Hybrid Stars: Bayesian Approach with NJL

Milena Albino, Constança Providência, Tuhin Malik, Márcio Ferreira

• Aims:

- investigate quark matter inside neutron stars using Bayesian inference;
- analyze effects of pQCD calculation in neutron stars.
- Model:
 - quark phase: Nambu-Jona-Lasinio
 (NJL) with 5 different interaction terms;
 - hadron phase: Relativistic Mean Field (RMF);
 - phase transition: Maxwell transition.

Fundação para a Ciência e a Tecnologia

Introduction to Berry Phase and Pair

Production

Levon Asatryan Student of

"Quantum and mesoscopic physics" in the master's degree program at the International Scientific-Educational Center Institution 'Pan-Armenian Center for

Excellence"

Armenia Yerevan

Supervisor David Blaschke Colaboration with Biplab Mahato

BAYESIAN ANALYSIS OF THE DENSE MATTER EQUATION OF STATE

Alexander Ayriyan

Institute of Theoretical Physics, University of Wrocław

Do Neutron Stars give us nuclear matter 1 2 0 9 0 Karpacz School 2024 properties? Machine Learning answers CFisUC

Light Nuclei in hot stellar matter: calibrating their nuclear couplings using heavy-ion collisions data

Tiago Custódio, 2nd year PhD student
 ⇒ University of Coimbra, Portugal
 ⇒ LPC, Caen, France

• Poster

 \Rightarrow New calibration of **nuclear couplings** using experimentally measured **particle abundances** (INDRA collaboration)

 \Rightarrow Consequences on light nuclei **abundances** for larger temperatures

Graphene Motivated 2+1 Dimensional Generalised Gross-Neveu Model

- Graphene is a two dimensional material with hexagonal lattice structure.
- Near Dirac points, the theory can be described by massless Dirac fields.
- In analogy with NJL model and plausible interaction in graphene we generalise the Gross-Neveu model in 2+1 dimension.
- Mean Field Approximation
- Beyond MFA via Beth-Uhlenbeck approach.
- Applications.?

Biplab Mahato

-					

The effect of late-time heating in hybrid millisecond pulsars

Pavlo Panasiuk, Violetta Sagun¹, Oleksii Ivanytskyi², Koichi Hamaguchi³, Natsumi Nagata³

¹University of Coimbra, ²University of Wroclaw, ³Tokyo University

Exploring Neutron Star's Potential to Constrain the Mass of Bosonic Dark Matter

Mahboubeh Shahrbaf

Institute of Theoretical Physics, University of Wroclaw

60th Karpacz Winter School on Theoretical Physics & WE-Heraeus Physics School

21 May 2024

How would it behave under extreme conditions of Neutron Stars? What would be the possible mass range as a Dark Matter Candidate?

Violation of Bell Inequalities on Quantum Computers

IBM Quantum System 1

https://www.ibm.com/quantum/technology

Graph state Graph inequality Test it on a quantum computer

Graph

Example of a qubit layout

https://quantum.ibm.com/services/resources?system=ibm_brisbane

Politechnika Warszawska

Infinite nuclear matter within the relativistic Hartree-Fock (HF) approximation Role of pions and retardation

Kamil Sokołowski, Tobias Fischer

University of Wroclaw

60th Karpacz Winter School on Theoretical Physics & WE-Heraeus Physics School

Zubarev Meets Bayes: Non-Equilibrium Pion Distribution Function in Heavy-Ion Collisions

Oleksandr Vitiuk¹, David Blaschke^{1,2,3}, Benjamin Dönigus⁴, Gerd Röpke⁵ ¹University of Wroclaw, ²HZDR, ³CASUS, ⁴University of Frankfurt, ⁵University of Rostock

Motivation The data provided by the ALICE Collaboration show an enhancement of the the low- p_T part of pion transverse momentum spectra with respect to the predictions of various models.

Model for Pions in Ultrarelativistic Heavy-Ion Collisions

- A state overpopulated by soft pions is formed at $\tau < \tau_{\pi}^{CFO}$
- For $\tau_{\pi}^{CFO} < \tau < \tau_{\pi}^{FO}$ the total pion number is dynamically fixed
- Zubarev approach rightarrow pion number as a good relevant observable $f_{\pi} = \left(\exp\left[\frac{E}{T}\right] - 1 \right)^{-1} rightarrow f_{\pi} = \left(\exp\left[\frac{E - \mu_{\pi}}{T}\right] - 1 \right)^{-1}$

Blast-Wave Model of Particle Freeze-Out

Freeze-out on the cylindrical boost-invariant hypersurface with boost invariant longitudinal expansion and the radial flow $\beta_T = v(r/R)^n$.

$$\frac{d^6 N_i}{dp_T dy d\psi dr d\eta d\varphi} \propto \tau r p_T m_T \cosh(y - \eta) \times \\ \times \left(\exp\left[\frac{m_T \cosh\rho \cosh(y - \eta) - p_T \sinh\rho \cos(\varphi - \psi) - \mu_i}{T}\right] \pm 1 \right)^{-1}$$

