N=4 SYM and N=8 supergravity amplitudes

Lecture 3

Henrik Johansson

School of analytic computing
Atrani Oct 7 - I I, 20| I

Lecture 1: • Unitarity method for loop amplitudes

- N=4 super-Yang Mills
- Example of amplitude construction
- Quadruple cut, hepta cut

Lecture 2: • Non-planar amplitudes

- $\mathrm{N}=8$ supergravity
- Kawai-Lewellen-Tye relations
- Calculation of UV divergences

Lecture 3: • Color/Kinematics duality

- Open problems

Einstein Gravity Feynman rules

de Donder gauge:

$$
\mathcal{L}=\frac{2}{\kappa^{2}} \sqrt{g} R, \quad g_{\mu \nu}=\eta_{\mu \nu}+\kappa h_{\mu \nu}
$$

$\overbrace{\mu_{1}}^{\nu_{1}} \sim_{\mu_{2}}^{\nu_{2}}=\frac{1}{2}\left[\boldsymbol{\eta}_{\mu_{1} \nu_{1}} \boldsymbol{\eta}_{\mu_{2} \nu_{2}}+\boldsymbol{\eta}_{\mu_{1} \nu_{2}} \boldsymbol{\eta}_{\nu_{1} \mu_{2}}-\frac{2}{D-2} \boldsymbol{\eta}_{\mu_{1} \mu_{2}} \boldsymbol{\eta}_{\nu_{1} \nu_{2}}\right] \frac{i}{\boldsymbol{p}^{2}+\boldsymbol{i} \epsilon}$
 ~ 100 terms !
higher order vertices...

On－shell simplifications

\sim Graviton plane wave：$\varepsilon^{\mu}(p) \varepsilon^{\nu}(p) e^{i p \cdot x}$
〔 Yang－Mills polarization
On－shell 3－graviton vertex：

$=i \kappa\left(\eta_{\mu_{1} \mu_{2}}\left(k_{1}-k_{2}\right)_{\mu_{3}}+\right.$ cyclic $)\left(\eta_{\nu_{1} \nu_{2}}\left(k_{1}-k_{2}\right)_{\nu_{3}}+\right.$ cyclic $)$〔 Yang－Mills vertex

Gravity scattering amplitude：

$$
\begin{gathered}
M_{4}^{\text {tree }}(1,2,3,4)=-i \frac{s t}{u} A_{4}^{\text {tree }}(1,2,3,4) \tilde{A}_{4}^{\text {tree }}(1,2,3,4) \\
\text { 亿 Yang-Mills amplitude }
\end{gathered}
$$

On－shell gravity objects are＂squares＂of Yang－Mills objects！

Gravity should be cubic

Yang-Mills \rightarrow cubic

 schematically: $\mathcal{L}_{\mathrm{YM}} \sim A \square A+\partial A^{3}$ $\begin{aligned} & \text { schematic } \\ & \text { derivative }\end{aligned}$

Einstein gravity \rightarrow cubic

e.g. BCFW

And gravity should be a double copy of a YM theory:

$$
\begin{aligned}
h^{\mu \nu} & \sim A^{\mu} A^{\nu} \\
V_{\mathrm{G}}\left(k_{1}, k_{2}, k_{3}\right) & =V_{\mathrm{YM}}\left(k_{1}, k_{2}, k_{3}\right) V_{\mathrm{YM}}\left(k_{1}, k_{2}, k_{3}\right)
\end{aligned}
$$

Gauge theory is the key

The simplicity of gravity stems from a novel structure in Yang-Mills - represent amplitudes using cubic graphs only:

$$
\mathcal{A}_{m}^{(L)}=\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i} \curvearrowleft \text { color factors }}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}} \leftarrow \text { propagators }
$$

Both c_{i} and n_{i} satisfy the algebra:

These are the relations that should define a Lie Algebra Duality: color \leftrightarrow kinematics

Color diagramatics

Gauge group algebra:

Build color structures

Relations

Color diagramatics

Gauge group algebra:

Build color structures

Relations

$$
f^{c b a} T_{i k}^{c}=T_{i j}^{b} T_{j k}^{a}-T_{i j}^{a} T_{j k}^{b}
$$

Kinematic diagrams

color-stripped, color-ordered, partial ampl.
(absorb contact terms using $1=s / s$)

color factors: $\quad c_{s}=f^{a b c} f^{c d e}$
kinematic factors: Feynman rules, BCFW etc.

kinematics is dual to color

color Jacobi
kinematic Jacobi

can be checked for 4 pt on-shell ampl. using Feynman rules Halzen, Zhu
e.g.

$$
\varepsilon_{2} \cdot\left(\bar{u}_{1} V u_{3}\right) \cdot \varepsilon_{4}=\bar{u}_{1} \phi_{4} \phi_{t} \phi_{2} u_{3}-\bar{u}_{1} \phi_{2} \phi_{s} \ddagger_{4} u_{3}
$$

Homework: Check this! Also for 4 gluons!

Gravity is a double copy

- Gravity amplitudes are obtained after replacing color by kinematics

$$
\begin{align*}
\mathcal{A}_{m}^{(L)} & =\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}} \tag{BCJ}\\
\mathcal{M}_{m}^{(L)} & =\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} \tilde{n}_{i}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}}
\end{align*}
$$

- The two numerators can belong to different theories:

$$
\begin{array}{cccc}
n_{i} & \tilde{n}_{i} & & \\
(\mathcal{N}=4) \times(\mathcal{N}=4) & \rightarrow & \mathcal{N}=8 \text { sugra } & \begin{array}{l}
\text { similar to Kawai- } \\
\text { Lewellen-Tye but } \\
\text { works at loop level }
\end{array} \\
(\mathcal{N}=4) \times(\mathcal{N}=2) & \rightarrow & \mathcal{N}=6 \text { sugra } & \\
(\mathcal{N}=4) \times(\mathcal{N}=0) & \rightarrow & \mathcal{N}=4 \text { sugra } & \\
(\mathcal{N}=0) \times(\mathcal{N}=0) & \rightarrow & \text { Einstein gravity }+ \text { axion+ dillaton }
\end{array}
$$

Five-point example

- Decomposing 5 pt amplitude in terms of 15 cubic diagrams kinematic

$$
\begin{aligned}
\mathcal{A}_{5}^{\text {tree }}=g^{3} & \left.\frac{n_{1} c_{1}}{s_{12} s_{45}}+\frac{n_{2} c_{2}}{s_{23} s_{51}}+\frac{n_{3} c_{3}}{s_{34} s_{12}}+\frac{n_{4} c_{4}}{s_{45} s_{23}}+\frac{n_{5} c_{5}}{s_{51} s_{34}}+\frac{n_{6} c_{6}}{s_{14} s_{25}} \text { _ } \begin{array}{c}
\text { numerator } \\
\text { color factor } \\
\\
\\
\\
\\
\\
\\
\\
\\
\quad+\frac{n_{7} c_{7}}{s_{32} s_{14}}+\frac{n_{8} c_{8}}{s_{25} s_{13}}+\frac{n_{9} c_{9}}{s_{35} s_{24}}+\frac{n_{14} c_{14}}{s_{14} s_{25}}+\frac{n_{10} c_{10}}{s_{42} s_{13}}+\frac{n_{11} c_{11}}{s_{51} s_{42}}+\frac{n_{12} c_{12}}{s_{12} s_{35}} \\
s_{13} s_{45}
\end{array}\right) \quad s_{i j}=\left(k_{i}+k_{j}\right)^{2}
\end{aligned}
$$

- Equivalent to partial amplitudes

$$
A_{5}^{\text {tree }}(1,2,3,4,5) \equiv \frac{n_{1}}{s_{12} s_{45}}+\frac{n_{2}}{s_{23} s_{51}}+\frac{n_{3}}{s_{34} s_{12}}+\frac{n_{4}}{s_{45} s_{23}}+\frac{n_{5}}{s_{51} s_{34}} \quad \text { etc... }
$$

- Duality between color and kinematics can be imposed, but not automatic

$$
n_{3}-n_{5}+n_{8}=0 \quad \Leftrightarrow \quad c_{3}-c_{5}+c_{8}=0
$$

checked through 8pts. All multiplicity solution known: Kiermaier; Bierrum-Bohr, Damgaard,

Gauge theory amplitude properties

- Tree level, adjoint representation

$$
\mathcal{A}_{n}^{\text {tree }}(1,2, \ldots, n)=g^{n-2} \sum_{\mathcal{P}(2, \ldots, n)} \operatorname{Tr}\left[T^{a_{1}} T^{a_{2}} \cdots T^{a_{n}}\right] A_{n}^{\text {tree }}(1,2, \ldots, n)
$$

- Well-known partial amplitude properties

$$
\left.\begin{array}{ll}
A_{n}^{\text {tree }}(1,2, \ldots, n)=A_{n}^{\text {tree }}(2, \ldots, n, 1) & \text { cyclic symmetry } \\
A_{n}^{\text {tree }}(1,2, \ldots, n)=(-1)^{n} A_{n}^{\text {tree }}(n, \ldots, 2,1) & \text { reflection symmetry }
\end{array}\right\}(n-1)!/ 2
$$

- New BCJ relations reduce independent basis to ($n-3$)!

Duality gives new amplitude relations

In color-ordered tree amplitudes 3 legs can be fixed: ($n-3$)! basis

$$
\begin{aligned}
& \boldsymbol{A}_{4}^{\text {tree }}(1,2,\{4\}, 3)=\frac{\boldsymbol{A}_{4}^{\text {tree }}(1,2,3,4) s_{14}}{s_{24}} \quad s_{i j . .}=\left(k_{i}+k_{j}+\ldots\right)^{2} \\
& \boldsymbol{A}_{5}^{\text {tree }}(1,2,\{4\}, 3,\{5\})=\frac{\boldsymbol{A}_{5}^{\text {tree }}(1,2,3,4,5)\left(s_{14}+s_{45}\right)+A_{5}^{\text {tree }}(1,2,3,5,4) s_{14}}{s_{24}}, \\
& \boldsymbol{A}_{5}^{\text {tree }}(1,2,\{4,5\}, 3)=\frac{-\boldsymbol{A}_{5}^{\text {tree }}(1,2,3,4,5) s_{34} s_{15}-A_{5}^{\text {tree }}(1,2,3,5,4) s_{14}\left(s_{245}+s_{35}\right)}{s_{24} s_{245}} \\
& \\
& \\
& \text {.relations obtained for any multiplicity }
\end{aligned}
$$

These were later found to be equivalent to monodromy relations on the open string worldsheet Bjerrum-Bohr, Damgaard, Vanhove; Stieberger

Also field theory proofs through BCFW: Feng, Huang, Jia; Chen, Du, Feng Used in the solution of all open string disk amplitudes Mafra, Schlofterer, Stieberger

Tree-level gravity checks

- Original conjecture checked through 8 points

$$
\mathcal{A}_{n}^{\text {tree }}=\sum_{i} \frac{n_{i} c_{i}}{\prod_{\alpha} p_{\alpha}^{2}} \quad \Leftrightarrow \quad \mathcal{M}_{n}^{\text {tree }}=\sum_{i} \frac{n_{i} \tilde{n}_{i}}{\prod_{\alpha} p_{\alpha}^{2}}
$$

- All-multiplicity proof assuming gauge theory duality: Bern, Dennen, Huang, Kiermaier

Duality at loop level

- Duality is known to exist to all multiplicity at tree level
- Double copy relation to gravity is proven
- Open problem: Existence of duality at loop level ?
- Pedestrian approach: do case-by-case checks for various different amplitudes

Manifest duality in $\mathcal{N}=4$ SYM 4-pt ampl.

For some very simple loop amplitudes the loop-level duality follows from the tree-level one.

1-loop:

Green, Schwarz, Brink (1982)

2-loop:

prefactor contains
helicity structure:

$$
K=s t A_{4}^{\text {tree }}
$$

Duality: $\mathcal{N}=8 \mathrm{SG}$ is obtained if $1 \rightarrow 2$ (numerator squaring)

Old form of 3-loop amplitude

Problem: no double copy in 0808.4112 [hep-th] (Bern, Carrasco, Dixon, HJ, Roiban)

N=8 SG

$$
\begin{aligned}
& \left(s\left(\tau_{26}+\tau_{36}\right)+t\left(\tau_{15}+\tau_{25}\right)+s t\right)^{2} \\
& +\left(s^{2}\left(\tau_{26}+\tau_{36}\right)-t^{2}\left(\tau_{15}+\tau_{25}\right)\right)\left(\tau_{17}+\tau_{28}+\tau_{39}+\tau_{4,10}\right) \\
& +s^{2}\left(\tau_{17} \tau_{28}+\tau_{39} \tau_{4,10}\right)+t^{2}\left(\tau_{28} \tau_{39}+\tau_{17} \tau_{4,10}\right) \\
& +u^{2}\left(\tau_{17} \tau_{39}+\tau_{28} \tau_{4,10}\right)
\end{aligned}
$$

$$
\left(s \tau_{45}-t \tau_{46}\right)^{2}-\tau_{27}\left(s^{2} \tau_{45}+t^{2} \tau_{46}\right)
$$

$$
-\tau_{15}\left(s^{2} \tau_{47}+u^{2} \tau_{46}\right)-\tau_{36}\left(t^{2} \tau_{47}+u^{2} \tau_{45}\right)
$$

$$
+l_{5}^{2} s^{2} t+l_{6}^{2} s t^{2}-\frac{1}{3} l_{7}^{2} s t u
$$

$$
\tau_{i j}=2 k_{i} \cdot l_{j}
$$

After nontrivial reshuffling

3-loop $\mathcal{N}=4$ SYM admits manifest realization of duality - and $\mathcal{N}=8$ SG is simply the square

(d)

Integral $I^{(x)}$	$\mathcal{N}=4$ Super-Yang-Mills $(\sqrt{\mathcal{N}}=$ 8 supergravity $)$ numerator
(a)-(d)	s^{2}
$(\mathrm{e})-(\mathrm{g})$	$\left(s\left(-\tau_{35}+\tau_{45}+t\right)-t\left(\tau_{25}+\tau_{45}\right)+u\left(\tau_{25}+\tau_{35}\right)-s^{2}\right) / 3$
$(\mathrm{~h})$	$\left(s\left(2 \tau_{15}-\tau_{16}+2 \tau_{26}-\tau_{27}+2 \tau_{35}+\tau_{36}+\tau_{37}-u\right)\right.$
	$\left.+t\left(\tau_{16}+\tau_{26}-\tau_{37}+2 \tau_{36}-2 \tau_{15}-2 \tau_{27}-2 \tau_{35}-3 \tau_{17}\right)+s^{2}\right) / 3$
(i)	$\left(s\left(-\tau_{25}-\tau_{26}-\tau_{35}+\tau_{36}+\tau_{45}+2 t\right)\right.$
	$\left.+t\left(\tau_{26}+\tau_{35}+2 \tau_{36}+2 \tau_{45}+3 \tau_{46}\right)+u \tau_{25}+s^{2}\right) / 3$
$(\mathrm{j})-(\mathrm{l})$	$s(t-u) / 3$

$$
\tau_{i j}=2 k_{i} \cdot l_{j}
$$

1-loop 5-pts $\mathcal{N}=4$ SYM and $\mathcal{N}=8$ SG

(P)

(B)

1 (B)
1106.4711 [hep-th]

$$
\beta_{12345} \equiv N^{(\mathrm{P})}=\delta^{(8)}(Q) \frac{[12][23][34][45][51]}{4 i \varepsilon(1,2,3,4)}
$$

$$
\gamma_{12} \equiv N^{(\mathrm{B})}=\delta^{(8)}(Q) \frac{[12]^{2}[34][45][35]}{4 i \varepsilon(1,2,3,4)}
$$

- The five-point amplitude makes the duality manifest!
- $\mathcal{N}=8$ SG is obtained through the numerator double copy
e.g. Jacobi relation:

(P)

(P)

$$
N^{(\mathrm{B})}(1,2,3,4, p)=N^{(\mathrm{P})}(1,2,3,4, p)-N^{(\mathrm{P})}(2,1,3,4, p)
$$

All-loop 5pt $\mathcal{N}=4$ ansatz

Extrapolating the one-loop solution we can predict the all-loop structure

All cubic Feynman-like diagrams

$$
\mathcal{A}_{5}^{(L)}=i g^{2 L+3} \sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{N_{i} C_{i}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{m}}^{2}}
$$

with numerators

$$
N_{i}=\sum_{j, k, n}{\underset{\sim}{i} \text { constants }} a_{i ; j k ; n} \gamma_{j k} M_{n}^{(L)} \underbrace{\substack{\text { local momentum } \\ \text { invariants, } \\ \text { dimension: } 2 L-2}}_{\substack{\text { non-local } \\ \text { satalechelicity } \\ \text { factors }}}
$$

gammas and betas
interchangeable

$$
\begin{aligned}
\gamma_{12} & =\beta_{12345}-\beta_{21345} \\
\beta_{12345} & =\frac{1}{2}\left(\gamma_{12}+\gamma_{13}+\gamma_{14}+\gamma_{23}+\gamma_{24}+\gamma_{34}\right) \\
\sum_{i=1}^{5} \gamma_{i j} & =0 \quad \gamma_{i j}=-\gamma_{j i} \quad \begin{array}{l}
\text { only 6 independent } \\
\text { gammas! }
\end{array}
\end{aligned}
$$

and satisfies
relations

2-loop 5-pis $\mathcal{N}=4$ SYM and $\mathcal{N}=8$ SG

(a)

(b)

(e)

(c)

1106.4711 [hep-th]

The 2-loop 5-point amplitude with duality exposed

$\mathcal{I}^{(x)}$	$\mathcal{N}=4$ Super-Yang-Mills $(\sqrt{\mathcal{N}}=8$ supergravity $)$ numerator
(a),(b)	$\frac{1}{4}\left(\gamma_{12}\left(2 s_{45}-s_{12}+\tau_{2 p}-\tau_{1 p}\right)+\gamma_{23}\left(s_{45}+2 s_{12}-\tau_{2 p}+\tau_{3 p}\right)\right.$
	$\left.+2 \gamma_{45}\left(\tau_{5 p}-\tau_{4 p}\right)+\gamma_{13}\left(s_{12}+s_{45}-\tau_{1 p}+\tau_{3 p}\right)\right)$
(c)	$\frac{1}{4}\left(\gamma_{15}\left(\tau_{5 p}-\tau_{1 p}\right)+\gamma_{25}\left(s_{12}-\tau_{2 p}+\tau_{5 p}\right)+\gamma_{12}\left(s_{34}+\tau_{2 p}-\tau_{1 p}+2 s_{15}+2 \tau_{1 q}-2 \tau_{2 q}\right)\right.$ $\left.+\gamma_{45}\left(\tau_{4 q}-\tau_{5 q}\right)-\gamma_{35}\left(s_{34}-\tau_{3 q}+\tau_{5 q}\right)+\gamma_{34}\left(s_{12}+\tau_{3 q}-\tau_{4 q}+2 s_{45}+2 \tau_{4 p}-2 \tau_{3 p}\right)\right)$
(d)-(f)	$\gamma_{12} s_{45}-\frac{1}{4}\left(2 \gamma_{12}+\gamma_{13}-\gamma_{23}\right) s_{12}$

$\mathcal{N}=8$ SG obtained from numerator double copies

$$
\tau_{i p}=2 k_{i} \cdot p
$$

3-loop 5-point SYM and $\mathcal{N}=8$ SG

Again the color-dressed D-dimensional amplitude admits a representation with manifest duality

("ladder-like" diagrams)

($\mathcal{N}=8$ SG obtained from squaring the numerators)

$$
N_{8}=\gamma_{12} s_{45}^{2}-\frac{1}{12} s_{12}\left(\gamma_{13}\left(2 s_{13}+12 s_{23}-s_{12}\right)-\gamma_{23}\left(2 s_{23}+12 s_{13}-s_{12}\right)-\gamma_{12}\left(7 s_{12}-11 s_{45}\right)\right)
$$

3-loop 5-point SYM and $\mathcal{N}=8$ SG

some "Mercedes-like" diagrams...

$N_{14}=\frac{1}{2} \gamma_{45}\left(\tau_{1 p}^{2}+\tau_{2 p}^{2}+\tau_{3 p}^{2}+\tau_{4 p}^{2}+\tau_{5 p}^{2}\right)+$ subleading in p

$$
\tau_{i p}^{2}=2 k_{i} \cdot p
$$

3-loop 5-point SYM and $\mathcal{N}=8$ SG

...in total 42 diagrams.

Conveniently the UV divergent diagrams (in $\mathrm{D}=6$) are very simple:

(for SG the UV div. comes from the other diagrams as well)

Summary of checks of duality

Less-SUSY theories:
Tree level: all pure gauge theories have the same tree amplitudes as $\mathcal{N}=4$ SYM \checkmark
One-loop: $\mathcal{N}=4,5,6 \mathrm{SG}, 4 \mathrm{p} \checkmark$
Two-loop: $\mathcal{N}=0$ YM, $4 p$ all-plus helicity

$$
\mathcal{N}=4,5,6 \mathrm{SG}, 4 \mathrm{p} \checkmark \text { Dixon, Boucher-Veronneau }
$$

Lagrangian and Lie Algebra

- First attempt at Lagrangian with manifest duality $\begin{aligned} & 1004.0693 \text { [hep-th] } \\ & \text { Bern, Dennen, Huang, }\end{aligned}$ Kiermaier
YM Lagrangian receives corrections at 5 points and higher

$$
\mathcal{L}_{Y M}=\mathcal{L}+\mathcal{L}_{5}^{\prime}+\mathcal{L}_{6}^{\prime}+\ldots
$$

corrections proportional to the Jacobi identity (thus equal to zero)

$$
\mathcal{L}_{5}^{\prime} \sim \operatorname{Tr}\left[A^{\nu}, A^{\rho}\right] \frac{1}{\square}\left(\left[\left[\partial_{\mu} A_{\nu}, A_{\rho}\right], A^{\mu}\right]+\left[\left[A_{\rho}, A^{\mu}\right], \partial_{\mu} A_{\nu}\right]+\left[\left[A^{\mu}, \partial_{\mu} A_{\nu}\right], A_{\rho}\right]\right)
$$

Introduction of auxiliary "dynamical" fields gives local cubic Lagrangian

$$
\mathcal{L}_{Y M}=\frac{1}{2} A^{a \mu} \square A_{\mu}^{a}-B^{a \mu \nu \rho} \square B_{\mu \nu \rho}^{a}-g f^{a b c}(\underbrace{\left.\partial_{\mu} A_{\nu}^{a}+\partial^{\rho} B_{\rho \mu \nu}^{a}\right) A^{b \mu} A^{c \nu}+\ldots}_{\text {kinematical structure constants }}
$$

- Monteiro and O'Connell (1105.2565 [hep-th]) identifies a Lie algebra in the self-dual $Y M$ sector \Rightarrow kin. structure constants for MHV tree amplitudes.

Open Problems

- Open problems

1. More one-loop calculations needed.

- 6-pt and higher N=4 SYM
- $\mathrm{N}<4 \mathrm{SYM}$ and QCD

2. What is the kinematic Lie algebra?

- Find structure constants

3. Find Lagrangian with manifest duality
4. Implications: Planar <-> Non-planar
5. Proof or more evidence

Extra slides

Works for non-susy theories

All-plus-helicity QCD amplitude:
1004.0476 [hep-th]

Bern, Carrasco, HJ

All-plus-helicity Einstein gravity amplitude:
hep-ph/0001001
(Bern, Dixon, Kosower)

(with dilation and axion in loops)

$\mathcal{N}<8$ supergravity at one loop

Bern, Boucher-Veronneau, HJ
Eliminate 1PR diagrams:

Yang-Mills: $\quad \mathcal{A}_{m}^{1 \text {-loop }}=g^{m} \sum_{S_{m} /\left(Z_{m} \times Z_{2}\right)} \int \frac{d^{D} p}{(2 \pi)^{D}} c_{123 \ldots m} \underbrace{\mathscr{A}_{m}(1,2, \ldots, m ; p)}_{\text {"integrand" }}$

Gravity: $\quad \mathcal{M}_{m}^{1 \text {-loop }}=\left(\frac{\kappa}{2}\right)^{m} \sum_{S_{m} /\left(Z_{m} \times Z_{2}\right)} \int \frac{d^{D} p}{(2 \pi)^{D}} \frac{\tilde{n}_{123 \ldots m}(p) \mid \mathscr{A}_{m}(1,2, \ldots, m ; p)}{(\mathcal{N}=4) \times(\mathcal{N}=0,1,2,4)}$

Relations between integrated ampls.

$$
\begin{array}{r}
\mathcal{M}_{m}^{1 \text {-loop }}=\left(\frac{\kappa}{2}\right)^{m} \sum_{S_{m} /\left(Z_{m} \times Z_{2}\right)} \int \frac{d^{D} p}{(2 \pi)^{D}} \tilde{n}_{123 \ldots m}(p) \mathscr{A}_{m}(1,2, \ldots, m ; p) \\
(\mathcal{N}=4 \text { SYM }) \times(\mathcal{N}=p \text { SYM })
\end{array}
$$

Assume $\quad \tilde{n}_{123 \ldots m}(p)=\tilde{n}_{123 \ldots m} \quad$ (true for $m=4,5$)

m

Relations between integrated amplitudes:
\Rightarrow It works! reproduce $\mathcal{N}=4,5,6$ supergravity ampl. Dunbar, Ettle, Perkins,

Four-point check details

Green, Schwarz, Brink: $\quad n_{1234}=n_{1243}=n_{1423}=i s t A^{\text {tree }}(1,2,3,4)$

$$
\begin{gathered}
\mathcal{M}_{\mathcal{N}+4 \text { susy }}^{1 \text {-loop }}(1,2,3,4)=\left(\frac{\kappa}{2}\right)^{4}{ }^{\text {ist }} A^{\text {tree }}(1,2,3,4)\left(A_{\mathcal{N} \text { susy }}^{1-\text { loop }}(1,2,3,4)+A_{\mathcal{N} \text { susy }}^{1-\text { loop }}(1,2,4,3)\right. \\
\left.+A_{\mathcal{N} \text { susy }}^{1-\text { lopp }}(1,4,2,3)\right),
\end{gathered}
$$

Can work with the simpler matter multiplet contributions, we get

$$
\begin{gathered}
\mathcal{M}_{\mathcal{N}=6, \text { mat. }}^{1 \text { l-lop }}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}\right)=-\frac{i c_{\Gamma}}{2}\left(\frac{\kappa}{2}\right)^{4} \frac{\langle 12\rangle^{4}[34]^{4}}{s^{2}}\left[\ln ^{2}\left(\frac{-t}{-u}\right)+\pi^{2}\right]+\mathcal{O}(\epsilon) \\
\mathcal{M}_{\mathcal{N}=4, \text { mat. }}^{1-1 \text { lop }}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}\right)=\frac{1}{2}\left(\frac{\kappa}{2}\right)^{4} \frac{\langle 12\rangle^{2}[34]^{2}}{[12]^{2}\langle 34\rangle^{2}}\left[i c_{\Gamma} s^{2}+s(u-t)\left(I_{2}(t)-I_{2}(u)\right)\right. \\
\left.-2 I_{4}^{D=6-2 \epsilon}(t, u) s t u\right]+\mathcal{O}(\epsilon),
\end{gathered}
$$

From this one gets any $\mathcal{N} \geq 4$ supergravity theory ampl.
Agrees with Dunbar and Norridge

