Do Neutron Stars give us Nuclear Matter properties? Machine Learning answers

Overview

Neutron stars are a remarkable object towards the study of nuclear matter properties under extreme conditions. In this work we extract some properties contained in the Equation of State (EoS) 3 with the help of Bayesian Neural Networks (BNN) 2 using the mass and the radius from observations 1.

How we do data augmentation in the input:

$$
\begin{aligned}
& \begin{array}{l}
M_{i}^{(0)}=\mathcal{U}\left[\mathrm{M}_{\odot}, \mathrm{M}_{\text {Max }}\right], \\
M_{i}=\mathcal{N}\left(M_{i}^{(0)}, \sigma_{M} I\right), \\
\quad R_{i}=\mathcal{N}\left(\mathbf{R}\left(M_{i}^{(0)}\right), \sigma_{R} I\right) \\
(i=1, \ldots, 5)
\end{array} \\
& \text { The process is re- } \\
& \text { peated } n_{s} \text { times for the } \\
& \text { same EoS. }
\end{aligned}
$$

3 Output predictions

Output vector is: $\mathbf{y}_{i}=\left[v_{s}^{2}\left(n_{1}\right), \ldots, v_{s}^{2}\left(n_{15}\right)\right], n_{i}=$ baryonic density.

Our 15 true values for one EoS of the test set are all contained in the 95\% Confidence Interval predicted by the model.

2 What is a Bayesian Neural Network?

Is the combination between Neural Networks (NN) and Bayesian Inference (BI).

NN: Mapping of Input space \mathbf{x} onto the output space \mathbf{y} by several successive layers of linear transformations (given by the weights w) interleaved with elementwise non-linear transforms. The probabilistic view is $P(\mathbf{y} \mid \mathbf{x}, \mathbf{w})$.

BI: The calculus of the posterior distribution of the weights, given the training data, $D=(\mathbf{x}, \mathbf{y})$:

$$
P(\mathbf{w} \mid D)=\frac{\frac{\text { Prior Likelihood }}{P(\mathbf{w})} \overline{P(D \mid \mathbf{w})}}{\underbrace{P(D)}_{\text {Evidence }}}
$$

The prediction distribution of a BNN is then for an unknown $\hat{\mathbf{y}}$ of a test data item $\hat{\mathbf{x}}$:

$$
P(\hat{\mathbf{y}} \mid \hat{\mathbf{x}}, D)=\int P(\hat{\mathbf{y}} \mid \hat{\mathbf{x}}, \mathbf{w}) P(\mathbf{w} \mid D) d \mathbf{w}
$$

Ongoing work

- Working with other outputs, such as pressure and proton fraction;
- Using tidal deformability in the input;
- Testing how data augmentation affects our results;
- And so on ...

