultaneous in-

crease in the vector coupling.

The model includes three input parameters: mc (cur-

rent quark mass), p0 (e↵ective momentum scale) and GS

(coupling constant). They are determined as to repro-

duce the pion mass and decay constant as well as the

chiral condensate in the vacuum, at vanishing temper-

ature and densities. The two remaining coupling con-

stants GS and GV are driving the terms that, after

bosonization, give rise to the color superconducting gap

and the vector meson mean field. The dimensionless ra-

tios ⌘D = GD/GS and ⌘V = GV /GS are free parame-

ters. From a Fierz rearrangement of the OGE interac-

tions one obtains ⌘D = 3/4 and ⌘V = 1/2 that could

serve as an orientation for the values of these parame-

ters in the vacuum. There is no precise derivation of

e↵ective couplings from QCD, as we consider here the

strongly nonperturbative low-energy regime. Moreover,

one has to expect that these couplings could be subject

to a medium dependence. However, ⌘D values larger

than ⌘⇤D = (3/2)m/(m � mc) may lead to color sym-

metry breaking in the vacuum [67] (where m stands for

the dressed mass and mc for the current quark mass).

In the present work we consider a window of values

for ⌘D and ⌘V that was also explored in previous works

Ref. [41, 48, 51].

The mean field values �̄, �̄ and !̄ are obtained from
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As we intend to describe the behaviour of quark matter

in the cores of NSs, we have to take into account the

presence of leptons (electrons and muons) which we in-

clude into the thermodynamic potential as free relativis-

tic Fermi gases. In addition, we have to consider that

the stellar matter satisfies the following conditions: equi-

librium under weak interactions (chemical equilibrium)

as well as color and electric charge neutrality. As a con-

sequence, it can be seen that the six di↵erent chemical

potentials µfc (depending on the two quark flavors u and

d and quark colors r, g and b) in Eq. (7) are not indepen-

dent from each other and can be written in terms of three

independent quantities: the baryonic chemical potential

µ, the electron chemical potential µe and a color chemical

potential µ8. Basically, for each value of µ we solve self-

consistently the gap equations (8), complemented with

the conditions for �-equilibrium and electric charge and

color charge neutrality (details of the calculation can be

found in the Appendix of Ref. [43]).

In the present work, we consider a Gaussian form fac-

tor g(p) = exp(�p2/p20) in Euclidean 4-momentum space.

The fixed input parameters of the quark model consid-

ered here are mc = 5.4869 MeV, p0 = 782.16 MeV and

GSp20 = 19.804.
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to a medium dependence. However, ⌘D values larger
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metry breaking in the vacuum [67] (where m stands for
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clude into the thermodynamic potential as free relativis-

tic Fermi gases. In addition, we have to consider that

the stellar matter satisfies the following conditions: equi-

librium under weak interactions (chemical equilibrium)

as well as color and electric charge neutrality. As a con-

sequence, it can be seen that the six di↵erent chemical

potentials µfc (depending on the two quark flavors u and

d and quark colors r, g and b) in Eq. (7) are not indepen-

dent from each other and can be written in terms of three

independent quantities: the baryonic chemical potential
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potential µ8. Basically, for each value of µ we solve self-

consistently the gap equations (8), complemented with

the conditions for �-equilibrium and electric charge and

color charge neutrality (details of the calculation can be

found in the Appendix of Ref. [43]).

In the present work, we consider a Gaussian form fac-

tor g(p) = exp(�p2/p20) in Euclidean 4-momentum space.

The fixed input parameters of the quark model consid-

ered here are mc = 5.4869 MeV, p0 = 782.16 MeV and

GSp20 = 19.804.

We propose a new project to develop the Bayesian 
analysis (BA) approach and its implementation to 
simulations of HIC and NS astrophysics to answer the 
question: "Is a first−order phase transition to quark 
matter accessible in heavy−ion collisions and in the 
interiors of compact stars?” and “How can one identify 
it within already operating and planned HIC experiments 
and observational campaigns?"

533diagram of Fig. 4. We show the hybrid solutions for the
534Maxwell construction together with the one for the purely
535hadronic model DD2p40. The ηV and ηD parameters were
536considered running over the whole range selected for the
537present study. We note that an interesting phenomenon
538becomes apparent in Fig. 4: The sets ofM − R curves for a
539fixed value of ηV (shown with the same color) and varying
540ηD get collimated in focal points, the so-called “special
541points (SP),” that form a “train” with coordinates
542ðRSP;MSPÞ, well described by a straight line in the
543M − R diagram. This line plays an important role for
544NS phenomenology since each special point is closely
545related to the maximum mass Mmax of a given hybrid EOS
546by the relation

Mmax ¼ MSP þ δjM%
onset −Monsetjκ; ð13Þ

547548which slightly differs from an earlier version of such a
549relation found in [59,78]. Here δ is a small, positive
550parameter depending on the class of quark matter EOS,
551κ ¼ 2 and Monset is the mass of the NS for which the onset
552of deconfinement occurs in its center. This relation (13)
553states that there exists a special onset massM%

onset for which
554the train of SPs coincides with the line of maximum masses
555that are obtained for hybrid star EOS upon variation of free
556parameters. It was found first in [79] and then confirmed in
557[80] where the maximum mass configurations were inde-
558pendently confirmed by checking that the fundamental

F3:1 FIG. 3. The squared speed of sound for the Maxwell con-
F3:2 struction of the hybrid EOS over the whole range of ηV and ηD
F3:3 parameters encoded by different line colors and styles, respec-
F3:4 tively, as in Fig. 2.

TABLE I. The values of A, B, and c2s calculated from the CSS
fit to the nlNJL model defined by the values of ηD and ηV .

ηD ηV A [MeV=fm3] c2s [c2] B [MeV=fm3] χ2

0.70 0.15 91.484 0.488 87.209 0.039
0.71 0.12 91.053 0.456 83.425 0.022
0.71 0.14 91.649 0.476 85.815 0.032
0.71 0.16 92.963 0.502 89.021 0.047
0.71 0.18 94.481 0.532 92.214 0.075
0.72 0.13 92.132 0.467 84.592 0.026
0.72 0.15 92.954 0.490 87.209 0.038
0.72 0.17 94.366 0.517 90.408 0.058
0.73 0.12 92.612 0.457 83.280 0.021
0.73 0.14 93.190 0.478 85.658 0.031
0.73 0.16 94.170 0.503 88.385 0.048
0.73 0.18 96.211 0.535 92.290 0.073
0.74 0.11 93.236 0.449 82.095 0.017
0.74 0.13 93.563 0.468 84.217 0.026
0.74 0.15 94.410 0.491 86.884 0.039
0.74 0.17 95.780 0.519 90.011 0.061
0.75 0.12 94.000 0.461 82.899 0.044
0.75 0.14 94.875 0.481 85.614 0.031
0.75 0.16 95.894 0.506 88.391 0.056
0.75 0.18 97.934 0.538 92.249 0.078
0.76 0.13 95.235 0.470 84.101 0.027
0.76 0.15 96.153 0.494 86.873 0.039
0.76 0.17 97.660 0.522 90.172 0.063
0.77 0.12 95.556 0.461 82.437 0.021
0.77 0.14 96.433 0.483 85.287 0.032
0.77 0.16 97.770 0.509 88.512 0.074
0.77 0.18 99.685 0.541 92.155 0.085
0.78 0.15 97.485 0.495 86.179 0.042
0.78 0.17 99.340 0.525 90.034 0.065
0.79 0.12 97.604 0.464 82.718 0.020
0.79 0.14 97.912 0.484 84.755 0.033
0.79 0.16 99.216 0.511 87.929 0.053
0.79 0.18 100.878 0.541 91.415 0.084
0.80 0.17 101.116 0.528 89.766 0.070

F4:1FIG. 4. Mass-radius relations for the Maxwell construction of
F4:2the hybrid EOS over the whole range of ηV and ηD. Their
F4:3encoding with different line colors and styles is the same as in
F4:4Fig. 2. For a comparison, the 1σ mass-radius constraints from the
F4:5NICER analysis of observations of the massive pulsar PSR
F4:6J0740þ 6620 [5] are indicated as blue [1] and green [2] regions.
F4:7Additionally, the green bar marks the radius constraint for a 1.4
F4:8solar mass neutron star from the joint analysis of the gravita-
F4:9tional-wave signal GW170817 with its electromagnetic counter-

F4:10parts at 90% confidence [3]. The new mass-radius constraint for
F4:11the strangely light neutron star HESS J1731-347 [74] is shown as
F4:12a data point with error bars for the case when extra priors are
F4:13taken into account in that reference.
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The inclusion of the scalar diquark channel together

with the repulsive vector interaction channel, plays an

important role in the phenomenology of hybrid EoS of

compact stars.

The diquark condensate gives rise to color supercon-

ductivity (2SC) and is responsible for lowering the onset

of the phase transition from the phase with broken chiral

symmetry to the 2SC phase. The vector interaction in-

duces a sti↵ening behaviour in the EoS, that is essential

to reach compact stars masses above 2M�. Systematic

investigation of hybrid NS properties reveals [41, 56] that

phenomenological constraints from mass and radius mea-

surements are optimally fulfilled when an increase in the

diquark coupling is accompanied by a simultaneous in-

crease in the vector coupling.

The model includes three input parameters: mc (cur-

rent quark mass), p0 (e↵ective momentum scale) and GS

(coupling constant). They are determined as to repro-

duce the pion mass and decay constant as well as the

chiral condensate in the vacuum, at vanishing temper-

ature and densities. The two remaining coupling con-

stants GS and GV are driving the terms that, after

bosonization, give rise to the color superconducting gap

and the vector meson mean field. The dimensionless ra-

tios ⌘D = GD/GS and ⌘V = GV /GS are free parame-

ters. From a Fierz rearrangement of the OGE interac-

tions one obtains ⌘D = 3/4 and ⌘V = 1/2 that could

serve as an orientation for the values of these parame-

ters in the vacuum. There is no precise derivation of

e↵ective couplings from QCD, as we consider here the

strongly nonperturbative low-energy regime. Moreover,

one has to expect that these couplings could be subject

to a medium dependence. However, ⌘D values larger

than ⌘⇤D = (3/2)m/(m � mc) may lead to color sym-

metry breaking in the vacuum [67] (where m stands for

the dressed mass and mc for the current quark mass).

In the present work we consider a window of values

for ⌘D and ⌘V that was also explored in previous works

Ref. [41, 48, 51].

The mean field values �̄, �̄ and !̄ are obtained from

the coupled equations
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As we intend to describe the behaviour of quark matter

in the cores of NSs, we have to take into account the

presence of leptons (electrons and muons) which we in-

clude into the thermodynamic potential as free relativis-

tic Fermi gases. In addition, we have to consider that

the stellar matter satisfies the following conditions: equi-

librium under weak interactions (chemical equilibrium)

as well as color and electric charge neutrality. As a con-

sequence, it can be seen that the six di↵erent chemical

potentials µfc (depending on the two quark flavors u and

d and quark colors r, g and b) in Eq. (7) are not indepen-

dent from each other and can be written in terms of three

independent quantities: the baryonic chemical potential

µ, the electron chemical potential µe and a color chemical

potential µ8. Basically, for each value of µ we solve self-

consistently the gap equations (8), complemented with

the conditions for �-equilibrium and electric charge and

color charge neutrality (details of the calculation can be

found in the Appendix of Ref. [43]).

In the present work, we consider a Gaussian form fac-

tor g(p) = exp(�p2/p20) in Euclidean 4-momentum space.

The fixed input parameters of the quark model consid-
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Fig. 2. Neutron star sequences from the extended �-! EoS model. The four diagrams relate
the neutron star measurements that are used as input for our Bayesian analysis. The dark
lines correspond to the highest posterior probability neutron star sequences resulting from
the Bayesian method.

6 Summary and conclusions

In this work we have performed a two and three dimensional Bayesian study for
parameter estimation of the extended �-! EoS model of neutron stars. The chosen
EoS parameters under study are the compressibility of nuclear matter K0, the sym-
metry energy S0 and the Landau mass mL, properties of saturation density dense
matter. These parameters where varied within an acceptable range of empirical val-
ues. It is well known that compressibility of nuclear matter dominates the sti↵ness
of neutron star matter therefore significantly contributes to the determination of
the maximum neutron star mass Mmax. On the contrary, the symmetry energy has
a greater influence on the determination of the neutron star radius R [64,65,66]
rather than on Mmax. For our analysis we have used as observational inputs for
our Bayesian study the multi-messenger astronomy measurements: mass measure-
ments of PSRJ0740+6620 [5] and PSRJ0348+0432 [6], tidal deformability data from
GW170817 [7,8], Mmax boundaries [9], and combined mass-radius measurements for
PSR J0030+0451 [10,11].

An important element in our Bayesian analysis is that the choice of the corre-
sponding prior distributions for these astrophysical measurements have been taken
as uniform. We have observed that pulsar maximum mass measurements favour any
sti↵ EoS models with a high maximum mass value above 2 M�. On the other hand,
gravitational wave data both in the form of neutron star tidal deformabilities as well

Modern data on the observation 
of masses and radii of neutron stars
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