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Outline

▶ DIS basics
▶ EIC project
▶ Dense gluons
▶ Spin
▶ 3D mapping

EIC–the most powerful microscope on Earth
“Microscope” Study matter with photons—light. “Most powerful”: combination of

A Broad range of photon wavelength and frequency (x & Q2) & targets
B High luminosity

▶ A. Accardi et al “Electron Ion Collider: The Next QCD Frontier: Understanding the glue that binds us all,”

Eur. Phys. J. A 52 (2016) no.9, 268 [arXiv:1212.1701 [nucl-ex]].

▶ R. Abdul Khalek, et al. “Science Requirements and Detector Concepts for the Electron-Ion Collider:

EIC Yellow Report,” Nucl. Phys. A 1026 (2022), 122447 [arXiv:2103.05419 [physics.ins-det]].
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Deep Inelastic Scattering (DIS)
= electron-proton/nucleus collision

e− : kµ

e−, k ′µ

γ∗ : qµ

proton Pµ
X=anything

q = k − k ′ q2 ≡ −Q2

x =
Q2

2P · q

▶ EIC main goal: structure of the proton/nucleus. (LHeC, FCC-eh: more EW & BSM)

▶ DIS: measure outgoing electron: know exactly the photon qµ

(as opposed to proton-proton, Feynman: Swiss watches . . . ) =⇒ x ,Q2

▶ 2 variables for virtual photon. Interpretation:
▶ x ∼ wavelength of photon in target rest frame (1/x ∼energy) “Longitudinal”
▶ Q2 “virtuality”: 1/Q = wavelength in frame where photon energy=0 “Transverse”
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EIC project
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What is EIC

▶ At Brookhaven, Long Island

▶ Existing RHIC:
▶ 100 GeV/nucleon ion beam

(up to uranium A = 238)
▶ 275 GeV polarized proton beam

▶ New 18GeV e− beam
▶ 1–2 detectors (depends on funding)

≈ 1200 m
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Schedule

17

Reference Schedule for 2nd IR and Detector

(James Yeck, July 2023)
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ePIC detector
electron-Proton-Ion Collider detector

▶ “Project detector,” funded
▶ −4 ≲ η ≲ 4
▶ + Forward detectors

ePIC detector

FarForward system

17

Bernd SurrowEICUG Quarterly Meeting

Philadelphia, PA, November 17, 2022

B0 Silicon Tracker and Preshower

Roman Pots

Zero-Degree Calorimeter

Focusing Quadrupoles
Off-Momentum Detectors

FarForward detector system 

to measure very forward 

neutral and charged particle 

production: 4 detector 

systems: 

Detector „ accep. [mrad] Rigidity accep. Particles Technology

B0 tracker 5.5–20.0 N/A
Charged particles

Tagged photons

MAPS

AC-LGAD

Off-Momentum Detector 0.0–5.0 45%–65% Charged particles AC-LGAD

Roman Pots 0.0–5.0 60%–95%∗ Protons

Light nuclei
AC-LGAD

Zero-Degree Calorimeter 0.0–4.0 N/A
Neutrons

Photons

W/SciFi (ECal)

Pb/Sci (HCal)

▶ 2nd detector (not named yet) later ▶ Main detector ∼10m long, ∼2T field
▶ Note asymmetry lepton–proton/ion
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Characteristics and physics program

There was already HERA
(DESY, Hamburg, –2007)
∼30GeV e± on ∼900GeV p

What is different with EIC? Physics driver:
▶ HERA: look for new particles
▶ EIC: understand quarks, gluons

3 key features
1. Nuclear beams =⇒ gluon saturation
2. Polarized proton =⇒ proton spin
3. Higher luminosity (factor ≲ 1000 )

Bernd Surrow

Luminosity /       / Kinematic coverage 

Spinning Glue: QCD and Spin
10

Workshop on Physics, Detector and Accelerator Opportunities at the EIC

Online / Philadelphia, PA, July 27, 2020

EIC Physics Pillars 
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Dense gluons
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Cascade of gluons

Electric charge

▶ At rest: Coulomb electric field
▶ High velocity: cloud of photons

(“equivalent photon approximation” ; Jackson)

dN
dω

∼ ω−1 (when ω → 0)

Color charge

▶ Moving color (e.g. valence quark) : cloud of gluons
▶ Gluons are source of new gluons: cascade

dN
dω

∼ ω−1−#αs

▶ Eventually becomes nonlinear—preserve unitarity
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When do nonlinearities matter?

▶ Number of gluons in proton/nucleus xG(x ,Q2)
▶ Size of gluon probed ∼ 1/Q2

▶ Transverse space available πR2

▶ Coupling αs

Nonlinearities important when

xG(x ,Q2) ≳
πR2Q2

αs

Gluon saturation

Heavy nucleus, mass number A:

xG(x ,Q2) ∼ A, R ∼ A1/3

=⇒ Gain a factor ∼ 6 with nuclear beam
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Spin
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Proton spin

1
2
= ⟨Sq⟩+ ⟨Sg⟩+ ⟨Lq⟩+ ⟨Lg⟩

▶ Already known: proton spin puzzle:
quark spins: only ∼35% of total 1

2 .
(This is measuring helicity=longitudinal spin)

▶ EIC: measure gluon spin contribution
▶ Rest: orbital angular momentum L
▶ L = r × p: =⇒ measure r & p of partons!
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Parton position and momentum

▶ Parton intrinsic momentum:
▶ Access from produced particle p (SIDIS)
▶ E.g. Sivers effect: correlation between

▶ proton momentum (z)
▶ proton spin (y)
▶ produced particle (x)

▶ Parton coordinate: exclusive reactions
▶ Outgoing proton intact
▶ Momentum transfer t = (p − p′)2:

Fourier conjugate of ⊥ coordinate

u quark
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3D mapping
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3D mapping

Measurements differentially in
▶ Q2, x ,k, z (SIDIS)

▶ Q2, x ,M2
X , t (diffraction)

▶ Q2, x , t , ξ (GPD’s)

▶ . . .
Requires:
▶ Luminosity
▶ Detector coverage

Extreme example: TCS
(Timelike Compton Scattering)

Q2
M2

e− ℓ = e−, µ−

ℓ̄ = e+, µ+

e′−

P P ′

▶ σ ∼ α4
e.m.

▶ σ ∼ 1/Q4 and σ ∼ 1/M4

▶ σ ∼ exp{Bt}, t = (P − P ′)2 < 0
▶ Factor ∼100 bkg from Bethe-Heitler

But you want to measure this!
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Luminosity

Requires strongly focusing the beam

▶ Crab cavities
▶ Want focusing magnets close

=⇒ separate beams quickly
▶ Crossing angle 25 mrad = large
▶ Crab cavities compensate crossing

▶ Electron cooling
▶ Inject electron beam “along” protons
▶ Coulomb interactions: thermalize
▶ Thermal: Mv2

h ∼ mev2
e

▶ Electrons lighter
=⇒ proton beam angular spread smaller

(Note cf LHC: pileup not a problem, cross sections are smaller)
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Conclusions

EIC: studying new aspect of glue
▶ First nuclear DIS collider:

directly measure gluon saturation
▶ First spin-polarized DIS collider:

understand nucleon spin
▶ Highest luminosity DIS collider:

map out 3d structure of nucleon

▶ Construction starting soon
▶ Expect data in early 2030’s
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Gluon saturation at EIC

Signals of gluon saturation
▶ Breakdown of DGLAP evolution:

Gluon saturation should manifest itself
in ∼ 1

Q2 corrections

▶ Enhancement of diffraction:
Black disk: 1

2 of events, ∼ 15% at HERA

(Diffractive DIS = exclusive reaction:
target intact, colorless exchange
σtot ∼ 2N σdiff ∼ N 2 )

▶ Angular correlations in dijets:
Qs is a momentum scale
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Some interesting exclusive reactions

▶ Exclusive vector mesons & DVCS (deeply virtual Compton)

γ∗ + p/A → VM + p/A

▶ VM = J/Ψ, ρ, ϕ,Υ, . . . or = γ
▶ directly measure gluons, spatial distribution from t
▶ Spin asymmetry =⇒ position space analogue of Sivers

▶ Diffractive dijets
γ∗ + p/A → p/A + 2j

▶ Gluon ⊥ coordinate & momentum simultaneously (at least in principle)

▶ Sullivan process
γ∗ + p → γ∗ + π+ + n → X + n

▶ DIS off a pion
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Why are exclusive reactions interesting for saturation?

Inclusive:

▶ Amplitude: ≳1 gluon
▶ Cross section: ≳2 gluons

Exclusive: need color neutral exchange

▶ Amplitude: ≳2 gluons
▶ Cross section: ≳4 gluons
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