# N=4 SYM and N=8 supergravity amplitudes

Lecture 3

Henrik Johansson School of analytic computing Atrani Oct 7 - 11, 2011 Lecture 1:

- Unitarity method for loop amplitudes
- N=4 super-Yang Mills
- Example of amplitude construction
- Quadruple cut, hepta cut

Lecture 2:

- Non-planar amplitudes
- N=8 supergravity
- Kawai-Lewellen-Tye relations
- Calculation of UV divergences

Lecture 3:

- Color/Kinematics duality
- Open problems

## Einstein Gravity Feynman rules

de Donder gauge: 
$$\mathcal{L}=rac{2}{\kappa^2}\sqrt{g}R, \quad g_{\mu
u}=\eta_{\mu
u}+\kappa h_{\mu
u}$$

$$\sum_{\mu_1}^{\nu_1} \sum_{\mu_2}^{\nu_2} = \frac{1}{2} \left[ \eta_{\mu_1\nu_1} \eta_{\mu_2\nu_2} + \eta_{\mu_1\nu_2} \eta_{\nu_1\mu_2} - \frac{2}{D-2} \eta_{\mu_1\mu_2} \eta_{\nu_1\nu_2} \right] \frac{i}{p^2 + i\epsilon}$$

$$\begin{array}{l} k_{2} \\ \mu_{2} \\ \mu_{2} \\ \mu_{2} \\ \mu_{3} \\ \mu_{4} \\ \mu_{4} \\ \mu_{4} \\ \mu_{1} \end{array} = \operatorname{sym} \begin{bmatrix} -\frac{1}{2} P_{3}(k_{1} \cdot k_{2}\eta_{\mu_{1}\nu_{1}}\eta_{\mu_{2}\nu_{2}}\eta_{\mu_{3}\nu_{3}}) - \frac{1}{2} P_{6}(k_{1\mu_{1}}k_{1\nu_{2}}\eta_{\mu_{1}\nu_{1}}\eta_{\mu_{3}\nu_{3}}) + \frac{1}{2} P_{3}(k_{1} \cdot k_{2}\eta_{\mu_{1}\mu_{2}}\eta_{\nu_{1}\nu_{2}}\eta_{\mu_{3}\nu_{3}}) \\ + P_{6}(k_{1} \cdot k_{2}\eta_{\mu_{1}\nu_{1}}\eta_{\mu_{2}\mu_{3}}\eta_{\nu_{2}\nu_{3}}) + 2P_{3}(k_{1\mu_{2}}k_{1\nu_{3}}\eta_{\mu_{1}\nu_{1}}\eta_{\nu_{2}\mu_{3}}) - P_{3}(k_{1\nu_{2}}k_{2\mu_{1}}\eta_{\nu_{1}\mu_{1}}\eta_{\mu_{3}\nu_{3}}) \\ + P_{3}(k_{1\mu_{3}}k_{2\nu_{3}}\eta_{\mu_{1}\mu_{2}}\eta_{\nu_{1}\nu_{2}}) + P_{6}(k_{1\mu_{3}}k_{1\nu_{3}}\eta_{\mu_{1}\mu_{2}}\eta_{\nu_{1}\nu_{2}}) + 2P_{6}(k_{1\mu_{2}}k_{2\nu_{3}}\eta_{\nu_{2}\mu_{1}}\eta_{\nu_{1}\mu_{3}}) \\ + 2P_{3}(k_{1\mu_{2}}k_{2\mu_{1}}\eta_{\nu_{2}\mu_{3}}\eta_{\nu_{3}\nu_{1}}) - 2P_{3}(k_{1} \cdot k_{2}\eta_{\nu_{1}\mu_{2}}\eta_{\nu_{2}\mu_{3}}\eta_{\nu_{3}\mu_{1}})] \\ \begin{array}{c} \text{After symmetrization} \\ \approx 100 \text{ torms } 1 \end{array} \end{array}$$

higher order vertices...



I UU Terms !

## **On-shell simplifications**

**Conshell 3-graviton vertex:**  $k_{2} \nu_{2} \nu_{2}$  **Graviton plane wave:**  $\varepsilon^{\mu}(p)\varepsilon^{\nu}(p) e^{ip \cdot x}$  **Conshell 3-graviton vertex:** 

$$\begin{array}{ll}
\mu_{2} & \mu_{3} \\
\mu_{3} & \nu_{3} \\
\nu_{1} & \nu_{3} \\
k_{1} & \mu_{1}
\end{array} = i\kappa \Big(\eta_{\mu_{1}\mu_{2}}(k_{1}-k_{2})_{\mu_{3}} + \operatorname{cyclic}\Big)\Big(\eta_{\nu_{1}\nu_{2}}(k_{1}-k_{2})_{\nu_{3}} + \operatorname{cyclic}\Big) \\
\begin{array}{ll}
\left(\eta_{\mu_{1}\mu_{2}}(k_{1}-k_{2})_{\mu_{3}} + \operatorname{cyclic}\Big) \\
\left(\eta_{\mu_{1}\mu_{2}(k_{1}-k_{2})_{\mu_{3}} + \operatorname{cyclic}\Big) \\
\left(\eta_{\mu_{1}\mu_{2}(k_{1}-k_{2})_$$

Gravity scattering amplitude:

$$M_4^{\text{tree}}(1,2,3,4) = -i\frac{st}{u}A_4^{\text{tree}}(1,2,3,4)\tilde{A}_4^{\text{tree}}(1,2,3,4)$$
  
**Yang-Mills amplitude**

On-shell gravity objects are "squares" of Yang-Mills objects !

## Gravity should be cubic



 $V_{
m G}(k_1,k_2,k_3) = V_{
m YM}(k_1,k_2,k_3) V_{
m YM}(k_1,k_2,k_3)$ 

## Gauge theory is the key

The simplicity of gravity stems from a novel structure in Yang-Mills • represent amplitudes using cubic graphs only:

$$\mathcal{A}_m^{(L)} = \sum_{i \in \Gamma_3} \int \frac{d^{LD}\ell}{(2\pi)^{LD}} \frac{1}{S_i} \frac{n_i c_i}{p_{i_1}^2 p_{i_2}^2 p_{i_3}^2 \cdots p_{i_l}^2} \leftarrow \text{propagators}$$

Both  $c_i$  and  $n_i$  satisfy the algebra:



These are the relations that should define a Lie Algebra Duality: color ↔ kinematics Bern, Carrasco, HJ





#### **Kinematic diagrams**







color-stripped, color-ordered, partial ampl.







(absorb contact terms using 1=s/s)





 $n_s c_s$ 

s



 $\frac{n_t c_t}{t}$ 

+

+



 $n_u c_u$ 

u



color factors:  $c_s = f^{abc} f^{cde}$ 

kinematic factors: Feynman rules, BCFW etc.

+

#### kinematics is dual to color

color Jacobi

kinematic Jacobi

can be checked for 4pt on-shell ampl. using Feynman rules Halzen, Zhu

 $c_u$ 

 $n_u$ 

e.g.



 $n_t$ 

 $c_t$ 

Bern, Carrasco, HJ

 $c_s$ 

 $n_s$ 

Homework: Check this! Also for 4 gluons!

#### Gravity is a double copy

• Gravity amplitudes are obtained after replacing color by kinematics

$$\mathcal{A}_{m}^{(L)} = \sum_{i \in \Gamma_{3}} \int \frac{d^{LD}\ell}{(2\pi)^{LD}} \frac{1}{S_{i}} \frac{n_{i}c_{i}}{p_{i_{1}}^{2}p_{i_{2}}^{2}p_{i_{3}}^{2}\cdots p_{i_{l}}^{2}}$$
$$\mathcal{M}_{m}^{(L)} = \sum_{i \in \Gamma_{3}} \int \frac{d^{LD}\ell}{(2\pi)^{LD}} \frac{1}{S_{i}} \frac{n_{i}\tilde{n}_{i}}{p_{i_{1}}^{2}p_{i_{2}}^{2}p_{i_{3}}^{2}\cdots p_{i_{l}}^{2}}$$

• The two numerators can belong to different theories:

$$n_i$$
  $\tilde{n}_i$   
 $(\mathcal{N}=4) \times (\mathcal{N}=4) \rightarrow \mathcal{N}=8$  sugra  
 $(\mathcal{N}=4) \times (\mathcal{N}=2) \rightarrow \mathcal{N}=6$  sugra  
 $(\mathcal{N}=4) \times (\mathcal{N}=0) \rightarrow \mathcal{N}=4$  sugra  
 $(\mathcal{N}=0) \times (\mathcal{N}=0) \rightarrow \text{Einstein gravity + a}$ 

similar to Kawai-Lewellen-Tye but works at loop level

[BCJ]

avity + axion+ dillaton 

#### Five-point example



Equivalent to partial amplitudes

$$A_5^{\rm tree}(1,2,3,4,5) \equiv \frac{n_1}{s_{12}s_{45}} + \frac{n_2}{s_{23}s_{51}} + \frac{n_3}{s_{34}s_{12}} + \frac{n_4}{s_{45}s_{23}} + \frac{n_5}{s_{51}s_{34}} \qquad {\rm etc...}$$

• Duality between color and kinematics can be imposed, but not automatic



checked through 8pts. All multiplicity solution known: K

Kiermaier; Bjerrum-Bohr, Damgaard, Sondergaard Vanhove

## Gauge theory amplitude properties

• Tree level, adjoint representation

$$\mathcal{A}_n^{\text{tree}}(1,2,\ldots,n) = g^{n-2} \sum_{\mathcal{P}(2,\ldots,n)} \text{Tr}[T^{a_1}T^{a_2}\cdots T^{a_n}] A_n^{\text{tree}}(1,2,\ldots,n)$$

• Well-known partial amplitude properties

$$\begin{aligned} &A_{n}^{\text{tree}}(1,2,\ldots,n) = A_{n}^{\text{tree}}(2,\ldots,n,1) & \text{cyclic symmetry} \\ &A_{n}^{\text{tree}}(1,2,\ldots,n) = (-1)^{n} A_{n}^{\text{tree}}(n,\ldots,2,1) & \text{reflection symmetry} \end{aligned} \right\} & (n-1)!/2 \\ &\sum_{\sigma \in \text{cyclic}} A_{n}^{\text{tree}}(1,\sigma(2,3,\ldots,n)) = 0 & \text{"photon"-decoupling identity} \\ &A_{n}^{\text{tree}}(1,\{\alpha\},n,\{\beta\}) = (-1)^{n_{\beta}} \sum_{\{\sigma\}_{i} \in \text{OP}(\{\alpha\},\{\beta^{T}\})} A_{n}^{\text{tree}}(1,\{\sigma\}_{i},n) & \overset{\text{Kleiss-Kuijf}}{\text{relations}} \end{aligned}$$

• New BCJ relations reduce independent basis to (n - 3)!

#### Duality gives new amplitude relations

In color-ordered tree amplitudes 3 legs can be fixed: (n-3)! basis

$$A_4^{\text{tree}}(1,2,\{4\},3) = \frac{A_4^{\text{tree}}(1,2,3,4)s_{14}}{s_{24}} \qquad \qquad s_{ij..} = (k_i + k_j + ...)^2$$

 $A_5^{
m tree}(1,2,\{4\},3,\{5\})\,=\,rac{A_5^{
m tree}(1,2,3,4,5)(s_{14}+s_{45})+A_5^{
m tree}(1,2,3,5,4)s_{14}}{s_{24}}\,,$ 

$$A_5^{
m tree}(1,2,\{4,5\},3)\,=\,rac{-A_5^{
m tree}(1,2,3,4,5)s_{34}s_{15}-A_5^{
m tree}(1,2,3,5,4)s_{14}(s_{245}+s_{35})}{s_{24}s_{245}}$$

...relations obtained for any multiplicity

These were later found to be equivalent to monodromy relations on the open string worldsheet Bjerrum-Bohr, Damgaard, Vanhove; Stieberger Also field theory proofs through BCFW: Feng, Huang, Jia; Chen, Du, Feng Used in the solution of all open string disk amplitudes Mafra, Schlotterer, Stieberger

#### Tree-level gravity checks

• Original conjecture checked through 8 points



• All-multiplicity proof assuming gauge theory duality: Bern, Dennen, Huang, Kiermaier

## Duality at loop level

- Duality is known to exist to all multiplicity at tree level
- Double copy relation to gravity is proven
- Open problem: Existence of duality at loop level ?
- Pedestrian approach: do case-by-case checks for various different amplitudes

## Manifest duality in $\mathcal{N}=4$ SYM 4-pt ampl.

For some very simple loop amplitudes the loop-level duality follows from the tree-level one.



Duality:  $\mathcal{N} = 8$  SG is obtained if  $1 \rightarrow 2$  (numerator squaring)

### Old form of 3-loop amplitude

Problem: no double copy in 0808.4112 [hep-th] (Bern, Carrasco, Dixon, HJ, Roiban)

#### N=4 SYM



**N=8 SG** 



## After nontrivial reshuffling

(d)

(j)

3-loop  $\mathcal{N}=4$  SYM admits manifest realization of duality – and  $\mathcal{N}=8$  SG is simply the square

1004.0476 [hep-th] Bern, Carrasco, HJ







3

4



| Integral $I^{(x)}$ | $\mathcal{N} = 4$ Super-Yang-Mills ( $\sqrt{\mathcal{N} = 8}$ supergravity) numerator                    |
|--------------------|----------------------------------------------------------------------------------------------------------|
| (a)-(d)            | $s^2$                                                                                                    |
| (e)–(g)            | $(s(-	au_{35}+	au_{45}+t)-t(	au_{25}+	au_{45})+u(	au_{25}+	au_{35})-s^2)/3$                              |
| (h)                | $ig(s\left(2	au_{15}-	au_{16}+2	au_{26}-	au_{27}+2	au_{35}+	au_{36}+	au_{37}-u igh)$                     |
|                    | $+t\left(	au_{16}+	au_{26}-	au_{37}+2	au_{36}-2	au_{15}-2	au_{27}-2	au_{35}-3	au_{17} ight)+s^2 ight)/3$ |
| (i)                | $\left(s\left(-	au_{25}-	au_{26}-	au_{35}+	au_{36}+	au_{45}+2t ight) ight.$                              |
|                    | $+t\left(	au_{26}+	au_{35}+2	au_{36}+2	au_{45}+3	au_{46} ight)+u	au_{25}+s^2\left)/3$                    |
| (j)-(l)            | s(t-u)/3                                                                                                 |

 $au_{ij} = 2k_i \cdot l_j$ 

#### 1-loop 5-pts $\mathcal{N}=4$ SYM and $\mathcal{N}=8$ SG





1106.4711 [hep-th]

- The five-point amplitude makes the duality manifest !
- $\mathcal{N}=8$  SG is obtained through the numerator double copy



#### All-loop 5pt $\mathcal{N} = 4$ ansatz

Extrapolating the one-loop solution we can predict the all-loop structure



### **2-loop 5-pts** $\mathcal{N}$ =4 SYM and $\mathcal{N}$ =8 SG



1106.4711 [hep-th]

#### The 2-loop 5-point amplitude with duality exposed

| $\mathcal{I}^{(x)}$ | $\mathcal{N}=4$ Super-Yang-Mills ( $\sqrt{\mathcal{N}=8}$ supergravity) numerator                                                                                                            |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (a),(b)             | $\frac{1}{4} \Big( \gamma_{12} (2s_{45} - s_{12} + \tau_{2p} - \tau_{1p}) + \gamma_{23} (s_{45} + 2s_{12} - \tau_{2p} + \tau_{3p}) \Big)$                                                    |  |
|                     | $+ 2\gamma_{45}(	au_{5p} - 	au_{4p}) + \gamma_{13}(s_{12} + s_{45} - 	au_{1p} + 	au_{3p}) \Big)$                                                                                             |  |
| (c)                 | $\frac{1}{4} \Big( \gamma_{15}(\tau_{5p} - \tau_{1p}) + \gamma_{25}(s_{12} - \tau_{2p} + \tau_{5p}) + \gamma_{12}(s_{34} + \tau_{2p} - \tau_{1p} + 2s_{15} + 2\tau_{1q} - 2\tau_{2q}) \Big)$ |  |
|                     | $+ \gamma_{45}(\tau_{4q} - \tau_{5q}) - \gamma_{35}(s_{34} - \tau_{3q} + \tau_{5q}) + \gamma_{34}(s_{12} + \tau_{3q} - \tau_{4q} + 2s_{45} + 2\tau_{4p} - 2\tau_{3p}) \Big)$                 |  |
| (d)-(f)             | $\gamma_{12}s_{45} - rac{1}{4} \Big( 2\gamma_{12} + \gamma_{13} - \gamma_{23} \Big) s_{12}$                                                                                                 |  |

N= 8 SG obtained
from numerator
double copies

 $\tau_{ip} = 2k_i \cdot p$ 

### **3-loop 5-point SYM** and $\mathcal{N}=8$ SG



 $N_{8} = \gamma_{12}s_{45}^{2} - \frac{1}{12}s_{12}\left(\gamma_{13}(2s_{13}+12s_{23}-s_{12}) - \gamma_{23}(2s_{23}+12s_{13}-s_{12}) - \gamma_{12}(7s_{12}-11s_{45})\right)$ 

### **3-loop 5-point SYM** and $\mathcal{N}$ =8 SG



### **3-loop 5-point SYM** and $\mathcal{N}$ =8 SG

...in total 42 diagrams.

(to be published)

Conveniently the UV divergent diagrams (in D=6) are very simple:



(for SG the UV div. comes from the other diagrams as well)

## Summary of checks of duality



Less-SUSY theories:

Tree level: all pure gauge theories have the same tree amplitudes as *N*=4 SYM ✓
One-loop: *N*=4,5,6 SG, 4p ✓
Two-loop: *N*=0 YM, 4p all-plus helicity ✓ *N*=4,5,6 SG, 4p ✓ Dixon, Boucher-Veronneau

## Lagrangian and Lie Algebra

• First attempt at Lagrangian with manifest duality

1004.0693 [hep-th] Bern, Dennen, Huang, Kiermaier

YM Lagrangian receives corrections at 5 points and higher

$$\mathcal{L}_{YM} = \mathcal{L} + \mathcal{L}'_5 + \mathcal{L}'_6 + \dots$$

corrections proportional to the Jacobi identity (thus equal to zero)  $\mathcal{L}'_{5} \sim \operatorname{Tr} [A^{\nu}, A^{\rho}] \frac{1}{\Box} ([[\partial_{\mu}A_{\nu}, A_{\rho}], A^{\mu}] + [[A_{\rho}, A^{\mu}], \partial_{\mu}A_{\nu}] + [[A^{\mu}, \partial_{\mu}A_{\nu}], A_{\rho}])$ Introduction of auxiliary "dynamical" fields gives local cubic Lagrangian  $\mathcal{L}_{YM} = \frac{1}{2} A^{a\mu} \Box A^{a}_{\mu} - B^{a\mu\nu\rho} \Box B^{a}_{\mu\nu\rho} - g f^{abc} (\partial_{\mu}A^{a}_{\nu} + \partial^{\rho}B^{a}_{\rho\mu\nu}) A^{b\mu}A^{c\nu} + \dots$ 

kinematical structure constants

• Monteiro and O'Connell (1105.2565 [hep-th]) identifies a Lie algebra in the self-dual YM sector  $\Rightarrow$  kin. structure constants for MHV tree amplitudes.

### **Open Problems**

- Open problems
  - 1. More one-loop calculations needed.
    - 6-pt and higher N=4 SYM
    - N<4 SYM and QCD</p>
  - 2. What is the kinematic Lie algebra ?
    - Find structure constants
  - 3. Find Lagrangian with manifest duality
  - 4. Implications: Planar <-> Non-planar
  - 5. Proof or more evidence

## Extra slides

## Works for non-susy theories



(with dilation and axion in loops)



#### Relations between integrated ampls.

m

$$\mathcal{M}_{m}^{1-\text{loop}} = \left(\frac{\kappa}{2}\right)^{m} \sum_{S_{m}/(Z_{m}\times Z_{2})} \int \frac{d^{D}p}{(2\pi)^{D}} \tilde{n}_{123\dots m}(p) \mathscr{A}_{m}(1,2,\dots,m;p)$$
$$(\mathcal{N}=4 \text{ SYM}) \times (\mathcal{N}=p \text{ SYM})$$

Assume  $\tilde{n}_{123...m}(p) = \tilde{n}_{123...m}$  (true for m = 4,5)

#### Relations between integrated amplitudes:



 $\Rightarrow$  It works! reproduce  $\mathcal{N}=4,5,6$  supergravity ampl. Dunbar, Ettle, Perkins, Dunbar and Norridge

#### Four-point check details

Green, Schwarz, Brink: 
$$n_{1234} = n_{1243} = n_{1423} = istA^{\text{tree}}(1, 2, 3, 4)$$
  
 $\mathcal{M}_{\mathcal{N}+4 \text{ susy}}^{1-\text{loop}}(1, 2, 3, 4) = \left(\frac{\kappa}{2}\right)^4 istA^{\text{tree}}(1, 2, 3, 4) \left(A_{\mathcal{N} \text{ susy}}^{1-\text{loop}}(1, 2, 3, 4) + A_{\mathcal{N} \text{ susy}}^{1-\text{loop}}(1, 2, 4, 3) + A_{\mathcal{N} \text{ susy}}^{1-\text{loop}}(1, 4, 2, 3)\right),$   
 $+ A_{\mathcal{N} \text{ susy}}^{1-\text{loop}}(1, 4, 2, 3)\right),$   
Bern, Morgan in D dim.

#### Can work with the simpler matter multiplet contributions, we get

$$\begin{split} \mathcal{M}_{\mathcal{N}=6,\text{mat.}}^{1\text{-loop}}(1^{-},2^{-},3^{+},4^{+}) &= -\frac{ic_{\Gamma}}{2} \Big(\frac{\kappa}{2}\Big)^{4} \frac{\langle 12 \rangle^{4} [34]^{4}}{s^{2}} \left[\ln^{2} \left(\frac{-t}{-u}\right) + \pi^{2}\right] + \mathcal{O}(\epsilon) \\ \mathcal{M}_{\mathcal{N}=4,\text{mat.}}^{1\text{-loop}}(1^{-},2^{-},3^{+},4^{+}) &= \frac{1}{2} \Big(\frac{\kappa}{2}\Big)^{4} \frac{\langle 12 \rangle^{2} [34]^{2}}{[12]^{2} \langle 34 \rangle^{2}} \Big[ic_{\Gamma}s^{2} + s(u-t)\Big(I_{2}(t) - I_{2}(u)\Big) \\ &- 2I_{4}^{D=6-2\epsilon}(t,u)stu\Big] + \mathcal{O}(\epsilon) \,, \end{split}$$

From this one gets any  $\mathcal{N} \ge 4$  supergravity theory ampl. Agrees with Dunbar and Norridge