Commissioning of the 90 m Totem Optics

• Introduction: scenario; β, phase advance, tune

• Compatibility of early physics and Totem 90 m optics
 • need for global tune compensation of “un-squeeze”
 • aperture, β-beating
 • smooth “un-squeeze” to 90 m

• Conclusion

based on work and discussions within LCU, LHCCWG & LTC
Scenario: early physics and Totem 90 m optics

Earlier physics operation:
- injection; optics with $\beta^* = 11$ m in IR1/5, no crossing angle
- injection of limited number of bunches (43 to 156) and intensities $\sim 5 \times 10^{10}$ / bunch
- ramp with same $\beta^* = 11$ m in IR1/5
- prepare for physics
 - normally: increase Luminosity by local squeeze from 11 m down to 2 m in both IR1/5
 - here: local squeeze in IR1 to 2 m + “un-squeeze” in IR5 to 90 m β^*
 with phase advance of $\Delta\mu_y = 0.25$ (90°), $\Delta\mu_x = 0.50$ (180°) for outgoing beam between IR5 and roman pot at 220 m from IP (between Q5 and Q6).

What happens in the squeeze and un-squeeze and how does it compare?
the main changes in tune (phase advance) and aperture can be derived from optics principles ----->
The β-function in a field free region has a form of a parabola with

$$\beta(s) = \beta^* + \frac{(s - s_0)^2}{\beta^*}$$

Relation between phase advance $\Phi(s)$, $\beta(s)$ and tune $Q(s) = \Phi(s) / 2\pi$

$$\Phi(s) = \int \frac{1}{\beta(s)} \, ds$$

Integrated symmetrically around the minimum

$$Q = \frac{1}{2\pi} \int_{s_0 - l}^{s_0 + l} \frac{1}{\beta(s)} \, ds = \frac{1}{\pi} \arctan \left(\frac{l}{\beta^*} \right)$$

Contributes 0.5 in tune (π in phase) for low $\beta^* < l$
going to 0 for high $\beta^* \gg l$

For the LHC with $l = 26.15$ m from IP to centre of Q1
LHC physics tune

Target physics tunes are \(Q_x = 64.31 \) and \(Q_y = 59.32 \) for both beams in the LHC

individual contributions from arcs and insertions:

<table>
<thead>
<tr>
<th></th>
<th>beam1</th>
<th>beam2</th>
</tr>
</thead>
<tbody>
<tr>
<td>arcs</td>
<td>44.1040</td>
<td>44.1040</td>
</tr>
<tr>
<td>MU_X</td>
<td>40.6890</td>
<td>40.6890</td>
</tr>
<tr>
<td>MU_Y</td>
<td>40.6890</td>
<td>40.6890</td>
</tr>
<tr>
<td>IR1</td>
<td>2.6330</td>
<td>2.6330</td>
</tr>
<tr>
<td>MU_X</td>
<td>2.6490</td>
<td>2.6490</td>
</tr>
<tr>
<td>MU_Y</td>
<td>2.6490</td>
<td>2.6490</td>
</tr>
<tr>
<td>IR2</td>
<td>2.9740</td>
<td>2.9910</td>
</tr>
<tr>
<td>MU_X</td>
<td>2.7980</td>
<td>2.8440</td>
</tr>
<tr>
<td>MU_Y</td>
<td>2.7980</td>
<td>2.8440</td>
</tr>
<tr>
<td>IR3</td>
<td>2.2480</td>
<td>2.2494</td>
</tr>
<tr>
<td>MU_X</td>
<td>1.9430</td>
<td>2.0066</td>
</tr>
<tr>
<td>MU_Y</td>
<td>1.9430</td>
<td>2.0066</td>
</tr>
<tr>
<td>IR4</td>
<td>2.1430</td>
<td>2.1430</td>
</tr>
<tr>
<td>MU_X</td>
<td>1.8700</td>
<td>1.8700</td>
</tr>
<tr>
<td>MU_Y</td>
<td>1.8700</td>
<td>1.8700</td>
</tr>
<tr>
<td>IR5</td>
<td>2.6330</td>
<td>2.6330</td>
</tr>
<tr>
<td>MU_X</td>
<td>2.6490</td>
<td>2.6490</td>
</tr>
<tr>
<td>MU_Y</td>
<td>2.6490</td>
<td>2.6490</td>
</tr>
<tr>
<td>IR6</td>
<td>2.0150</td>
<td>2.0150</td>
</tr>
<tr>
<td>MU_X</td>
<td>1.7800</td>
<td>1.7800</td>
</tr>
<tr>
<td>MU_Y</td>
<td>1.7800</td>
<td>1.7800</td>
</tr>
<tr>
<td>IR7</td>
<td>2.3770</td>
<td>2.4826</td>
</tr>
<tr>
<td>MU_X</td>
<td>1.9680</td>
<td>2.0504</td>
</tr>
<tr>
<td>MU_Y</td>
<td>1.9680</td>
<td>2.0504</td>
</tr>
<tr>
<td>IR8</td>
<td>3.1830</td>
<td>3.0590</td>
</tr>
<tr>
<td>MU_X</td>
<td>2.9740</td>
<td>2.7820</td>
</tr>
<tr>
<td>MU_Y</td>
<td>2.9740</td>
<td>2.7820</td>
</tr>
<tr>
<td>tune</td>
<td>64.3100</td>
<td>64.3100</td>
</tr>
<tr>
<td>MU_X</td>
<td>59.3200</td>
<td>59.3200</td>
</tr>
<tr>
<td>MU_Y</td>
<td>59.3200</td>
<td>59.3200</td>
</tr>
</tbody>
</table>

Remains constant from end of ramp through the squeeze

IR5 contributes 2.633 in \(Q_x \) and 2.649 in \(Q_y \), both for beam 1 & 2
\(\beta^* = 2 \text{ m physics optics in IR 5} \)

\(\beta_x, \beta_y (m) \)

\(D_x \)

\(s (\text{km}) \)

\(D_{x,y} (m) \)

\(\mu_x = 2.633 ; \mu_y = 2.649 \)
$\beta^* = 90 \text{ m Totem optics}$

 mux = 2.540 ; muy = 2.620 needs extra $\Delta Q_x = 0.093, \Delta Q_y = 0.029$ trim
Aperture of $\beta^* = 2 \, \text{m}$ physics optics in IR 5
well within specs, but already tighter than the $\beta^* = 2 \text{ m} \ $ physics optics
Aperture of 90 m Totem optics at injection

not enough aperture to inject into 90 m optics, “un-squeeze” needed
90 m Totem optics. $\Delta Q_x = 0.093$, $\Delta Q_y = 0.029$ using trim quads k_{qtd}, k_{qtf}

similar for both beams, shown here for beam 1

maximum excursions in x: -3.5 to $+2.2\%$

maximum excursions in y: -1.2 to $+0.6\%$
match “squeeze” from 90 m to 11 m in IR5, left side

In 21 steps, each step with a 10% reduction in β^* (90, 81, 73, ... 11 m). Last step shows our normal 11 m strength. Match with 23 variables (quad strength), 19 constraints β, D..
“squeeze” match from 90 m to 11 m in IR5, right side

kqt13, kq4, kqx, ktqx1, ktqx2 interpolated between start / end
squeezed from 90 m to 11 m

\[\beta_x, \beta_y \quad D_x, D_y \quad s (m) \]

Momentum offset = 0.00 %

V6.500 initial totem optics 90m MAD-X 3.03.41 13/03/07 20.27.05
Momentum offset = 0.00 %

\[\beta = 59 \]

MAD-X 3.03.41 13/03/07 20.27.37

\[x (m), y (m) \]

\[D_x (m), D_y (m) \]

\[\beta_x, \beta_y, D_x \]

\(s (m) \)
Momentum offset = 0.00 %

\[\beta_x \quad \beta_y \quad D_x \]

beta = 53

MAD-X 3.03.41 13/03/07 20.27.47

\[\text{Momentum offset} = 0.00 \% \]
Momentum offset = 0.00 %
s (m)
beta = 47
MAD-X 3.03.41 13/03/07 20.27.53

![Graph showing beta and D as functions of s](image-url)
beta = 43
MAD-X 3.03.41 13/03/07 20.27.59

Momentum offset = 0.00 %

s (m)

beta = 43

Dx (m), Dy (m)

s (m)

Momentum offset = 0.00 %
Momentum offset = 0.00 %

beta = 38

MAD-X 3.03.41 13/03/07 20.28.07

Dx (m), Dy (m)

x (m), y (m)
Momentum offset = 0.00 %
s (m)

beta = 25

MAD-X 3.03.41 13/03/07 20.28.34

0.0
200.
400.
600.
800.
1000.
1200.
1400.
1600.

beta = 25

MAD-X 3.03.41 13/03/07 20.28.34

0.0
200.
400.
600.
800.
1000.
1200.
1400.
1600.

Dx (m), Dy (m)
Momentum offset = 0.00 %

$\beta = 11$

MAD-X 3.03.41 13/03/07 20.29.20

$x (m), y (m)$

-0.5
0.0
0.5
1.0
1.5
2.0
2.5

$D_x (m), D_y (m)$

x y D_x
Momentum offset = 0.00 %

ir5 inj. optics, this is the target

MAD-X 3.03.41 13/03/07 20.29.21

\[\beta_x, \beta_y, D_x \]

\[x, y \]

\[\beta (m), \beta (m) \]

\[\alpha \]
Conclusion

Based on the optics / aperture arguments presented:
the “un-squeeze” from our standard 11 m injection&ramp optics to the
90 m Totem optics in IP 5 looks feasible.

One known issue:
The “un-squeeze” is not completely local: the global tune is reduced;
this is correctable by a global tune adjust within the nominal tuning range
and not expected to be critical: to be verified in early operation or MD

Commissioning time

Hard to predict for a new machine of the size and complexity of the LHC
Probably similar to the time needed to commission the squeeze down to 2 m
Backup Slides
Outlook V6.501

Phase advances were kept fixed between optics versions V6.5 and V6.500

To allow for a more general optimisation, they were allowed to change for V6.501, mux increased in various places: IR2, IR7 can be expected to rather facilitate the integration of the early Totem 90 m optics.

LHCVERSION V6.500

<table>
<thead>
<tr>
<th>Beam 1</th>
<th>Beam 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU_X</td>
<td>MU_Y</td>
</tr>
<tr>
<td>arcs</td>
<td>44.1040</td>
</tr>
<tr>
<td>IR1</td>
<td>2.6330</td>
</tr>
<tr>
<td>IR2</td>
<td>2.9740</td>
</tr>
<tr>
<td>IR3</td>
<td>2.2480</td>
</tr>
<tr>
<td>IR4</td>
<td>2.1430</td>
</tr>
<tr>
<td>IR5</td>
<td>2.6330</td>
</tr>
<tr>
<td>IR6</td>
<td>2.0150</td>
</tr>
<tr>
<td>IR7</td>
<td>2.3770</td>
</tr>
<tr>
<td>IR8</td>
<td>3.1830</td>
</tr>
<tr>
<td>Tune</td>
<td>64.3100</td>
</tr>
</tbody>
</table>

LHCVERSION V6.501

<table>
<thead>
<tr>
<th>Beam 1</th>
<th>Beam 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU_X</td>
<td>MU_Y</td>
</tr>
<tr>
<td>arcs</td>
<td>44.1040</td>
</tr>
<tr>
<td>IR1</td>
<td>2.6330</td>
</tr>
<tr>
<td>IR2</td>
<td>3.0098</td>
</tr>
<tr>
<td>IR3</td>
<td>2.2480</td>
</tr>
<tr>
<td>IR4</td>
<td>2.0815</td>
</tr>
<tr>
<td>IR5</td>
<td>2.6330</td>
</tr>
<tr>
<td>IR6</td>
<td>2.0150</td>
</tr>
<tr>
<td>IR7</td>
<td>2.4500</td>
</tr>
<tr>
<td>IR8</td>
<td>3.1786</td>
</tr>
<tr>
<td>Tune</td>
<td>64.3100</td>
</tr>
</tbody>
</table>
ΔQx = 0.093, ΔQy = 0.029 adjust required for Totem 90 m
same for b1, b2: use main quads to adjust tune kqd, kqf

- Maximum excursions in x within ±1%
- Maximum excursions in y within ±0.8%