Status and physics of EIC

T. Lappi

University of Jyväskylä, Finland

Young Nordic Future-Collider day

1/14

Outline

- DIS basics
- EIC project
- Dense gluons
- Spin
- 3D mapping

EIC-the most powerful microscope on Earth

"Microscope" Study matter with photons—light. "Most powerful": combination of

- A Broad range of photon wavelength and frequency $(x \& Q^2)$ & targets
- **B** High luminosity
- A. Accardi et al "Electron Ion Collider: The Next QCD Frontier: Understanding the glue that binds us all," Eur. Phys. J. A 52 (2016) no.9, 268 [arXiv:1212.1701 [nucl-ex]].

R. Abdul Khalek, et al. "Science Requirements and Detector Concepts for the Electron-Ion Collider: ElC Yellow Report," Nucl. Phys. A 1026 (2022), 122447 [arXiv:2103.05419 [physics.ins-det]].

Deep Inelastic Scattering (DIS)

= electron-proton/nucleus collision

- EIC main goal: structure of the proton/nucleus. (LHeC, FCC-eh: more EW & BSM)
- ▶ DIS: measure outgoing electron: know exactly the photon q^{μ} (as opposed to proton-proton, Feynman: Swiss watches ...) $\implies X, Q^2$
- 2 variables for virtual photon. Interpretation:
 - $x \sim$ wavelength of photon in target rest frame (1/x ~energy)
 - Q^2 "virtuality": 1/Q = wavelength in frame where photon energy=0 "1

"Longitudinal" "Transverse" 3/14

EIC project

What is EIC

At Brookhaven, Long Island

- ► Existing RHIC:
 - ► 100 GeV/nucleon ion beam (up to uranium A = 238)
 - 275 GeV polarized proton beam
- ▶ New 18GeV e⁻ beam
- ► 1-2 detectors (depends on funding)

Schedule

(James Yeck, July 2023)

Schedule

(James Yeck, July 2023)

ePIC detector

electron-Proton-Ion Collider detector

- "Project detector," funded
- \blacktriangleright -4 $\lesssim \eta \lesssim$ 4
- + Forward detectors

2nd detector (not named yet) later

- Main detector \sim 10m long, \sim 2T field
- Note asymmetry lepton-proton/ion

Characteristics and physics program

There was already HERA (DESY, Hamburg, -2007) \sim 30GeV e^{\pm} on \sim 900GeV p

What is different with EIC? Physics driver:

- HERA: look for new particles
- EIC: understand quarks, gluons

3 key features

- 1. Nuclear beams \implies gluon saturation
- 2. Polarized proton \implies proton spin
- 3. Higher luminosity (factor $\lesssim 1000$)

Dense gluons

Cascade of gluons

Electric charge

- At rest: Coulomb electric field
- ► High velocity: cloud of photons ("equivalent photon approximation" ; Jackson) $\frac{dN}{d\omega} \sim \omega^{-1} \quad (\text{when } \omega \to 0)$

Cascade of gluons

Electric charge

- At rest: Coulomb electric field
- ► High velocity: cloud of photons ("equivalent photon approximation" ; Jackson) $\frac{dN}{d\omega} \sim \omega^{-1} \quad (\text{when } \omega \to 0)$

Color charge

- Moving color (e.g. valence quark) : cloud of gluons
- Gluons are source of new gluons: cascade

$$\frac{\mathrm{d}N}{\mathrm{d}\omega}\sim\omega^{-1-\#\alpha_{\mathrm{s}}}$$

Eventually becomes nonlinear—preserve unitarity

When do nonlinearities matter?

- Number of gluons in proton/nucleus $xG(x, Q^2)$
- Size of gluon probed $\sim 1/Q^2$
- Transverse space available πR^2
- Coupling α_s

Nonlinearities important when

$$xG(x,Q^2) \gtrsim rac{\pi R^2 Q^2}{lpha_s}$$

Gluon saturation

Heavy nucleus, mass number A:

$$xG(x,Q^2) \sim A, \quad R \sim A^{1/3}$$

 \implies Gain a factor \sim 6 with nuclear beam

Spin

Proton spin

$$\frac{1}{2} = \langle S_q \rangle + \langle S_g \rangle + \langle L_q \rangle + \langle L_g \rangle$$

 Already known: proton spin puzzle: quark spins: only ~35% of total ¹/₂. (This is measuring helicity=longitudinal spin)

10/14 (미) 《문) 《문) 《문) 관람 이익은

Proton spin

$$\frac{1}{2} = \langle S_q \rangle + \langle S_g \rangle + \langle L_q \rangle + \langle L_g \rangle$$

- Already known: proton spin puzzle: quark spins: only ~35% of total ¹/₂. (This is measuring helicity=longitudinal spin)
- EIC: measure gluon spin contribution
- Rest: orbital angular momentum L
- \blacktriangleright L = r \times p: \implies measure r & p of partons!

Parton position and momentum

Parton intrinsic momentum:

- Access from produced particle p (SIDIS)
- E.g. Sivers effect: correlation between
 - proton momentum (z)
 - **proton spin** (y)
 - produced particle (x)

Parton coordinate: exclusive reactions

- Outgoing proton intact
- Momentum transfer $t = (p p')^2$: Fourier conjugate of \perp coordinate

3D mapping

3D mapping

Measurements differentially in

- \blacktriangleright Q², x, k, z (SIDIS)
- \blacktriangleright Q^2, x, M_X^2, t (diffraction)
- ► Q^2, x, t, ξ (GPD's)

• • • •

Requires:

- Luminosity
- Detector coverage

3D mapping

Measurements differentially in

- \blacktriangleright Q², x, k, z (SIDIS)
- \blacktriangleright Q^2, x, M_X^2, t (diffraction)
- \blacktriangleright Q^2, x, t, ξ (GPD's)

• • • •

Requires:

- Luminosity
- Detector coverage

Extreme example: **TCS**

(Timelike Compton Scattering)

12/14

Luminosity

Requires strongly focusing the beam

- Crab cavities
 - Want focusing magnets close
 separate beams quickly
 - Crossing angle 25 mrad = large
 - Crab cavities compensate crossing
- Electron cooling
 - Inject electron beam "along" protons
 - Coulomb interactions: thermalize
 - Thermal: $M\mathbf{v}_h^2 \sim m_e \mathbf{v}_e^2$
 - Electrons lighter
 - \implies proton beam angular spread smaller

(Note cf LHC: pileup not a problem, cross sections are smaller)

Conclusions

EIC: studying new aspect of glue

- First nuclear DIS collider: directly measure gluon saturation
- First spin-polarized DIS collider: understand nucleon spin
- Highest luminosity DIS collider: map out 3d structure of nucleon
- Construction starting soon
- Expect data in early 2030's

14/14 《 다 > 《 문 > 《 문 > 《 문 > 종 문 = ' 이 익 약

Gluon saturation at EIC

Signals of gluon saturation

• Breakdown of DGLAP evolution: Gluon saturation should manifest itself in $\sim \frac{1}{Q^2}$ corrections

1/14

Gluon saturation at EIC

Signals of gluon saturation

 Breakdown of DGLAP evolution: Gluon saturation should manifest itself in ~ ¹/_{Ω²} corrections

 Enhancement of diffraction: Black disk: ¹/₂ of events, ~ 15% at HERA (Diffractive DIS = exclusive reaction: target intact, colorless exchange

 $\sigma_{tot}\sim 2{\cal N}~~\sigma_{diff}\sim {\cal N}^2$)

Gluon saturation at EIC

Signals of gluon saturation

- Breakdown of DGLAP evolution: Gluon saturation should manifest itself in ~ ¹/_{Ω²} corrections
- Enhancement of diffraction: Black disk: $\frac{1}{2}$ of events, ~ 15% at HERA (Diffractive DIS = exclusive reaction: target intact, colorless exchange $\sigma_{tot} \sim 2N \quad \sigma_{diff} \sim N^2$)
- Angular correlations in dijets:
 Q_s is a momentum scale

($\Delta \varphi$ -distribution in $e^- + p/A \rightarrow 2h + X$)

Some interesting exclusive reactions

Exclusive vector mesons & DVCS (deeply virtual Compton)

 $\gamma^* + \rho/A \rightarrow VM + \rho/A$

• VM =
$$J/\Psi$$
, ρ , ϕ , Υ , ... or = γ

directly measure gluons, spatial distribution from t

- Diffractive dijets

$$\gamma^* + p/A \rightarrow p/A + 2j$$

► Gluon ⊥ coordinate & momentum simultaneously (at least in principle)

Sullivan process

$$\gamma^* + p \rightarrow \gamma^* + \pi^+ + n \rightarrow X + n$$

DIS off a pion

Why are exclusive reactions interesting for saturation?

Inclusive:

Exclusive: need color neutral exchange

Amplitude: ≥1 gluon
Cross section: ≥2 gluons

- Amplitude: ≥ 2 gluons
- Cross section: \geq 4 gluons