Early TOTEM Running with the $\beta^*=90m$ Optics

Karsten Eggert

on behalf of the

TOTEM Collaboration

Politecnico di Bari and Sezione INFN Bari, Italy <u>Case Western Reserve University</u> Cleveland, Ohio,USA <u>CERN</u> Geneva, Switzerland Università di Genova and Sezione INFN

Genova, Italy

<u>University of Helsinki and HIP</u> Helsinki, Finland INFN Sezione di Pisa and Università di Siena Pisa/Siena, Italy

Academy of Sciences Praha, Czech Republic

Estonian Academy of Sciences Tallinn, Estonia

Penn State University University Park, USA

Brunel University Uxbridge, UK

87th LHCC Meeting 21.03.2007

Total p-p Cross-Section

TOTEM Detector Configuration

Comparison of High β^* Optics

Parameters	$\beta^* = 1540 \text{ m}$ (baseline optics)	$\beta^* = 90 \text{ m}$ (early optics)	
Crossing angle	0.0	0.0	
N of bunches	43	156	
N of part./bunch	3 · 10 ¹⁰	4 · 10 ¹⁰	
Emittance $\epsilon_n [\mu m \cdot rad]$	1	3.75	
RMS beam size at IP [µm]	450	200	
RMS beam divergence [µrad]	0.29	2.3	
10 σ beam width at RP220 [mm]	0.8	6.25	Ì
Peak luminosity [cm ⁻² s ⁻¹]	1.6 ·10 ²⁸	5 ·10 ²⁹	Ì
Injection	special	standard	Î
MD commissioning	more difficult	less difficult	

$\beta^* = 90 \text{ m}$

- fits into the 2008 run scenario;
- small integrated luminosity loss in 2008
- ideal for training the RP operation due to wide beams;
- helps beam diagnostics
 - luminosity
 - beam position
 - vertex distribution

Parameter Evolution and Rates

All values for nominal emittance, 7TeV and 10m $\beta *$ in points 2 and 8

Parameters		Beam levels		Rates in 1 and 5		Rates in 2 (and 8)		
k _b	N	β* 1,5 (m)	I _{beam} proton	E _{beam} (MJ)	Luminosity (cm ⁻² s ⁻¹)	Events/ crossing	Luminosity (cm ⁻² s ⁻¹)	Events/ crossing
43	4 1010	11	1.7 1012	2	1.1 10 ³⁰	<< 1	1.2 10 ³⁰	0.15
43	4 1010	2	1.7 1012	2	6.1 10 ³⁰	0.76	1.2 10 ³⁰	0.15
156	4 10 ¹⁰	2	6.2 10 ¹²	7	2.2 10 ³¹	0.76	4.4 10 ³⁰	0.15
156	9 10 ¹⁰	2	1.4 10 ¹³	16	1.1 10 ³²	3.9	2.2 10 ³¹	0.77
936	4 10 ¹⁰	11	3.7 10 ¹³	42	2.4 10 ³¹	<< 1	2.6 10 ³¹	0.15
936	4 1010	2	3.7 1013	42	1.3 10 ³²	0.73	2.6 10 ³¹	0.15
936	6 10 ¹⁰	2	5.6 10 ¹³	63	2.9 10 ³²	1.6	6.0 10 ³¹	0.34
936	9 10 ¹⁰	1	8.4 10 ¹³	94	1.2 10 ³³	7	1.3 10 ³²	0.76
2808	4 1010	11	1.1 1014	126	7.2 10 ³¹	<< 1	7.9 10 ³¹	0.15
2808	4 10 ¹⁰	2	1.1 10 ¹⁴	126	3.8 10 ³²	0.72	7.9 10 ³¹	0.15
2808	5 10 ¹⁰	1	1.4 1014	157	1.1 10 ³³	2.1	1.2 10 ³²	0.24
2808	5 10 ¹⁰	0.55	1.4 1014	157	1.9 10 ³³	3.6	1.2 10 ³²	0.24

R. Bailey

t-Acceptance at RP220 for Elastic Scattering

0

Elastic Scattering

Elastic Scattering at low |t|

$d\sigma/dt = \exp[-B(t)\cdot t]$

Exponential Slope B(t)

Extrapolation to the Optical Point (t = 0)

Common bias due to beam divergence : -2%

Spread of most of the models: $\pm 1\%$

Systematic error due to uncertainty of optical functions: $\pm 3\%$

•	Extrapolation of elastic cross-section to $t = 0$:	$\pm 4 \%$
•	Total elastic rate (correlated with extrapolation):	$\pm 2 \%$
•	Total inelastic rate: (error dominated by Single Diffractive trigger losses)	±1 %

==> Total uncertainty including correlations in the error propagation: $\pm 4 \%$

Measurement of Beam Parameters

•Luminosity measurement (together with σ_{tot}): ±6%

•Beam profile measurement in x-projection at RP220 (elastic scattering)

==> beam position measurement at RP220 with precision $\sim 1\mu m$ every minute to be compared with the machine's BPMs.

==> horizontal vertex position determination: $x = v_x x^*$ ($v_x \approx -2$) ==> vertex distribution (shape and width)

==> assuming round beams: luminosity from beam parameters

Diffractive events

 $\beta^* = 90 \text{ m}$

65% of all diffractive proton are detected, independent of their momentum loss $\boldsymbol{\xi}$

==> wide range of diffractive studies (Single Diffraction and Double Pomeron Exchange) combined with Rapidity Gap studies in T1/T2

The proposed optics will allow the measurement of:

- Total cross section within $\pm 4\%$
- Luminosity within $\pm 6\%$
- Horizontal beam position and profile at RP220 within few μm every minute
- Horizontal vertex distribution at IP5
 ==> luminosity determination based on machine parameters
- Diffraction due to the ξ -independent proton acceptance (~ 65%)

The proposed optics can be commissioned at an early LHC stage (see talk by Helmut Burkhardt)

After gaining experience with this optics, more precise measurements with the baseline optics (1540 m)

K. Eggert – p. 16

Trigger Losses

	σ [mb]	T1/T2 double arm trigger loss [mb]	T1/T2 single arm trigger loss [mb]	Systematic error after extrapolation [mb]	
Minimum bias	58	0.3	0.06	0.06	
Single diffractive	14	_	3	0.6	using p @ $\beta^* = 1540$, 90 m
Double diffractive	7	2.8	0.3	0.1	
Double Pomeron	1	0.2		0.02	using p @ β * = 1540, 90 m
Elastic Scattering	30	_	_	0.2 (2)	(a) $\beta^* = 1540$ (90) m

Total: 0.8 mb \approx 0.8 % @ $\beta^* = 1540$ m 2-5 mb \approx 2-5 % @ $\beta^* = 90$ m

Extrapolation of diffractive cross-section to large $1/M^2$ using $d\sigma/dM^2 \sim 1/M^2$.

