Physics Landscape and Motivation

Young Nordic Future Collider Day May 14th 2024

Matthew McCullough

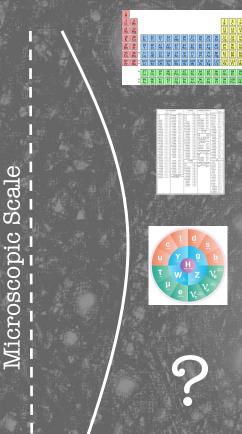
Where do we stand in 2024?

21 27 27 24 25 26 27 28 29 Se 11 V Cr Mn Fe Co N Ca

Calculability

Calculability

Interaction Strength


Calculability

Where do we stand in 2024?

Calculability

Calculability

Interaction Strength

Calculability

Where should we go next?

Personal theorist perspective: The **broadest** exploration possible is the best plan for progress.

Electroweak. QCD. Flavour. Higgs. BSM.

an burn supplying the physical necessities of scientific a

Any future Physics landscape should cover each area in paradigm-shifting depth.

76+1

criticism than

off RULATOME FCC-ee most general form in 1867. Thave now bagged & & y

from T & Thand love the numerical value of (1) ds

in & lines . these verifying T+T value of ST(3") ds

Four bury supplying the physical necessities of scientific it. 600000000000 Clean Z-Bosons

15 Cl Die rings Myon here time for criticism they

Hence $\int_{-1}^{1} \left(\frac{\partial_{i}}{\partial_{i}} \right)^{2} d\mu = \frac{2}{2i+i} \frac{2^{2} \left(\frac{i-s}{2} \right)^{2} \left(\frac{\partial_{i}}{\partial_{i}} \right)^{2} d\mu}{\frac{1}{2i+i}} = \frac{2}{2i+i} \frac{2^{2} \left(\frac{i-s}{2} \right)^{2} \left(\frac{\partial_{i}}{\partial_{i}} \right)^{2} d\mu}{\frac{1}{2i+i}}$

 $\mathcal{K}_{1} = \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=$

Hence (+1/ 2012) Rills = 4Trail 225 Li Li

of RULATOME FCC-ee most general form in 1867. Than now bagged & & y

from T & Thand love the numerical value of (1) ds

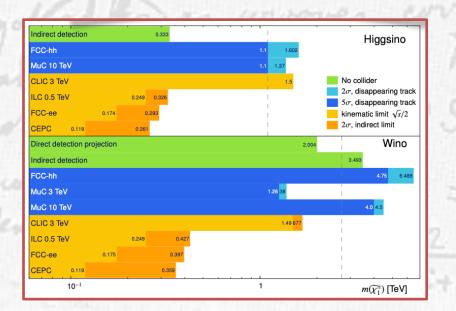
in & lines . these verifying TIT value of St (9") ols

Four bury supplying the physical necessities of scientific it. 2000000 Clean Higgs Bosons Mas as grooves, corrugated plates, grating

15 Cl Die rings Myon here time for criticism they

Hence $\int_{-1}^{1} \left(\frac{\partial_{i}}{\partial_{i}} \right)^{2} d\mu = \frac{2}{2i+i} \frac{2^{1/2-5} \log 10}{12+5} \frac{\log 10}{2}$ without enception

 $\mathcal{K}_{1} = \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=$

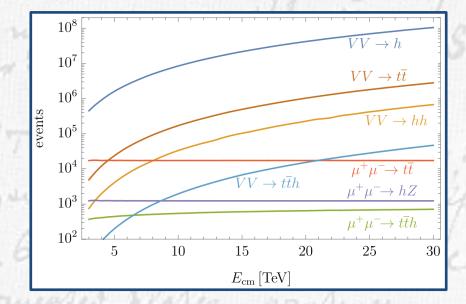

Hence (+1/ 2002) R: 10 = 4Trai 20 Li Li

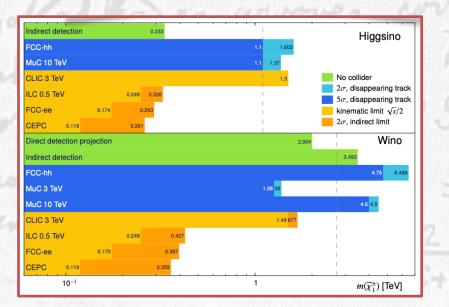
Up to 3 TeV CLIC

Of Order Millions Clean Higgs Bosons

Clean Higgs Boson Pairs

$\sqrt{s} =$	350 GeV	1.4 TeV	3 TeV
$\int \frac{d\mathscr{L}}{ds'} ds'$	$500\mathrm{fb}^{-1}$	$1.5 \mathrm{ab}^{-1}$	$2 \mathrm{ab}^{-1}$
$\sigma(e^+e^- \rightarrow ZH)$	133 fb	8 fb	2 fb
$\sigma(e^+e^- \rightarrow H\nu_e\overline{\nu}_e)$	34 fb	276 fb	477 fb
$\sigma(e^+e^- \rightarrow He^+e^-)$	7 fb	28 fb	48 fb
No. ZH events	68,000	20,000	11,000
No. $Hv_e \overline{v}_e$ events	17,000	370,000	830,000
No. He^+e^- events	3,700	37,000	84,000

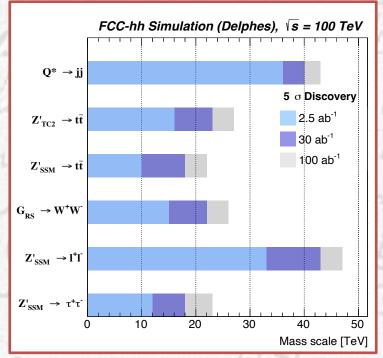



Electroweak states probed at high energies, low background

10 TeV Muon Collider

8000000 Clean Higgs Bosons

30000 Clean Higgs Boson Pairs



Electroweak states probed at high energies, low background

FCC-hh

Energy frontier is about direct exploration of new states. Across photon, gluon, (W&Z) and five-flavour scheme for quarks, FCC-hh collides N = 144, 196 different initial states.

Broadest exploration at highest conceivable energy.

What are the questions we want answered?

ha cripicism than

225 16 1E

most general form in 1867. Thave now bagged & & y

in 4 lines . thus verifying TAT "value of ST(3") ols

 $\mathcal{K}_{S} = \underbrace{\mathcal{K}_{S}}_{\mathcal{L}} \underbrace{\mathcal{K}_{S}}_{\mathcal{K}} \underbrace{\mathcal{K}_{S}} \underbrace{\mathcal{K}_{S}}_{\mathcal{K}} \underbrace{\mathcal{K}_{S}}_{\mathcal{K}} \underbrace{\mathcal{K}_{S}}_{\mathcal{K}} \underbrace{\mathcal{K}_{S}} \underbrace{\mathcal{K}_{S}}_{\mathcal{K}} \underbrace{\mathcal{K}_{S}} \underbrace{\mathcal{K}_{S}} \underbrace{\mathcal{K}_{S}} \underbrace{\mathcal{K}_{S}} \underbrace{\mathcal{K}_{S}} \underbrace{\mathcal{K}_{S}} \underbrace{\mathcal{K}} \underbrace{\mathcal{K}_{S}} \underbrace{\mathcal{K}} \underbrace{\mathcal{K}_{S}} \underbrace{\mathcal{K}} \underbrace$

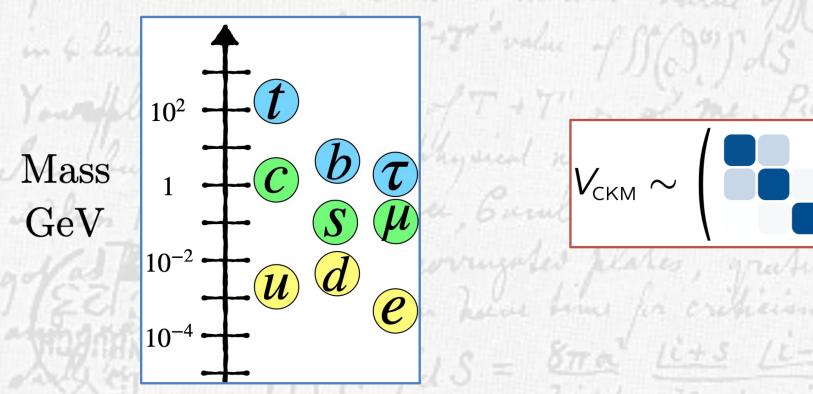
Hence $\int_{-1}^{1} \left(\frac{\partial_{i}^{(j)}}{\partial_{i}^{(j)}} \right)^{2} d\mu = \frac{2}{2i+i} \frac{2^{1/2} Li-s}{Li+s} \frac{18}{9} \frac{18}{9} \frac{18}{4}$

mapl when S=0 when S Q. 12 = 4TT a?

from T & TI and love the numerical value of (y 10) dS

What's going on with flavour?

aligned rings I you been time for criticism they

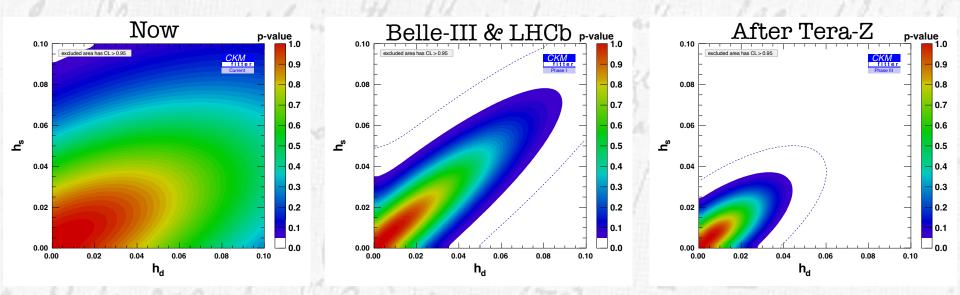

Hence $\int_{-1}^{1} \left(\frac{\partial u}{\partial t} \right)^{2} d\mu = \frac{2}{2i+1} \frac{2^{12} Li-5}{Li+5} \frac{12}{4} \frac{L}{4} \frac{2}{4} \frac{12}{4} \frac{12}{4}$

 $\frac{\chi_{i}}{\chi_{i}} = \frac{\chi_{i}}{\chi_{i}} = \frac{\chi_{i}}{\chi$

from T & Thand love the numerical value of (1) ds

in & lines . thus verifying T+T value of ST(3") ols

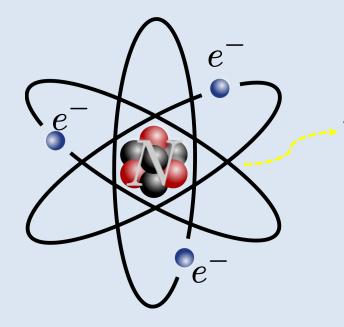
Where do matter mass patterns come from?


Clearly something going on here... Present state of affairs à la Periodic Table, if we're being honest with ourselves...

Figures borrowed from A. Greljo.

600000000000 Clean Z-Bosons

Particle production (10^9)	$B^0 \ / \ \overline{B}^0$	B^{+} / B^{-}	$B^0_s \ / \ \overline{B}^0_s$	$\Lambda_b \ / \ \overline{\Lambda}_b$	$c\overline{c}$	τ^-/τ^+
Belle II	27.5	27.5	n/a	n/a	65	45
FCC-ee	300	300	80	80	600	150


Incredible flavour factory!

 $M_{12} = \left(M_{12}
ight)_{\mathrm{SM}} imes \left(1 + h_{d,s} \, e^{2i\sigma_{d,s}}
ight)$

Taken from 2106.01259

Consider exploring a neutral atom at eV energies:

Photon wavelength on scale of orbitals.

The appropriate theory at this length scale contains the photon, electrons and nucleus:

$$\mathcal{L} = \mathcal{L}(\gamma, e^-, N)$$

Consider exploring a neutral atom at much lower energies:

Photon wavelength much greater than scale of orbitals.

The appropriate theory at this length scale contains the photon and neutral atom...

 $\mathcal{L} = \mathcal{L}(\gamma, \chi)$

Consider exploring a neutral atom at much lower energies:

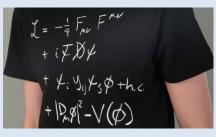
Photon wavelength much greater than scale of orbitals.

Crucially, the substructure is encoded in "higher dimension operators", like dipoles or Rayleigh...

$$\mathcal{L} = \dots + \frac{\chi^2}{\Lambda^2} F^{\mu\nu} F_{\mu\nu} + \dots$$

The same is true for particle physics!

Collider wavelength greater than scale of microscopic new physics...


 γ, W, Z, g, \dots

 $+\sum rac{c_j}{\Lambda^k} \mathcal{O}_{jk}$

ik

The Standard Model is an "Effective Field Theory". Unknown smaller distance physics in extra "operators":

 $\mathcal{L} =$

600000000000 Clean Z-Bosons

$\mathcal{C}_{H\ell}^{(3)[ii]}$				
${\cal C}_{H\ell}^{(1)[ii]}$				
$\mathcal{C}_{He}^{[ii]}$			••••••	
$\mathcal{C}_{Hq}^{(3)[ii]}$				
\mathcal{C}_{HD}				1
$\mathcal{C}_{\ell\ell}^{[ijji]}$				
${\cal C}_{H\ell}^{(3)[33]}$				
$\mathcal{C}_{H\ell}^{(1)[33]}$				
$\mathcal{C}_{He}^{[33]}$		**		
$\mathcal{C}_{Hq}^{(1)[33]}$		~~~~		
${\cal C}_{Hq}^{(3)[33]}$				
$\mathcal{C}_{Hu}^{[ii]}$				
$\mathcal{C}_{Hq}^{(1)[ii]}$				
$\mathcal{C}_{Hd}^{[ii]}$				
$\mathcal{C}_{Hd}^{[33]}$		Z	/W-pole (tree-level)	9
$\mathcal{C}_{Hu}^{[33]}$			Z/W-pole (RGE)	
$\mathcal{C}_{\ell q}^{(1)[ii33]}$				
$C_{\ell q}^{(3)[ii33]}$				
$\mathcal{C}_{\ell u}^{[ii33]}$				
$C_{qq}^{(3)[ii33]}$		Collider		
$\mathcal{C}_{qe}^{[33ii]}$		\boxtimes EW (FCCee)		
$\mathcal{C}_{eu}^{[ii33]}$				
$C_{qq}^{(1)[3333]}$		EW		
$\mathcal{C}_{qq}^{(3)[iijj]}$ $\mathcal{C}_{qq}^{(1)[3333]}$		Flavor (Up)		
$\mathcal{C}_{\ell q}^{(1)[3333]} \\ \mathcal{C}_{\ell q}^{(3)[3333]} \\ \mathcal{C}_{\ell q}^{(3)[3333]}$		Flavor (Down)		2
$\mathcal{C}_{\ell q}^{[3333]}$ $\mathcal{C}_{\ell u}^{[3333]}$				
$\mathcal{C}_{\ell u}^{(1)[3333]}$				
$\mathcal{C}_{qu}^{[3333]}$ $\mathcal{C}_{uu}^{[3333]}$				
$\mathcal{C}_{qe}^{[3333]}$				
\mathcal{C}_{eu}^{qe} $\mathcal{C}_{eu}^{[3333]}$				
$\mathcal{C}_{eH}^{[33]}$			Higgs decays	
$\mathcal{C}_{dH}^{[33]}$				
$\mathcal{C}^{(1)[3333]}_{\ell equ}$				
$C_{avad}^{(1)[3333]}$				
$\mathcal{C}^{[i33i]}_{\ell\ell}$			$\tau~{\rm LFU}$	
$\mathcal{C}_{\ell q}^{(3)[iijj]}$				
$\begin{array}{c} \mathcal{C}_{\ell\ell}^{[i33i]} \\ \mathcal{C}_{\ell\ell}^{(3)[iijj]} \\ \mathcal{C}_{\ell q}^{(3)[33ii]} \\ \mathcal{C}_{\ell q}^{(3)[33ii]} \end{array}$				
	0 10 20	30 40	50	
	TeV			

Many interactions generated by new heavy states would be <u>most</u> <u>deeply explored</u> by Tera-Z!

uniment, Trooves kny

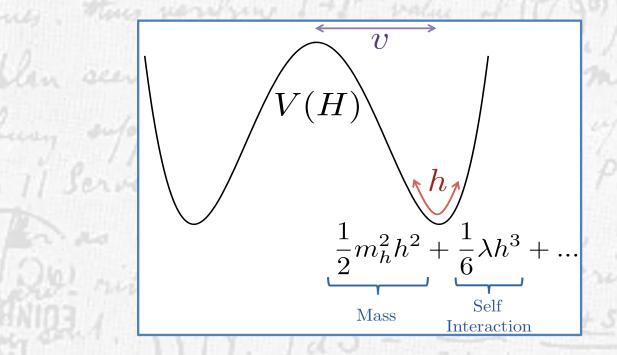
Tera-Z is not a LEP re-run, but a literal <u>quantum leap</u> towards the smallest distance scales...

Taken from 2311.00020

What's up with the Higgs Boson?

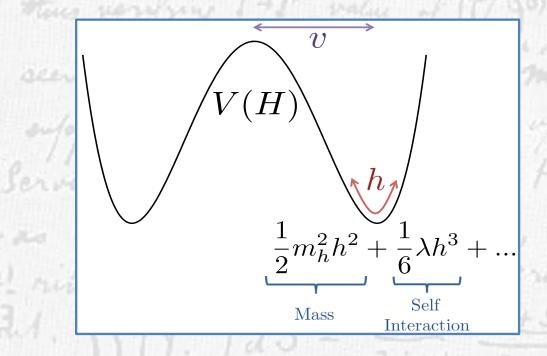
aligned rings I you have time for criticism they

Hence $\int_{-1}^{1} \left(\frac{\partial u}{\partial t} \right)^{2} d\mu = \frac{2}{2i+1} \frac{2^{12} Li-5}{Li+5} \frac{12}{4} \frac{L}{4} \frac{2}{4} \frac{12}{4} \frac{12}{4}$


 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$

Four bury supplying the physical necessities of scientific it.

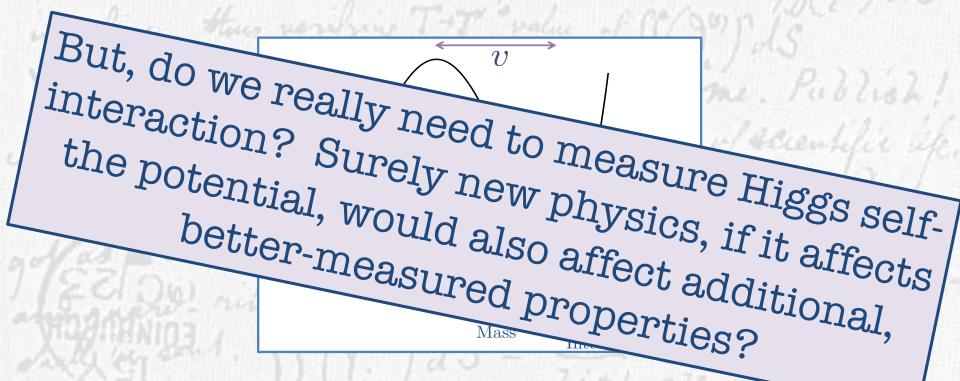
from T & TI and love the numerical value of (1) ds


in & lines . thus verifying T+T value of ST(3") IS

What is the Higgs Potential?

Important because it determines how the Universe froze in the EW sector, giving mass to gauge bosons, fermions, the Higgs...

What is the Higgs Potential?



ism Man

...because it determines how the Universe will end..

Zitl

What is the Higgs Potential?

...because it determines how the Universe will end..

Zitl

north when S=0 when SB. 123 -

Custodia

 m_h

5

custo

3

M [TeV]

4

A theory where Hig much more than a calculable, giving

3

$\frac{\delta_{VV}}{\delta_{VV}}$ δ_{h^3}

Sh3

 δ_{VV}

[%]

2

14

12

10

8

6

4

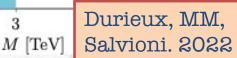
2

0

odified by

FCC

adruplet


FCC-hh: direct

2

3

 $\mathbf{2}$ $3 {
m TeV}$ 580

FCC-hh; self-coupling

elf-)coupling

Custodial Quadruplet A theory where Higgs self-coupling is modified by much more than any other property. All calculable, giving

$$-\frac{\delta_{VV}}{\delta_{h^3}} = 3\left(\frac{m_h}{4\pi v}\right)^2 + \left(\frac{m_h}{M}\right)^2 \approx \frac{1}{200} + \frac{1}{580}\left(\frac{3 \text{ TeV}}{M}\right)^2$$

2

0

FCC-hh: direct

2

M [TeV]

Durieux, MM,

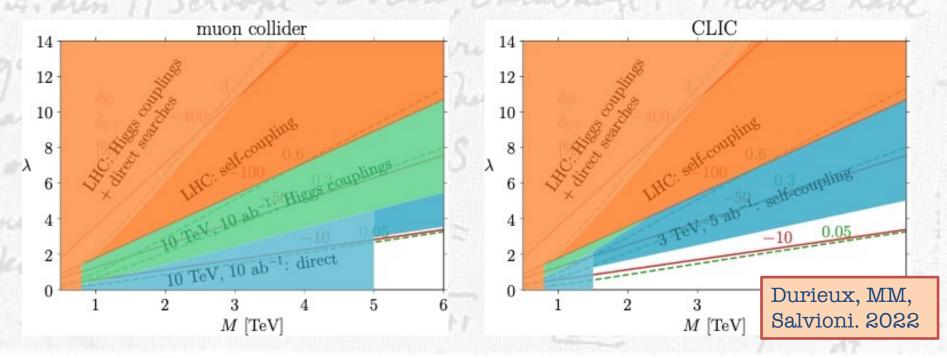
Salvioni. 2022

0.05

5

4

2

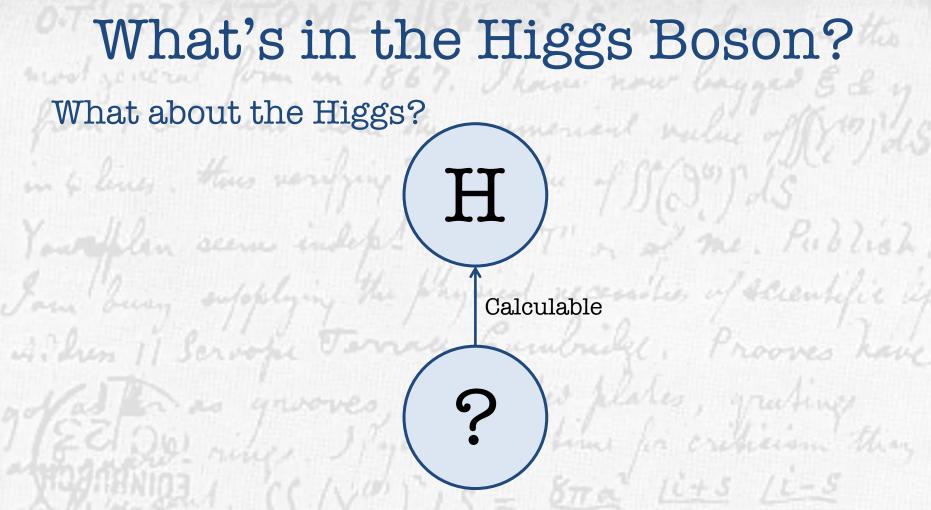

2

3

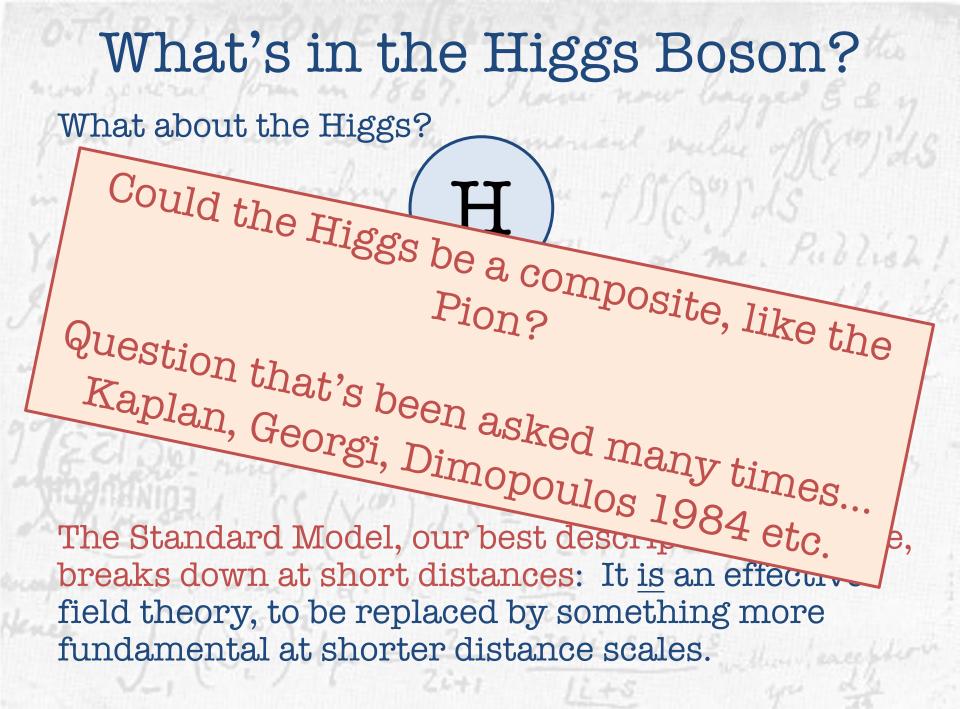
M [TeV]

Custodial Quadruplet A theory where Higgs self-coupling is modified by much more than any other property. All calculable, giving

$$-\frac{\delta_{VV}}{\delta_{h^3}} = 3\left(\frac{m_h}{4\pi v}\right)^2 + \left(\frac{m_h}{M}\right)^2 \approx \frac{1}{200} + \frac{1}{580}\left(\frac{3 \text{ TeV}}{M}\right)^2$$



What's in the Higgs Boson?

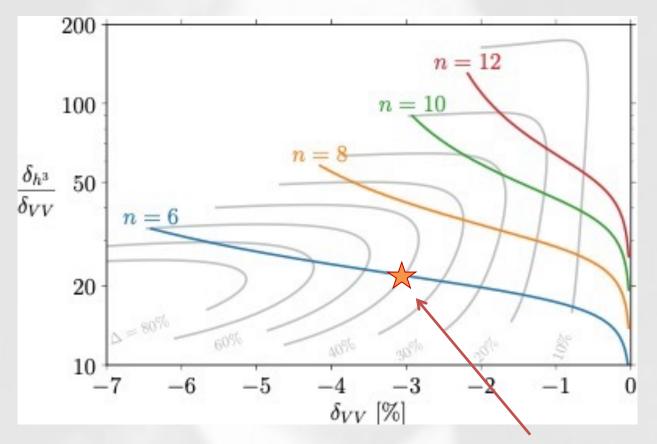

Every scalar we encountered until now had properties (mass, background value, etc) that are calculable within some more fundamental, microscopic, theory:

 $\overline{q}q$

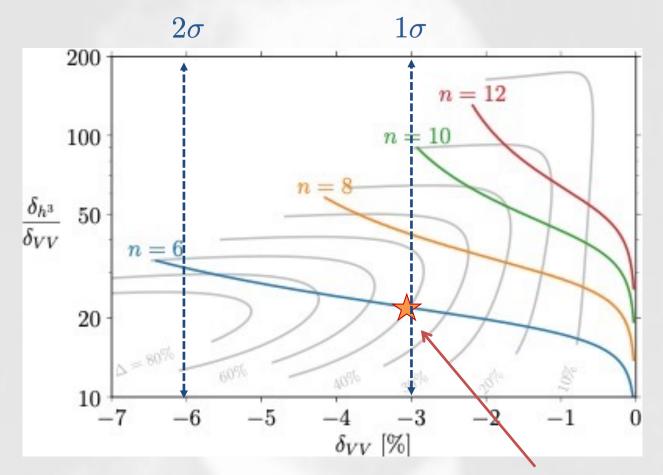
Calculable

The Standard Model, our best description of nature, breaks down at short distances: It <u>is</u> an effective field theory, to be replaced by something more fundamental at shorter distance scales.

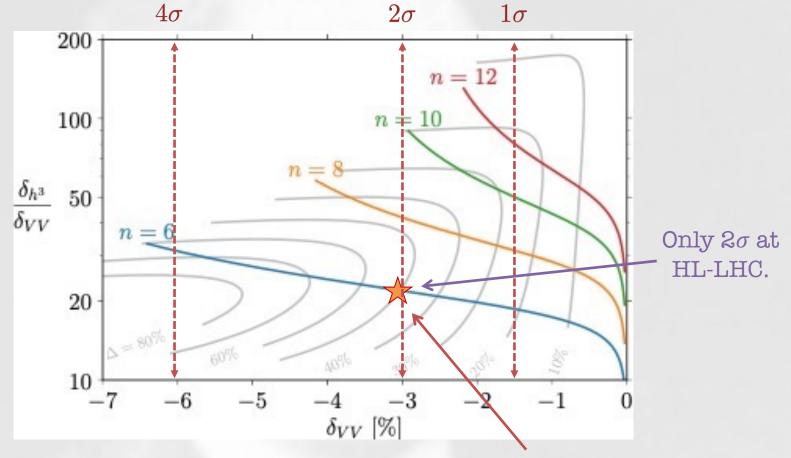
Durieux, MM,

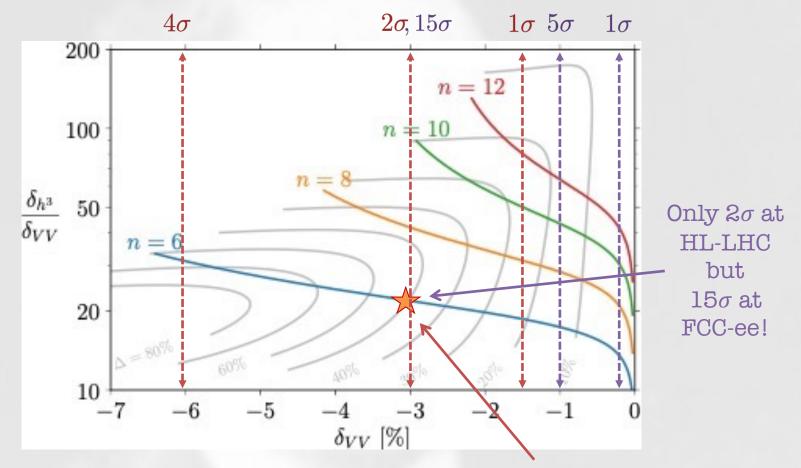

Salvioni. 2022

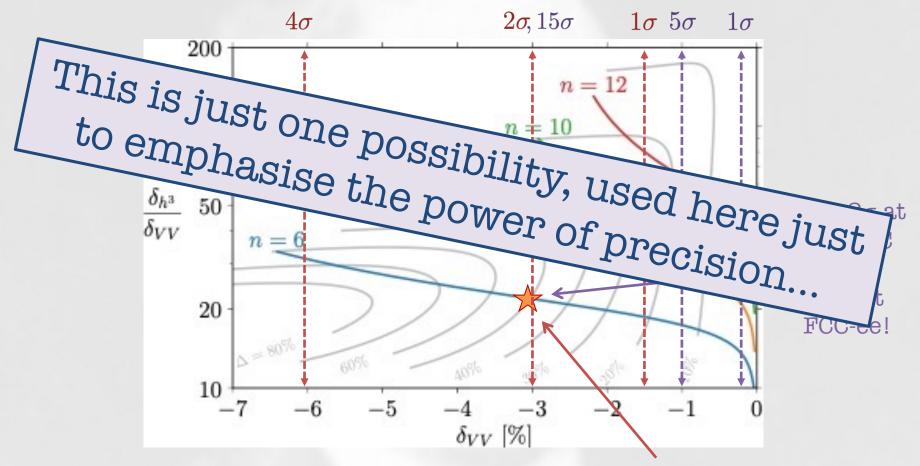
An example of a recently-proposed possibility for a Pion-like Higgs which naturally predicts very Standard Model-like Higgs properties.



Whether or not nature is described by this theory is an open question. For our purposes: It highlights the <u>importance of Higgs Factory</u> Precision.


Predictions, in absolute terms:


Present Limits

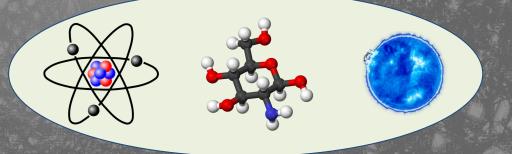

HL-LHC Expectations

HL-LHC Expectations & FCC-ee

HL-LHC Expectations & FCC-ee

Dark Sectors

Evidence for dark matter is now overwhelming

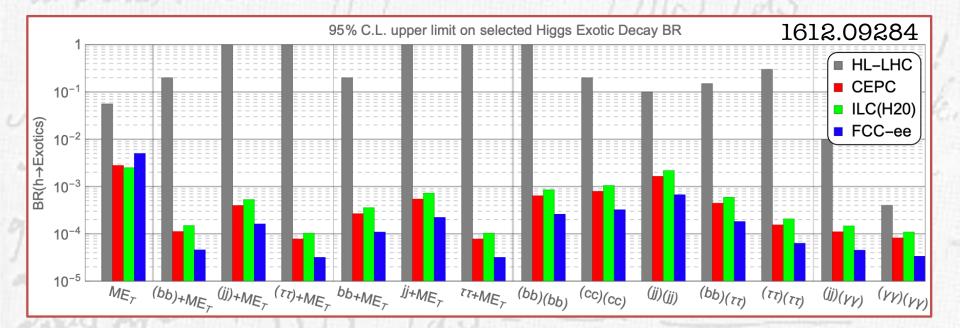

- Rotation curves
- CMB
- Large scale structure
- Velocity dispersions
- Gravitational lensing (Bullet Cluster)

Yet we have no clue what it is at the particle level!

Only 18% of all matter in Universe is visible.

 $e \begin{array}{cccc} e \begin{array}{ccc} u & d & z \ h \\ \mu & c \end{array} \begin{array}{c} s & & f \\ au & t \end{array} \begin{array}{c} b \end{array} \begin{array}{c} \gamma \end{array} \begin{array}{c} W \end{array} \hspace{0.1cm} y \end{array} \hspace{0.1cm} y \end{array} \hspace{0.1cm} y$

Within that 18% we observe extraordinary complexity.


Similarly, the dark sector, and dark matter, may be much more complex than just a single state.

Is the Higgs a portal to new dark sector states?

After all, $|H|^2$ is the most relevant interaction involving SM fields! Even if generated at microscopic scales $|H|^2\chi^2$

stays relevant all the way down to the Higgs scale...

Is the Higgs a portal to new dark sector states?

Orders of magnitude improvement in coverage of exotic Higgs decays.

Conclusions

Any "perspective" is subjective. I have presented snippets of my own, subjective, perspective.

However, we will create the most exciting future for particle physics with a strategy that is **as robust as possible** against theory perspectives!

Conclusions

QCD.

Electroweak.

Flavour.

Higgs.

from T & TI and love the numerical value of (1) dis in & lines . these verifying T+T "value of ST(3") ols Four bury supplying the physical necessities of scientific sky Alten Il Servope Tomace, Gumbnike. Prooves have 2 122 Die ring, Myon have time for criticism they $\frac{(1+s)}{(1+s)} = 0 \quad \text{for } S(Y_i) = \frac{(1+s)}{(1+s)} = \frac{(1+s)$ Hence $\int_{-1}^{1} \left(\Im_{i}^{5} \right)^{2} d\mu = \frac{2}{2i+i} \frac{2^{2s} Li-s}{Li+s} \frac{LS}{s} \frac{LS}{s}$