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Aim of this lecture

• Present mathematical tools that are useful for loop 
computations.

• Plan:

➡ Topic 1: Kinematics
➡ Topic 2: Multiple Polylogarithms
➡ Topic 3: Some more formal theorems about the special 

numbers and functions that appear in loops.
➡ Topic 4: Symbols

• There will likely be connections to other lectures, where 
some of these concepts will show up.
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Kinematics

General considerations
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Kinematics of a scattering
• We consider a 2       n scattering.

1

2

6

5

4
3

• A priori: Function of n external momenta, i.e., of 4n real 
degrees of freedom.

• This set of variables is of course highly overconstrained.

• Question: What is a ‘good’ set of variables?
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Kinematics of a scattering
• Assume we have expressed all our tensor integrals as scalar 

integrals.

• Counting of two-particle invariants (        ):
➡ Integrals can only depend on scalar products sij = (pi + pj)2

➡ A priori:
✓

n

2

◆
=

n(n� 1)
2

i 6= j

Freitag, 7. Oktober 11



Kinematics of a scattering
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➡ A priori:
✓

n

2

◆
=

n(n� 1)
2

➡ Momentum conservation:
nX

i=1

pi = 0)
✓

n� 1
2

◆
=

(n� 1)(n� 2)
2

i 6= j

Freitag, 7. Oktober 11



Kinematics of a scattering
• Assume we have expressed all our tensor integrals as scalar 

integrals.

• Counting of two-particle invariants (        ):
➡ Integrals can only depend on scalar products sij = (pi + pj)2
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➡ Momentum conservation:
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➡ All momenta must be on-shell, p2
i = m2
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i 6= j
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Kinematics of a scattering
• Assume we have expressed all our tensor integrals as scalar 

integrals.

• Counting of two-particle invariants (        ):
➡ Integrals can only depend on scalar products sij = (pi + pj)2

➡ A priori:
✓

n

2

◆
=

n(n� 1)
2

➡ Momentum conservation:
nX

i=1

pi = 0)
✓

n� 1
2

◆
=

(n� 1)(n� 2)
2

➡ All momenta must be on-shell, p2
i = m2

i

➡ A sum of (n-1) on-shell momenta does not necessarily 
satisfy the on-shellness constraint for pn

m2
n = p2

n = (p1 + . . . + pn�1)
2

= polynomial in sij
✓

n� 1
2

◆
� 1 =

n(n� 3)
2

i 6= j
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Example
• A four-point function depends on 4 momenta satisfying

p1 + p2 + p3 + p4 = 0 p2
i = m2

i

➡ Need only to consider invariants that depend on p1, p2, p3

s12 = s s23 = t s13 = u

• On-shellness constraint:

m2
4 = p2

4 = (p1 + p2 + p3)2 = s + t + u�m2
1 �m2

2 �m2
3

• Counting: ✓
4� 1

2

◆
� 1 =

4(4� 3)
2

= 2

• Exercise: Show that for n=5, the kinematics is described by 
5 external masses, and by the 5 invariants si,i+1
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Gram determinants
• Starting from 6 points, momentum conservation and on-

shellness are no longer enough in 4 dimensions:
➡ Momentum conservation implies 5 independent 

momenta (subject to the onshellness constraint).
➡ But only 4 momenta can be linearly independent in 4 

dimensions!
Gram(p1, p2, p3, p4, p5) = 0

➡ We obtain a complicated polynomial relation among the 
invariants.
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Gram determinants
• Starting from 6 points, momentum conservation and on-

shellness are no longer enough in 4 dimensions:
➡ Momentum conservation implies 5 independent 

momenta (subject to the onshellness constraint).
➡ But only 4 momenta can be linearly independent in 4 

dimensions!
Gram(p1, p2, p3, p4, p5) = 0

which can be transformed into a constraint among the elements of Tn using Eq. (8). We will not review
the generic case here, but only concentrate on the specific case n = 6. Note however that this implies
that

Result 2 An n-point amplitude depends on exactly 3n− 10 independent invariants.

Note that this is consistent with the fact that those additonal constraints only show up for n ≥ 6,
because

n(n − 3)

2
= 3n − 10 ⇔ n = 4 or n = 5. (9)

3 Constraints for n = 6

For n = 6 we have the following kinematic constraints:

1. Momentum conservation: k6 = −k1 − k2 − k3 − k4 − k5.

2. On-shellness: s12 + s13 + s14 + s15 + s23 + s24 + s25 + s34 + s35 + s45 = 0.

3. Linear dependence: Gram(k1, k2, k3, k4, k5) = 0.

The third condition gives rise to a homogeneous polynomial of degree 5,

s2 t22 s2 + s2
2 t2 s2 − s2 t1 t2 s2 + s2 t1 t3 s2 − s2 t2 t3 s2 + s2

2 s2
3 s + s2

3 t21 s − s3 s456t
2
1 s + s2

2 t22 s

− s2 s345 t22 s − s2s456t
2
2 s − s345 s456 t22 s + s2

3 t23 s − s3 s345 t23 s − 2 s2 s2
3 t1 s + s2 s3 s456 t1 s

− 2s2
2 s3 t2 s + s2 s3 s345 t2 s + s2 s3 s456 t2 s − 2s2 s345 s456 t2 s + 2s2 s3 t1 t2 s − s3 s345 t1 t2 s

+ s2 s456 t1 t2 s + s3 s456 t1 t2 s + s345 s456 t1 t2 s − 2s2 s2
3 t3 s + s2 s3 s345 t3 s − 2s2

3 t1 t3 s

− 4s2 s3 t1 t3 s + s3 s345 t1 t3 s + s3 s456 t1 t3 s − s345 s456 t1 t3 s + 2s2 s3 t2 t3 s + s2 s345 t2 t3 s

+ s3 s345 t2 t3 s − s3 s456 t2 t3 s + s345 s456 t2 t3 s + s3 s2
456 t21 + s345 s2

456 t22 + s2
345 s456 t22

− s2 s345 s456 t22 + s3 s2
345 t3

2 − s2 s3
2 s345 s456 + s2

3 s2
456 t1 − s3 s345 s2

456 t1 + s2
3 s345 s456 t1

+ s2
345 s2

456 t2 − s3 s345 s2
456 t2 − s3 s2

345 s456 t2 + 2s2 s3 s345 s456 t2 − s3 s2
456 t1 t2

− s345 s2
456 t1 t2 − s3 s345 s456 t1 t2 + s2

3 s2
345 t3 − s3 s2

345 s456 t3 + s2
3 s345 s456 t3

+ 2s3 s345 s456 t1 t3 − s3 s2
345 t2 t3 − s2

345 s456 t2 t3 − s3 s345 s456 t2 t3 = 0.

(10)

These constraints allow us to reexpress all other quantities in terms of the following 3n − 10 = 8
invariants:

Two-particle invariants: s23, s34, s45, s56, s61,

Three-particle invariants: s234, s345, s456.
(11)

Note in particular that the total energy s = s12 does not appear in this set, but has been reexpressed
in terms of the other invariants through the linear dependence constraint. We introduce the following
short-hands2:

s1 = s56, s2 =s45, s3 = s34,

t1 = s61, t2 =s234, t3 = s23,

κ1 =
s1s2

s456
, κ2 =

s2s3

s345
.

(12)

2Note that all of these are only definitions, and we did not invoke multi-Regge kinematics at all!

3
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Gram determinants
• Starting from 6 points, momentum conservation and on-

shellness are no longer enough in 4 dimensions:
➡ Momentum conservation implies 5 independent 

momenta (subject to the onshellness constraint).
➡ But only 4 momenta can be linearly independent in 4 

dimensions!
Gram(p1, p2, p3, p4, p5) = 0

➡ We obtain a complicated polynomial relation among the 
invariants.

• Counting:
n(n� 3)

2
�

✓
n� 4

2

◆
= 3n� 10

• N.B.: For n=4,5, we have
n(n� 3)

2
= 3n� 10
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Summary

• Can we do better than this?

• Can we find better variables where some of the constraints 
are trivial?

• Let’s restrict ourselves to

• Contraints:

➡ Momentum conservation.
➡ On-shellness.
➡ Gram determinant. }           independent 

variables in 4 dimensions
3n� 10

➡ massless external states
➡ planar graphs
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Kinematics

Massless particles:
Spinor-helicity formalism
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Spinor-Helicity formalism
• Real 4-vectors can be parametrized by hermitian 2x2 

matrices:

hi ji = �ab ⇥a
i ⇥b

j = ū�(i)u+(j) [i j] = �ȧḃ ⇥̄ȧ
i ⇥̄ḃ

j = ū+(i)u�(j)

sij = hi ji [i j]

P aȧ
i = pµ

i �aȧ
µ detPi = ||pi||2

• For null vectors, we can parametrize this matrix by

P aȧ
i = �a

i �̄ȧ
i

where       and      are two component (1/2,0) and (0,1/2) 
spinors.

�a
i �̄ȧ

i

• Mandelstam invariants are expressed via spinor products.
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Spinor-Helicity formalism
• Advantage: the spinor-helicity solves the on-shellness 

constraint!
hi ji = �ab ⇥a

i ⇥b
j = ū�(i)u+(j) [i j] = �ȧḃ ⇥̄ȧ

i ⇥̄ḃ
j = ū+(i)u�(j)

sij = hi ji [i j]

�a
i

�̄ȧ
i

• In other words, choose n spinors     (and their complex 
conjugates     ) that constraint by
➡ Momentum conservation:

➡ Satisfy the Gram determinant constraint.

X

i

�a
i �̄ȧ

i = 0
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Kinematics

Planar graphs:
Dual coordinates
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Planar graphs
• Definition: A graph is said to be planar if it can be drawn in 

a plane without selfcrossings.

• Examples:

• N.B.: Tree and one-loop graphs are always planar! [Why?]
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Planar graphs
• Definition: A graph is said to be planar if it can be drawn in 

a plane without selfcrossings.

• Examples:

non planar

• N.B.: Tree and one-loop graphs are always planar! [Why?]
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Planar graphs
• Definition: A graph is said to be planar if it can be drawn in 

a plane without selfcrossings.

• Examples:

non planar planar

• N.B.: Tree and one-loop graphs are always planar! [Why?]

• Planar graphs appear for example in the limit of a large 
number of colors.
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Planar graphs
• Definition: A graph is said to be planar if it can be drawn in 

a plane without selfcrossings.

• Examples:

non planar planar

• N.B.: Tree and one-loop graphs are always planar! [Why?]

• Planar graphs appear for example in the limit of a large 
number of colors.

• Planar graphs can only depend on consecutive Mandelstam 
invariants.
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Dual coordinates
• In a planar graph, there is a natural way to define so-called 

dual coordinates (or region momenta).

p1

p2 p3

p4
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Dual coordinates
• In a planar graph, there is a natural way to define so-called 

dual coordinates (or region momenta).

p1
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Dual coordinates
• In a planar graph, there is a natural way to define so-called 

dual coordinates (or region momenta).

p1

p2 p3

p4

x1

x2

x3

x4
x5 x6

• External momenta take the form                          .

• Consecutive Mandelstam invariants take the form

(pi + pi+1 + . . . + pj�1)2 = (xi � xj)2 ⌘ x

2
ij

pi = xi � xi+1
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Dual coordinates

• The integral can be directly written in terms of dual 
coordinates:

Z
dDk dDl

(i⇡D/2)2
1

k2 (k + p1)2 (k + p1 + p2)2 l2 (l � k)2 (l + p1 + p2)2 (l � p4)2

p1

p2 p3

p4

x2

x3

x4
x5 x6

l = x6 � x1
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Dual coordinates

• The integral can be directly written in terms of dual 
coordinates:

• We perform the change of variables:

pi = xi � xi+1 k = x5 � x1

Z
dDk dDl

(i⇡D/2)2
1

k2 (k + p1)2 (k + p1 + p2)2 l2 (l � k)2 (l + p1 + p2)2 (l � p4)2

p1

p2 p3

p4

x2

x3

x4
x5 x6

l = x6 � x1
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Dual coordinates

• The integral can be directly written in terms of dual 
coordinates:

• We perform the change of variables:

Z
dD

x5 dD
x6

(i⇡D/2)2
1

x

2
51 x

2
52 x

2
53 x

2
56 x

2
63 x

2
64 x

2
61

pi = xi � xi+1 k = x5 � x1

Z
dDk dDl

(i⇡D/2)2
1

k2 (k + p1)2 (k + p1 + p2)2 l2 (l � k)2 (l + p1 + p2)2 (l � p4)2

• Exercise: Proof this!

p1

p2 p3

p4

x2

x3

x4
x5 x6

l = x6 � x1
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Dual coordinates
• Some properties:

➡ The integral can only depend on distances

➡ Dual coordinates make momentum conservation 
manifest.

x

2
ij = (xi � xj)2(= (pi + pi+1 + . . . + pj�1)2)
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Dual coordinates
• Some properties:

➡ The integral can only depend on distances

➡ Dual coordinates make momentum conservation 
manifest.

x

2
ij = (xi � xj)2(= (pi + pi+1 + . . . + pj�1)2)

p1 + p2 + . . . + pn
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Dual coordinates
• Some properties:

➡ The integral can only depend on distances

➡ Dual coordinates make momentum conservation 
manifest.

x

2
ij = (xi � xj)2(= (pi + pi+1 + . . . + pj�1)2)

p1 + p2 + . . . + pn

= (x1 � x2) + (x2 � x3) + . . . + (xn � x1)
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Dual coordinates
• Some properties:

➡ The integral can only depend on distances

➡ Dual coordinates make momentum conservation 
manifest.

x

2
ij = (xi � xj)2(= (pi + pi+1 + . . . + pj�1)2)

p1 + p2 + . . . + pn

= (x1 � x2) + (x2 � x3) + . . . + (xn � x1)
= 0
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Dual coordinates
• Some properties:

➡ The integral can only depend on distances

➡ Dual coordinates make momentum conservation 
manifest.

x

2
ij = (xi � xj)2(= (pi + pi+1 + . . . + pj�1)2)

➡ The on-shellness constraint must however be imposed 
by hand.
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Dual coordinates
• Some properties:

➡ The integral can only depend on distances

➡ Dual coordinates make momentum conservation 
manifest.

x

2
ij = (xi � xj)2(= (pi + pi+1 + . . . + pj�1)2)

➡ The on-shellness constraint must however be imposed 
by hand.

• A side remark: The kinematics is encoded in a polygon in 
dual space!      Link to Wilson loops!         [See Henn’s lecture]
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Dual coordinates
• Some properties:

➡ The integral can only depend on distances

➡ Dual coordinates make momentum conservation 
manifest.

x

2
ij = (xi � xj)2(= (pi + pi+1 + . . . + pj�1)2)

➡ The on-shellness constraint must however be imposed 
by hand.

p1 p2

p3p4

• A side remark: The kinematics is encoded in a polygon in 
dual space!      Link to Wilson loops!         [See Henn’s lecture]
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Dual coordinates
• Some properties:

➡ The integral can only depend on distances

➡ Dual coordinates make momentum conservation 
manifest.

x

2
ij = (xi � xj)2(= (pi + pi+1 + . . . + pj�1)2)

➡ The on-shellness constraint must however be imposed 
by hand.

p1 p2

p3p4

p1

p2p3

p4

x1

x2

x3

x4

• A side remark: The kinematics is encoded in a polygon in 
dual space!      Link to Wilson loops!         [See Henn’s lecture]
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Dual conformal invariance

• Some integrals can exhibit an unexpected symmetry in dual 
coordinates!

with all external legs massive (integral is finite!)

[Drummond, Henn,
Smirnov, Sokatchev]

p1

p2 p3

p4

x2

x3

x4
x5 x6

Z
d4

x5 d4
x6

⇡

4

(x2
13)2 x

2
24

x

2
51 x

2
52 x

2
53 x

2
56x

2
63 x

2
64 x

2
61
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Dual conformal invariance

• Some integrals can exhibit an unexpected symmetry in dual 
coordinates!

• Translational and rotational invariance is manifest.
with all external legs massive (integral is finite!)

[Drummond, Henn,
Smirnov, Sokatchev]

p1

p2 p3

p4

x2

x3

x4
x5 x6

Z
d4

x5 d4
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⇡
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13)2 x

2
24

x

2
51 x

2
52 x

2
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2
56x

2
63 x

2
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2
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Dual conformal invariance

• Some integrals can exhibit an unexpected symmetry in dual 
coordinates!

• Translational and rotational invariance is manifest.
with all external legs massive (integral is finite!)

• Dilatation invariance                 .xi ! � xi

[Drummond, Henn,
Smirnov, Sokatchev]
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⇡
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Dual conformal invariance

• Some integrals can exhibit an unexpected symmetry in dual 
coordinates!

• Translational and rotational invariance is manifest.
with all external legs massive (integral is finite!)

• Dilatation invariance                 .xi ! � xi

[Drummond, Henn,
Smirnov, Sokatchev]

• Inversion invariance                    , xi ! xi/x

2
i

x

2
ij ! x

2
ij/(x2

i x
2
j ) d4

xi ! d4
xi/(x2

i )
4

p1

p2 p3

p4

x2

x3

x4
x5 x6

Z
d4

x5 d4
x6

⇡

4

(x2
13)2 x

2
24

x

2
51 x

2
52 x

2
53 x

2
56x

2
63 x

2
64 x

2
61
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Dual conformal invariance

• Some integrals can exhibit an unexpected symmetry in dual 
coordinates!

• Translational and rotational invariance is manifest.
with all external legs massive (integral is finite!)

• Dilatation invariance                 .xi ! � xi

[Drummond, Henn,
Smirnov, Sokatchev]

• Inversion invariance                    , xi ! xi/x

2
i

x

2
ij ! x

2
ij/(x2

i x
2
j ) d4

xi ! d4
xi/(x2

i )
4

• In total, we get a conformal symmetry group!

p1

p2 p3

p4

x2

x3

x4
x5 x6

Z
d4

x5 d4
x6

⇡

4

(x2
13)2 x

2
24

x

2
51 x

2
52 x

2
53 x

2
56x

2
63 x

2
64 x

2
61
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Dual conformal invariance

• The integral is a (dual) conformal invariant.

• A conformal invariant can only depend on conformal cross 
ratios:

• For a 4-mass box, there are only two independent cross 
ratios:

[Drummond, Henn,
Smirnov, Sokatchev]

x

2
ijx

2
kl

x

2
ilx

2
kj

u =
x

2
12x

2
34

x

2
13x

2
24

v =
x

2
23x

2
14

x

2
13x

2
24

x1

p1

p2 p3

p4

x2

x3

x4
x5 x6 = �(u, v)

• N.B.: This was naively a function of 6 scales!
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Dual conformal invariance

• Simplest example: The one-loop 4-mass box:

[Drummond, Henn,
Smirnov, Sokatchev]

u =
x

2
12x

2
34

x

2
13x

2
24

v =
x

2
23x

2
14

x

2
13x

2
24

= Li2(1� �+)� Li2(1� ��) + 1/2 ln v ln
�+

��
� 1/2 lnu ln v

in the two cross-ratios—then let us define the following ‘modified four-mass’ function

⌥�4(i, j, k, l) ⇤ �4(ui,j,k,l, uj,k,l,i)�
1

2
log(ui,j,k,l) log(uj,k,l,i), (5.7)

where

�4(u, v) ⇤ Li2(1� �+)� Li2(1� ��) +
1

2
log(v) log(�+/��), (5.8)

and

�± ⇤ 2u

1 + u� v ±
�
(1� u� v)2 � 4uv

; (5.9)

here, we have used the four indices {i, j, k, l} to signify the (generally time-like
separated) spacetime points corresponding to the lines (i i+1), (j j+1), (k k+1), and
(l l+1) in twistor space, which together define the cross-ratios

ui,j,k,l ⇤
⌃i i+1 j j+1⌥⌃k k+1 l l+1⌥
⌃l l+1 j j+1⌥⌃k k+1 i i+1⌥ and uj,k,l,i ⇤

⌃j j+1 k k+1⌥⌃l l+1 i i+1⌥
⌃i i+1 k k+1⌥⌃l l+1 j j+1⌥ .

(5.10)

The principle distinction between ⌥�4(i, j, k, l) and the more familiar four-mass
box function is that ⌥�4(i, j, k, l) remains finite even when many of the spacetime
points become null-separated (or even become identified). In particular,

lim
ui,j,k,l⇤0

�
⌥�4(i, j, k, l)

⇥
= Li2(1�uj,k,l,i) and lim

uj,k,l,i⇤0

�
⌥�4(i, j, k, l)

⇥
= Li2(1�ui,j,k,l).

(5.11)

Of course, if we use ⌥�4’s to represent I8(3, 6, 9, 12), for example, then each four-
mass box will contribute a ‘log-log’-term. It may be worried that this will greatly
clutter the final expression, but this turns out to not be the case: taken together,
these 16 additional ‘log-log’ terms combine into a single such term.

With this new function, the general octagon integral—together with all its
degenerations—becomes extremely simple. Explicitly, the general octagon I8(i, j, k, l)
integral is given by,

j

k

l

i

=

⇤
⌃⌃⌃⌃⌃⇧

⌃⌃⌃⌃⌃⌅

log (ui k�1 k i�1) log (uj l�1 l j�1)

+⌥�4(i, j, k, l) �⌥�4(i, j, k, l 1) �⌥�4(i, j, k 1, l) +⌥�4(i, j, k 1, l 1)

�⌥�4(i, j 1, k, l) +⌥�4(i, j 1, k, l 1) +⌥�4(i, j 1, k 1, l) �⌥�4(i, j 1, k 1, l 1)

�⌥�4(i 1, j, k, l) +⌥�4(i 1, j, k, l 1) +⌥�4(i 1, j, k 1, l) �⌥�4(i 1, j, k 1, l 1)

+⌥�4(i 1, j 1, k, l)�⌥�4(i 1, j 1, k, l 1)�⌥�4(i 1, j 1, k 1, l)+⌥�4(i 1, j 1, k 1, l 1)

– 53 –

x1

x2

x3

x4
x5

• N.B.: Divergences in general destroy dual conformal 
invariance!  [Why?]

• Exercise: Proof that every (finite) n-gon in D=n is dual 
conformal invariant.
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Summary

• For massless theories: 
Spinor helicity formalism solves the on-shellness constraint.

• For planar graphs:
Dual coordinates solve the momentum conservation 
constraint.

• Contraints:

➡ Momentum conservation.
➡ On-shellness.
➡ Gram determinant. }           independent 

variables in 4 dimensions
3n� 10
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Kinematics

Momentum twistors
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Momentum twistors
• Define 4-component objects transforming under SU(2,2)

[Hodges]

Zi =
✓

�i

µ̄i

◆
µ̄ȧ

i = i xaȧ
i �ia

• Such objects are called twistors.

• Twistors are the spinorial representation of the conformal 
group.

• The point x is said to incident to the twistor Z.

• Momentum twistors have nice properties:
➡ They solve the momentum conservation constraint.
➡ They solve the on-shellness constraint.
➡ They even solve the Gram determinant constraint!
➡ Kinematic configurations are described by geometric 

configurations in twistor space.
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Twistor space in a nutshell

• We can define ‘dual twistors’      as the objects transforming 
in the complex conjugate representation.

• Then there are two invariant forms on this space:

hi j k li = �IJKL ZI
i ZJ

j ZK
k ZL

l

• We consider the space      transforming under SU(2,2). C4

Zi

Zi · Zj = hiji + [ij]
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Twistor space in a nutshell

• We can define ‘dual twistors’      as the objects transforming 
in the complex conjugate representation.

• Then there are two invariant forms on this space:

hi j k li = �IJKL ZI
i ZJ

j ZK
k ZL

l

• We consider the space      transforming under SU(2,2). C4

Zi

Zi · Zj = hiji + [ij]

• This allows us to give an interpretation to dual twistors:
Consider the locus of all twistors Z satisfying
for some fixed      . 

Z · Zi = 0
Zi
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Twistor space in a nutshell

• We can define ‘dual twistors’      as the objects transforming 
in the complex conjugate representation.

• Then there are two invariant forms on this space:

hi j k li = �IJKL ZI
i ZJ

j ZK
k ZL

l

• We consider the space      transforming under SU(2,2). C4

Zi

Zi · Zj = hiji + [ij]

• This allows us to give an interpretation to dual twistors:
Consider the locus of all twistors Z satisfying
for some fixed      . 

Z · Zi = 0
Zi

➡ Dual twistors are hyperplanes in twistor space!
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Incidence relation
• We want to link twistor space to Minkowski space

Zi =
✓

�i

µ̄i

◆
µ̄ȧ

i = i xaȧ
i �ia

➡ Incidence relation:

➡ The incidence relation is invariant under a rescaling of 
Z, and we should therefore rather work with a projective 
space        . CP3
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Incidence relation
• We want to link twistor space to Minkowski space

Zi =
✓

�i

µ̄i

◆
µ̄ȧ

i = i xaȧ
i �ia

➡ Incidence relation:

➡ The incidence relation is invariant under a rescaling of 
Z, and we should therefore rather work with a projective 
space        . CP3

• Given a twistor Z incident to x, which points in Minkowski 
space is it incident to?
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Incidence relation
• We want to link twistor space to Minkowski space

Zi =
✓

�i

µ̄i

◆
µ̄ȧ

i = i xaȧ
i �ia

➡ Incidence relation:

➡ The incidence relation is invariant under a rescaling of 
Z, and we should therefore rather work with a projective 
space        . CP3

• Given a twistor Z incident to x, which points in Minkowski 
space is it incident to?

➡ Answer:The light-ray through x in the direction paȧ = �a�̄ȧ
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Incidence relation
• We want to link twistor space to Minkowski space

Zi =
✓

�i

µ̄i

◆
µ̄ȧ

i = i xaȧ
i �ia

➡ Incidence relation:

➡ The incidence relation is invariant under a rescaling of 
Z, and we should therefore rather work with a projective 
space        . CP3

• Given a twistor Z incident to x, which points in Minkowski 
space is it incident to?

➡ Answer:The light-ray through x in the direction
➡ Proof: y

aȧ = xaȧ + t �

a
�̄

ȧ

paȧ = �a�̄ȧ
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Incidence relation
• We want to link twistor space to Minkowski space

Zi =
✓

�i

µ̄i

◆
µ̄ȧ

i = i xaȧ
i �ia

➡ Incidence relation:

➡ The incidence relation is invariant under a rescaling of 
Z, and we should therefore rather work with a projective 
space        . CP3

• Given a twistor Z incident to x, which points in Minkowski 
space is it incident to?

➡ Answer:The light-ray through x in the direction
➡ Proof: y

aȧ = xaȧ + t �

a
�̄

ȧ

paȧ = �a�̄ȧ

i y

aȧ
�a = i x

aȧ
�a + i t h��i�̄ȧ = i x

aȧ
�a = µ̄

ȧ
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Incidence relation
• We want to link twistor space to Minkowski space

Zi =
✓

�i

µ̄i

◆
µ̄ȧ

i = i xaȧ
i �ia

➡ Incidence relation:

➡ The incidence relation is invariant under a rescaling of 
Z, and we should therefore rather work with a projective 
space        . CP3

• Given a twistor Z incident to x, which points in Minkowski 
space is it incident to?

➡ Answer:The light-ray through x in the direction paȧ = �a�̄ȧ

• Conversely, a line in twistor space corresponds to a point in 
Minkowski space!
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Twistor ‘dictionary’
points in Minkowski space lines in twistor space

light rays in Minkowski space points in twistor space

X

Y

x

y
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Twistor ‘dictionary’
points in Minkowski space lines in twistor space

light rays in Minkowski space points in twistor space

X

Y

Z
x

y

Freitag, 7. Oktober 11



Twistor ‘dictionary’
points in Minkowski space lines in twistor space

light rays in Minkowski space points in twistor space

X

Y

Z
x

y

light-like distances intersection of lines
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Twistor geometry
• Notation:

➡ The line passing L through      and      :   Z1 Z2

L = Z1 ^ Z2 = �Z2 ^ Z1

➡ The plane P passing through     ,      and      :   Z1 Z2

P = Z1 ^ Z2 ^ Z3

Z3

• Geometric statements are now encoded in the ‘twistor 
bracket’:
➡                       and                       intersect iff   L1 = Z1 ^ Z2 L2 = Z3 ^ Z4

hL1L2i ⌘ h1234i = 0
➡ Z lies on the plane                            iff                      P = Z1 ^ Z2 ^ Z3

hZP i ⌘ hZ123i = 0

• Exercise: Proof this!
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Momentum twistors
• Consider amplitude with massless external legs:

• An n-point massless amplitudes can be given by n 
momentum twistors.

• All the constraints in 4 dimensions are now trivial!

• The the point      in dual space is associated the line  xi

Xi = Zi ^ Zi�1

• Dual momentum twistors (‘planes’) are given by
Zi = Zi�1 ^ Zi ^ Zi�1  [Why?]
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Momentum twistors
• Consider amplitude with massless external legs:

• An n-point massless amplitudes can be given by n 
momentum twistors.

• All the constraints in 4 dimensions are now trivial!

• The the point      in dual space is associated the line  

p1

p2p3

p4

x1

x2

x3

x4

xi

Xi = Zi ^ Zi�1

• Dual momentum twistors (‘planes’) are given by
Zi = Zi�1 ^ Zi ^ Zi�1  [Why?]
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Momentum twistors
• Consider amplitude with massless external legs:

• An n-point massless amplitudes can be given by n 
momentum twistors.

• All the constraints in 4 dimensions are now trivial!

• The the point      in dual space is associated the line  

p1

p2p3

p4

x1

x2

x3

x4

X1

X2

X3

X4

Z4

Z3
Z2

Z1

xi

Xi = Zi ^ Zi�1

• Dual momentum twistors (‘planes’) are given by
Zi = Zi�1 ^ Zi ^ Zi�1  [Why?]
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Momentum twistors
• Distances in dual space are now expressed through twistor 

and spinor brackets:

• N.B.: Spinor brackets must cancel out from dual conformal 
quantities:

x

2
ij =

hi � 1 i j � 1 ji
hi � 1 ii hj � 1 ji =

hXi Xji
hi � 1 ii hj � 1 ji

x

2
ijx

2
kl

x

2
ilx

2
kj

=
hXi XjihXk Xli
hXi XlihXk Xji

=
hZi�1ZiZj�1ZjihZk�1ZkZl�1Zli
hZi�1ZiZl�1ZlihZk�1ZkZj�1Zji
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Momentum twistors
• Distances in dual space are now expressed through twistor 

and spinor brackets:

• N.B.: Spinor brackets must cancel out from dual conformal 
quantities:

x

2
ij =

hi � 1 i j � 1 ji
hi � 1 ii hj � 1 ji =

hXi Xji
hi � 1 ii hj � 1 ji

x

2
ijx

2
kl

x

2
ilx

2
kj

=
hXi XjihXk Xli
hXi XlihXk Xji

=
hZi�1ZiZj�1ZjihZk�1ZkZl�1Zli
hZi�1ZiZl�1ZlihZk�1ZkZj�1Zji

• Dual conformal invariant integrals can be written directly 
in twistor space: [See Caron-Huot’s lecture]

p1

p2 p3

p4

x2

x3

x4
x5 x6

Z
d4

x5 d4
x6

⇡

4

(x2
13)2 x

2
24

x

2
51 x

2
52 x

2
53 x

2
56x

2
63 x

2
64 x

2
61
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Momentum twistors
• Distances in dual space are now expressed through twistor 

and spinor brackets:

• N.B.: Spinor brackets must cancel out from dual conformal 
quantities:

x

2
ij =

hi � 1 i j � 1 ji
hi � 1 ii hj � 1 ji =

hXi Xji
hi � 1 ii hj � 1 ji

x

2
ijx

2
kl

x

2
ilx

2
kj

=
hXi XjihXk Xli
hXi XlihXk Xji

=
hZi�1ZiZj�1ZjihZk�1ZkZl�1Zli
hZi�1ZiZl�1ZlihZk�1ZkZj�1Zji

• Dual conformal invariant integrals can be written directly 
in twistor space: [See Caron-Huot’s lecture]

p1

p2 p3

p4

x2

x3

x4
x5 x6

Z
dZABdZCD

⇡4

h1234i3

hAB41ihAB12ihAB23ihABCDihCD23ihCD34ihCD41i
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Example: Hexagons in 6 dimensions

➡ This integral is finite!
➡ Function of 9 scales.
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The massless hexagon integral in D = 6 dimensions
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We evaluate the massless one-loop hexagon integral in six dimensions. The result is given in terms
of standard polylogarithms of uniform transcendental weight three, its functional form resembling
the one of the remainder function of the two-loop hexagon Wilson loop in four dimensions.

In this short note we are concerned with the computa-
tion of the scalar one-loop integral in D = 6 dimensions,

ID=6
6 =

∫
d6k

iπ3

5
∏

i=0

1

Di
, (1)

with

D0 = k2 and Di = (k + pi)
2, for i = 1, . . . , 5 . (2)

The external momenta, labeled by pi, i = 1, . . . , 6, are
lightlike, p2i = 0, and all ingoing, such that momentum
conservation reads

6
∑

i=1

pi = 0 . (3)

We consider the integral in Euclidean kinematics where
all Mandelstam invariants are taken to be negative,
(p1+ . . .+pj)2 < 0, and the integral is real. The massless
hexagon integral is finite in D = 6 dimension, so that no
regularization is required and we can perform the com-
putation in strictly six dimensions.
We introduce dual coordinates [1, 2],

pi = xi − xi+1 , (4)

with x7 = x1, due to momentum conservation. Since the
integration measure in Eq. (1) is translation invariant, we
can define k = x0 − x1 and the integral can be rewritten
completely in terms of dual coordinates,

ID=6
6 =

∫
d6x0

iπ3

1

x2
01 x

2
02 x

2
03 x

2
04 x

2
05 x

2
06

, (5)

with x2
ij = (xi − xj)2 = (pi + . . . + pj−1)2. In Ref. [1]

the notion of dual conformal invariance was introduced,
i.e., the action of the conformal group on the dual coor-
dinates xi. The integral (5) transforms covariantly under
dual conformal transformations. In fact, invariance un-
der rotations and translations is manifest, whereas un-
der dilatations and inversions the integral transforms

covariantly with weight one at each external point xi,
namely under dilatations, xi → λxi, the integral scales
as ID=6

6 → λ−6 ID=6
6 , whereas under inversions xi →

xi/(x2
i )

2 the measure and the propagators transform as
d6x0 → d6x0/(x2

0)
6 and x2

ij → x2
ij/(x

2
ix

2
j ), such that

ID=6
6 → ID=6

6

∏6
i=1 x

2
i . Note that for dual conformal

invariance to hold it is crucial that we work in strictly
six dimensions. Finally, the previous considerations are
not restricted to ID=6

6 , but exactly the same reasoning
shows that every finite one-loop n-gon in D = n dimen-
sions is dual conformally covariant.
A direct consequence of the dual conformal covariance

of ID=6
6 is that the integral can only depend on dual

conformal cross ratios, up to an overall prefactor which
carries the conformal weights. For the massless six-point
kinematics, there are three independent cross ratios [3],
given in terms of dual coordinates by,

u1 =
x2
15 x

2
24

x2
14 x

2
25

, u2 =
x2
26 x

2
35

x2
25 x

2
36

, u3 =
x2
31 x

2
46

x2
36 x

2
41

. (6)

More precisely, the integral can be written in the form

ID=6
6 =

1

x2
14 x

2
25 x

2
36

I6(u1, u2, u3) . (7)

where the function I6(u1, u2, u3) is manifestly dual con-
formal invariant. Furthermore, the integral ID=6

6 as a
function of the external momenta pi has a dihedral sym-
metry D6 generated by cyclic rotations pi → pi+1 and
the reflection pi → p6−i+1. It is easy to check that
the dihedral symmetry of ID=6

6 implies that the func-
tion I6(u1, u2, u3) must be totally symmetric in the three
cross ratios.
We start by deriving a Mellin-Barnes (MB) represen-

tation for ID=6
6 using the AMBRE package [4]. Although

the integral is finite, the resulting MB representation has
a spurious singularity that must cancel in the end. We
therefore derive the MB representation in D = 6 − 2ε
dimensions and resolve the singularities in ε using the
strategy introduced in Refs. [5–8] by applying the codes
MB [9] and MBresolve [10] and obtain a set of MB inte-

ar
X

iv
:1

10
4.

27
81

v1
  [

he
p-

th
]  

14
 A

pr
 2

01
1

DCPT/11/34, IPPP/11/17

The massless hexagon integral in D = 6 dimensions

Vittorio Del Duca,1 Claude Duhr,2 and Vladimir A. Smirnov3

1INFN, Laboratori Nazionali Frascati, 00044 Frascati (Roma), Italy,
Email: delduca@lnf.infn.it

2Institute for Particle Physics Phenomenology, University of Durham, Durham, DH1 3LE, U.K.,
Email: claude.duhr@durham.ac.uk

3Nuclear Physics Institute of Moscow State University, Moscow 119992, Russia,
Email: smirnov@theory.sinp.msu.ru

We evaluate the massless one-loop hexagon integral in six dimensions. The result is given in terms
of standard polylogarithms of uniform transcendental weight three, its functional form resembling
the one of the remainder function of the two-loop hexagon Wilson loop in four dimensions.

In this short note we are concerned with the computa-
tion of the scalar one-loop integral in D = 6 dimensions,

ID=6
6 =

∫
d6k

iπ3

5
∏
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, (1)

with

D0 = k2 and Di = (k + pi)
2, for i = 1, . . . , 5 . (2)

The external momenta, labeled by pi, i = 1, . . . , 6, are
lightlike, p2i = 0, and all ingoing, such that momentum
conservation reads

6
∑

i=1

pi = 0 . (3)

We consider the integral in Euclidean kinematics where
all Mandelstam invariants are taken to be negative,
(p1+ . . .+pj)2 < 0, and the integral is real. The massless
hexagon integral is finite in D = 6 dimension, so that no
regularization is required and we can perform the com-
putation in strictly six dimensions.
We introduce dual coordinates [1, 2],

pi = xi − xi+1 , (4)

with x7 = x1, due to momentum conservation. Since the
integration measure in Eq. (1) is translation invariant, we
can define k = x0 − x1 and the integral can be rewritten
completely in terms of dual coordinates,

ID=6
6 =

∫
d6x0

iπ3
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x2
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2
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2
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, (5)

with x2
ij = (xi − xj)2 = (pi + . . . + pj−1)2. In Ref. [1]

the notion of dual conformal invariance was introduced,
i.e., the action of the conformal group on the dual coor-
dinates xi. The integral (5) transforms covariantly under
dual conformal transformations. In fact, invariance un-
der rotations and translations is manifest, whereas un-
der dilatations and inversions the integral transforms

covariantly with weight one at each external point xi,
namely under dilatations, xi → λxi, the integral scales
as ID=6

6 → λ−6 ID=6
6 , whereas under inversions xi →

xi/(x2
i )

2 the measure and the propagators transform as
d6x0 → d6x0/(x2

0)
6 and x2

ij → x2
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j ), such that
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i . Note that for dual conformal

invariance to hold it is crucial that we work in strictly
six dimensions. Finally, the previous considerations are
not restricted to ID=6

6 , but exactly the same reasoning
shows that every finite one-loop n-gon in D = n dimen-
sions is dual conformally covariant.
A direct consequence of the dual conformal covariance

of ID=6
6 is that the integral can only depend on dual

conformal cross ratios, up to an overall prefactor which
carries the conformal weights. For the massless six-point
kinematics, there are three independent cross ratios [3],
given in terms of dual coordinates by,
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where the function I6(u1, u2, u3) is manifestly dual con-
formal invariant. Furthermore, the integral ID=6

6 as a
function of the external momenta pi has a dihedral sym-
metry D6 generated by cyclic rotations pi → pi+1 and
the reflection pi → p6−i+1. It is easy to check that
the dihedral symmetry of ID=6

6 implies that the func-
tion I6(u1, u2, u3) must be totally symmetric in the three
cross ratios.
We start by deriving a Mellin-Barnes (MB) represen-

tation for ID=6
6 using the AMBRE package [4]. Although

the integral is finite, the resulting MB representation has
a spurious singularity that must cancel in the end. We
therefore derive the MB representation in D = 6 − 2ε
dimensions and resolve the singularities in ε using the
strategy introduced in Refs. [5–8] by applying the codes
MB [9] and MBresolve [10] and obtain a set of MB inte-
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Example: Hexagons in 6 dimensions

➡ This integral is finite!
➡ Function of 9 scales.
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We evaluate the massless one-loop hexagon integral in six dimensions. The result is given in terms
of standard polylogarithms of uniform transcendental weight three, its functional form resembling
the one of the remainder function of the two-loop hexagon Wilson loop in four dimensions.

In this short note we are concerned with the computa-
tion of the scalar one-loop integral in D = 6 dimensions,

ID=6
6 =

∫
d6k

iπ3

5
∏
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, (1)

with

D0 = k2 and Di = (k + pi)
2, for i = 1, . . . , 5 . (2)

The external momenta, labeled by pi, i = 1, . . . , 6, are
lightlike, p2i = 0, and all ingoing, such that momentum
conservation reads
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∑
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pi = 0 . (3)

We consider the integral in Euclidean kinematics where
all Mandelstam invariants are taken to be negative,
(p1+ . . .+pj)2 < 0, and the integral is real. The massless
hexagon integral is finite in D = 6 dimension, so that no
regularization is required and we can perform the com-
putation in strictly six dimensions.
We introduce dual coordinates [1, 2],

pi = xi − xi+1 , (4)

with x7 = x1, due to momentum conservation. Since the
integration measure in Eq. (1) is translation invariant, we
can define k = x0 − x1 and the integral can be rewritten
completely in terms of dual coordinates,
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, (5)

with x2
ij = (xi − xj)2 = (pi + . . . + pj−1)2. In Ref. [1]

the notion of dual conformal invariance was introduced,
i.e., the action of the conformal group on the dual coor-
dinates xi. The integral (5) transforms covariantly under
dual conformal transformations. In fact, invariance un-
der rotations and translations is manifest, whereas un-
der dilatations and inversions the integral transforms

covariantly with weight one at each external point xi,
namely under dilatations, xi → λxi, the integral scales
as ID=6

6 → λ−6 ID=6
6 , whereas under inversions xi →

xi/(x2
i )

2 the measure and the propagators transform as
d6x0 → d6x0/(x2

0)
6 and x2

ij → x2
ij/(x

2
ix

2
j ), such that

ID=6
6 → ID=6

6

∏6
i=1 x

2
i . Note that for dual conformal

invariance to hold it is crucial that we work in strictly
six dimensions. Finally, the previous considerations are
not restricted to ID=6

6 , but exactly the same reasoning
shows that every finite one-loop n-gon in D = n dimen-
sions is dual conformally covariant.
A direct consequence of the dual conformal covariance

of ID=6
6 is that the integral can only depend on dual

conformal cross ratios, up to an overall prefactor which
carries the conformal weights. For the massless six-point
kinematics, there are three independent cross ratios [3],
given in terms of dual coordinates by,

u1 =
x2
15 x

2
24

x2
14 x

2
25

, u2 =
x2
26 x

2
35

x2
25 x

2
36

, u3 =
x2
31 x

2
46

x2
36 x

2
41

. (6)

More precisely, the integral can be written in the form

ID=6
6 =

1

x2
14 x

2
25 x

2
36

I6(u1, u2, u3) . (7)

where the function I6(u1, u2, u3) is manifestly dual con-
formal invariant. Furthermore, the integral ID=6

6 as a
function of the external momenta pi has a dihedral sym-
metry D6 generated by cyclic rotations pi → pi+1 and
the reflection pi → p6−i+1. It is easy to check that
the dihedral symmetry of ID=6

6 implies that the func-
tion I6(u1, u2, u3) must be totally symmetric in the three
cross ratios.
We start by deriving a Mellin-Barnes (MB) represen-

tation for ID=6
6 using the AMBRE package [4]. Although

the integral is finite, the resulting MB representation has
a spurious singularity that must cancel in the end. We
therefore derive the MB representation in D = 6 − 2ε
dimensions and resolve the singularities in ε using the
strategy introduced in Refs. [5–8] by applying the codes
MB [9] and MBresolve [10] and obtain a set of MB inte-
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We evaluate the massless one-loop hexagon integral in six dimensions. The result is given in terms
of standard polylogarithms of uniform transcendental weight three, its functional form resembling
the one of the remainder function of the two-loop hexagon Wilson loop in four dimensions.

In this short note we are concerned with the computa-
tion of the scalar one-loop integral in D = 6 dimensions,

ID=6
6 =

∫
d6k

iπ3

5
∏

i=0

1

Di
, (1)

with

D0 = k2 and Di = (k + pi)
2, for i = 1, . . . , 5 . (2)

The external momenta, labeled by pi, i = 1, . . . , 6, are
lightlike, p2i = 0, and all ingoing, such that momentum
conservation reads

6
∑

i=1

pi = 0 . (3)

We consider the integral in Euclidean kinematics where
all Mandelstam invariants are taken to be negative,
(p1+ . . .+pj)2 < 0, and the integral is real. The massless
hexagon integral is finite in D = 6 dimension, so that no
regularization is required and we can perform the com-
putation in strictly six dimensions.
We introduce dual coordinates [1, 2],

pi = xi − xi+1 , (4)

with x7 = x1, due to momentum conservation. Since the
integration measure in Eq. (1) is translation invariant, we
can define k = x0 − x1 and the integral can be rewritten
completely in terms of dual coordinates,

ID=6
6 =

∫
d6x0

iπ3

1

x2
01 x

2
02 x

2
03 x

2
04 x

2
05 x

2
06

, (5)

with x2
ij = (xi − xj)2 = (pi + . . . + pj−1)2. In Ref. [1]

the notion of dual conformal invariance was introduced,
i.e., the action of the conformal group on the dual coor-
dinates xi. The integral (5) transforms covariantly under
dual conformal transformations. In fact, invariance un-
der rotations and translations is manifest, whereas un-
der dilatations and inversions the integral transforms

covariantly with weight one at each external point xi,
namely under dilatations, xi → λxi, the integral scales
as ID=6

6 → λ−6 ID=6
6 , whereas under inversions xi →

xi/(x2
i )

2 the measure and the propagators transform as
d6x0 → d6x0/(x2

0)
6 and x2

ij → x2
ij/(x

2
ix

2
j ), such that

ID=6
6 → ID=6

6

∏6
i=1 x

2
i . Note that for dual conformal

invariance to hold it is crucial that we work in strictly
six dimensions. Finally, the previous considerations are
not restricted to ID=6

6 , but exactly the same reasoning
shows that every finite one-loop n-gon in D = n dimen-
sions is dual conformally covariant.
A direct consequence of the dual conformal covariance

of ID=6
6 is that the integral can only depend on dual

conformal cross ratios, up to an overall prefactor which
carries the conformal weights. For the massless six-point
kinematics, there are three independent cross ratios [3],
given in terms of dual coordinates by,

u1 =
x2
15 x

2
24

x2
14 x

2
25

, u2 =
x2
26 x

2
35

x2
25 x

2
36

, u3 =
x2
31 x

2
46

x2
36 x

2
41

. (6)

More precisely, the integral can be written in the form

ID=6
6 =

1

x2
14 x

2
25 x

2
36

I6(u1, u2, u3) . (7)

where the function I6(u1, u2, u3) is manifestly dual con-
formal invariant. Furthermore, the integral ID=6

6 as a
function of the external momenta pi has a dihedral sym-
metry D6 generated by cyclic rotations pi → pi+1 and
the reflection pi → p6−i+1. It is easy to check that
the dihedral symmetry of ID=6

6 implies that the func-
tion I6(u1, u2, u3) must be totally symmetric in the three
cross ratios.
We start by deriving a Mellin-Barnes (MB) represen-

tation for ID=6
6 using the AMBRE package [4]. Although

the integral is finite, the resulting MB representation has
a spurious singularity that must cancel in the end. We
therefore derive the MB representation in D = 6 − 2ε
dimensions and resolve the singularities in ε using the
strategy introduced in Refs. [5–8] by applying the codes
MB [9] and MBresolve [10] and obtain a set of MB inte-
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Example: Hexagons in 6 dimensions

➡ This integral is finite!
➡ Function of 9 scales.
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We evaluate the massless one-loop hexagon integral in six dimensions. The result is given in terms
of standard polylogarithms of uniform transcendental weight three, its functional form resembling
the one of the remainder function of the two-loop hexagon Wilson loop in four dimensions.

In this short note we are concerned with the computa-
tion of the scalar one-loop integral in D = 6 dimensions,

ID=6
6 =

∫
d6k

iπ3

5
∏

i=0

1

Di
, (1)

with

D0 = k2 and Di = (k + pi)
2, for i = 1, . . . , 5 . (2)

The external momenta, labeled by pi, i = 1, . . . , 6, are
lightlike, p2i = 0, and all ingoing, such that momentum
conservation reads

6
∑

i=1

pi = 0 . (3)

We consider the integral in Euclidean kinematics where
all Mandelstam invariants are taken to be negative,
(p1+ . . .+pj)2 < 0, and the integral is real. The massless
hexagon integral is finite in D = 6 dimension, so that no
regularization is required and we can perform the com-
putation in strictly six dimensions.
We introduce dual coordinates [1, 2],

pi = xi − xi+1 , (4)

with x7 = x1, due to momentum conservation. Since the
integration measure in Eq. (1) is translation invariant, we
can define k = x0 − x1 and the integral can be rewritten
completely in terms of dual coordinates,

ID=6
6 =

∫
d6x0

iπ3

1

x2
01 x

2
02 x

2
03 x

2
04 x

2
05 x

2
06

, (5)

with x2
ij = (xi − xj)2 = (pi + . . . + pj−1)2. In Ref. [1]

the notion of dual conformal invariance was introduced,
i.e., the action of the conformal group on the dual coor-
dinates xi. The integral (5) transforms covariantly under
dual conformal transformations. In fact, invariance un-
der rotations and translations is manifest, whereas un-
der dilatations and inversions the integral transforms

covariantly with weight one at each external point xi,
namely under dilatations, xi → λxi, the integral scales
as ID=6

6 → λ−6 ID=6
6 , whereas under inversions xi →

xi/(x2
i )

2 the measure and the propagators transform as
d6x0 → d6x0/(x2

0)
6 and x2

ij → x2
ij/(x

2
ix

2
j ), such that

ID=6
6 → ID=6

6

∏6
i=1 x

2
i . Note that for dual conformal

invariance to hold it is crucial that we work in strictly
six dimensions. Finally, the previous considerations are
not restricted to ID=6

6 , but exactly the same reasoning
shows that every finite one-loop n-gon in D = n dimen-
sions is dual conformally covariant.
A direct consequence of the dual conformal covariance

of ID=6
6 is that the integral can only depend on dual

conformal cross ratios, up to an overall prefactor which
carries the conformal weights. For the massless six-point
kinematics, there are three independent cross ratios [3],
given in terms of dual coordinates by,

u1 =
x2
15 x

2
24

x2
14 x

2
25

, u2 =
x2
26 x

2
35

x2
25 x

2
36

, u3 =
x2
31 x

2
46

x2
36 x

2
41

. (6)

More precisely, the integral can be written in the form

ID=6
6 =

1

x2
14 x

2
25 x

2
36

I6(u1, u2, u3) . (7)

where the function I6(u1, u2, u3) is manifestly dual con-
formal invariant. Furthermore, the integral ID=6

6 as a
function of the external momenta pi has a dihedral sym-
metry D6 generated by cyclic rotations pi → pi+1 and
the reflection pi → p6−i+1. It is easy to check that
the dihedral symmetry of ID=6

6 implies that the func-
tion I6(u1, u2, u3) must be totally symmetric in the three
cross ratios.
We start by deriving a Mellin-Barnes (MB) represen-

tation for ID=6
6 using the AMBRE package [4]. Although

the integral is finite, the resulting MB representation has
a spurious singularity that must cancel in the end. We
therefore derive the MB representation in D = 6 − 2ε
dimensions and resolve the singularities in ε using the
strategy introduced in Refs. [5–8] by applying the codes
MB [9] and MBresolve [10] and obtain a set of MB inte-
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We evaluate the massless one-loop hexagon integral in six dimensions. The result is given in terms
of standard polylogarithms of uniform transcendental weight three, its functional form resembling
the one of the remainder function of the two-loop hexagon Wilson loop in four dimensions.

In this short note we are concerned with the computa-
tion of the scalar one-loop integral in D = 6 dimensions,

ID=6
6 =

∫
d6k

iπ3

5
∏

i=0

1

Di
, (1)

with

D0 = k2 and Di = (k + pi)
2, for i = 1, . . . , 5 . (2)

The external momenta, labeled by pi, i = 1, . . . , 6, are
lightlike, p2i = 0, and all ingoing, such that momentum
conservation reads

6
∑

i=1

pi = 0 . (3)

We consider the integral in Euclidean kinematics where
all Mandelstam invariants are taken to be negative,
(p1+ . . .+pj)2 < 0, and the integral is real. The massless
hexagon integral is finite in D = 6 dimension, so that no
regularization is required and we can perform the com-
putation in strictly six dimensions.
We introduce dual coordinates [1, 2],

pi = xi − xi+1 , (4)

with x7 = x1, due to momentum conservation. Since the
integration measure in Eq. (1) is translation invariant, we
can define k = x0 − x1 and the integral can be rewritten
completely in terms of dual coordinates,

ID=6
6 =

∫
d6x0

iπ3

1

x2
01 x

2
02 x

2
03 x

2
04 x

2
05 x

2
06

, (5)

with x2
ij = (xi − xj)2 = (pi + . . . + pj−1)2. In Ref. [1]

the notion of dual conformal invariance was introduced,
i.e., the action of the conformal group on the dual coor-
dinates xi. The integral (5) transforms covariantly under
dual conformal transformations. In fact, invariance un-
der rotations and translations is manifest, whereas un-
der dilatations and inversions the integral transforms

covariantly with weight one at each external point xi,
namely under dilatations, xi → λxi, the integral scales
as ID=6

6 → λ−6 ID=6
6 , whereas under inversions xi →

xi/(x2
i )

2 the measure and the propagators transform as
d6x0 → d6x0/(x2

0)
6 and x2

ij → x2
ij/(x

2
ix

2
j ), such that

ID=6
6 → ID=6

6

∏6
i=1 x

2
i . Note that for dual conformal

invariance to hold it is crucial that we work in strictly
six dimensions. Finally, the previous considerations are
not restricted to ID=6

6 , but exactly the same reasoning
shows that every finite one-loop n-gon in D = n dimen-
sions is dual conformally covariant.
A direct consequence of the dual conformal covariance

of ID=6
6 is that the integral can only depend on dual

conformal cross ratios, up to an overall prefactor which
carries the conformal weights. For the massless six-point
kinematics, there are three independent cross ratios [3],
given in terms of dual coordinates by,

u1 =
x2
15 x

2
24

x2
14 x

2
25

, u2 =
x2
26 x

2
35

x2
25 x

2
36

, u3 =
x2
31 x

2
46

x2
36 x

2
41

. (6)

More precisely, the integral can be written in the form

ID=6
6 =

1

x2
14 x

2
25 x

2
36

I6(u1, u2, u3) . (7)

where the function I6(u1, u2, u3) is manifestly dual con-
formal invariant. Furthermore, the integral ID=6

6 as a
function of the external momenta pi has a dihedral sym-
metry D6 generated by cyclic rotations pi → pi+1 and
the reflection pi → p6−i+1. It is easy to check that
the dihedral symmetry of ID=6

6 implies that the func-
tion I6(u1, u2, u3) must be totally symmetric in the three
cross ratios.
We start by deriving a Mellin-Barnes (MB) represen-

tation for ID=6
6 using the AMBRE package [4]. Although

the integral is finite, the resulting MB representation has
a spurious singularity that must cancel in the end. We
therefore derive the MB representation in D = 6 − 2ε
dimensions and resolve the singularities in ε using the
strategy introduced in Refs. [5–8] by applying the codes
MB [9] and MBresolve [10] and obtain a set of MB inte-
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• Integral in dual coordinates

x1

x2

x3x4

x5

x6

x0

I

D=6
6 =

Z
d6

x0

i⇡

3

x

2
13x

2
24x

2
36

x

2
01x

2
02x

2
03x

2
04x

2
05x

2
06

➡ The integral is dual conformally 
invariant in 6 dimensions!
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Example: Hexagons in 6 dimensions
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• There are 3 independent cross ratios we can form:

J
H
E
P
0
3
(
2
0
1
0
)
0
9
9

where the constant is the same as in eq. (1.2), C(2)
WL = C(2) = −ζ2

2/2, and the function

f (2)
WL(ε) is [15, 18, 32]

f (2)
WL(ε) = −ζ2 + 7ζ3ε − 5ζ4ε

2 . (2.9)

With the two-loop coefficient w(2)
n given by eqs. (2.8) and (2.9) and the two-loop MHV

amplitude given by eqs. (1.2) and (1.3), the duality between Wilson loops and amplitudes

is expressed by the equality of their remainder functions [17, 18],

R(2)
n,WL = R(2)

n . (2.10)

Defining the conformally invariant cross ratios as,

uij =
x2

ij+1x
2
i+1j

x2
ijx

2
i+1j+1

, (2.11)

for n = 6, they are [16],

u36 = u1 =
x2

13x
2
46

x2
36x

2
41

, u14 = u2 =
x2

15x
2
24

x2
14x

2
25

, u25 = u3 =
x2

26x
2
35

x2
25x

2
36

, (2.12)

where x2
ij = (xi−xj)2, and using eq. (2.2) one sees that x2

i,i+2 = si,i+1 and x2
i,i+3 = si,i+1,i+2,

where the labels are understood to be modulo 6.

3 The quasi-multi-Regge kinematics of a cluster along the ladder

As we remarked in the Introduction, it suffices to compute R(2)
6,WL in any kinematical limit

which does not modify the analytic dependence of R(2)
6,WL on u1, u2, u3. The simplest of

those limits to feature an exact Regge factorisation of w(2)
6 , and in fact in general of w(L)

6 ,

is the QMRK of a pair along the ladder [25, 26]. In those kinematics, the outgoing gluons

are strongly ordered in rapidity, except for a central pair of gluons along the ladder, while

their transverse momenta are all of the same size. In the physical region, defining 1 and 2

as the incoming gluons and 3, 4, 5, 6 as the outgoing gluons, the ordering can be chosen as

y3 " y4 # y5 " y6; |p3⊥| # |p4⊥| # |p5⊥| # |p6⊥| , (3.1)

where the particle momentum p is parametrised in terms of the rapidity y and the azimuthal

angle φ, p = (|p⊥| cosh y, |p⊥| cos φ, |p⊥| sin φ, |p⊥| sinh y). We shall work in the Euclidean

region, where the Wilson loop is real. There the Mandelstam invariants are taken as all

negative, and in the QMRK of a pair along the ladder they are ordered as follows,

− s12 " −s34,−s56,−s345,−s123 " −s23,−s45,−s61,−s234 . (3.2)

Introducing a parameter λ $ 1, the hierarchy above is equivalent to the rescaling

{s34, s56, s123, s345} = O(λ) , {s23, s45, s61, s234} = O(λ2) . (3.3)

– 5 –
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those limits to feature an exact Regge factorisation of w(2)
6 , and in fact in general of w(L)

6 ,

is the QMRK of a pair along the ladder [25, 26]. In those kinematics, the outgoing gluons

are strongly ordered in rapidity, except for a central pair of gluons along the ladder, while

their transverse momenta are all of the same size. In the physical region, defining 1 and 2

as the incoming gluons and 3, 4, 5, 6 as the outgoing gluons, the ordering can be chosen as

y3 " y4 # y5 " y6; |p3⊥| # |p4⊥| # |p5⊥| # |p6⊥| , (3.1)

where the particle momentum p is parametrised in terms of the rapidity y and the azimuthal

angle φ, p = (|p⊥| cosh y, |p⊥| cos φ, |p⊥| sin φ, |p⊥| sinh y). We shall work in the Euclidean

region, where the Wilson loop is real. There the Mandelstam invariants are taken as all

negative, and in the QMRK of a pair along the ladder they are ordered as follows,

− s12 " −s34,−s56,−s345,−s123 " −s23,−s45,−s61,−s234 . (3.2)

Introducing a parameter λ $ 1, the hierarchy above is equivalent to the rescaling

{s34, s56, s123, s345} = O(λ) , {s23, s45, s61, s234} = O(λ2) . (3.3)

– 5 –

J
H
E
P
0
3
(
2
0
1
0
)
0
9
9

where the constant is the same as in eq. (1.2), C(2)
WL = C(2) = −ζ2

2/2, and the function

f (2)
WL(ε) is [15, 18, 32]

f (2)
WL(ε) = −ζ2 + 7ζ3ε − 5ζ4ε

2 . (2.9)

With the two-loop coefficient w(2)
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R(2)
n,WL = R(2)

n . (2.10)

Defining the conformally invariant cross ratios as,

uij =
x2

ij+1x
2
i+1j

x2
ijx

2
i+1j+1

, (2.11)

for n = 6, they are [16],

u36 = u1 =
x2
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2
46

x2
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2
41

, u14 = u2 =
x2
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2
24

x2
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2
25

, u25 = u3 =
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26x
2
35
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25x

2
36

, (2.12)

where x2
ij = (xi−xj)2, and using eq. (2.2) one sees that x2

i,i+2 = si,i+1 and x2
i,i+3 = si,i+1,i+2,

where the labels are understood to be modulo 6.

3 The quasi-multi-Regge kinematics of a cluster along the ladder

As we remarked in the Introduction, it suffices to compute R(2)
6,WL in any kinematical limit

which does not modify the analytic dependence of R(2)
6,WL on u1, u2, u3. The simplest of

those limits to feature an exact Regge factorisation of w(2)
6 , and in fact in general of w(L)

6 ,

is the QMRK of a pair along the ladder [25, 26]. In those kinematics, the outgoing gluons

are strongly ordered in rapidity, except for a central pair of gluons along the ladder, while

their transverse momenta are all of the same size. In the physical region, defining 1 and 2

as the incoming gluons and 3, 4, 5, 6 as the outgoing gluons, the ordering can be chosen as

y3 " y4 # y5 " y6; |p3⊥| # |p4⊥| # |p5⊥| # |p6⊥| , (3.1)

where the particle momentum p is parametrised in terms of the rapidity y and the azimuthal

angle φ, p = (|p⊥| cosh y, |p⊥| cos φ, |p⊥| sin φ, |p⊥| sinh y). We shall work in the Euclidean

region, where the Wilson loop is real. There the Mandelstam invariants are taken as all

negative, and in the QMRK of a pair along the ladder they are ordered as follows,

− s12 " −s34,−s56,−s345,−s123 " −s23,−s45,−s61,−s234 . (3.2)

Introducing a parameter λ $ 1, the hierarchy above is equivalent to the rescaling

{s34, s56, s123, s345} = O(λ) , {s23, s45, s61, s234} = O(λ2) . (3.3)
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Example: Hexagons in 6 dimensions
x1

x2

x3x4

x5

x6

x0

I

D=6
6 =

Z
d6

x0

i⇡

3

x

2
13x

2
24x

2
36

x

2
01x

2
02x

2
03x

2
04x

2
05x

2
06

• There are 3 independent cross ratios we can form:
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ij = (xi−xj)2, and using eq. (2.2) one sees that x2

i,i+2 = si,i+1 and x2
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where the labels are understood to be modulo 6.

3 The quasi-multi-Regge kinematics of a cluster along the ladder
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6 , and in fact in general of w(L)

6 ,

is the QMRK of a pair along the ladder [25, 26]. In those kinematics, the outgoing gluons

are strongly ordered in rapidity, except for a central pair of gluons along the ladder, while

their transverse momenta are all of the same size. In the physical region, defining 1 and 2
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where the particle momentum p is parametrised in terms of the rapidity y and the azimuthal

angle φ, p = (|p⊥| cosh y, |p⊥| cos φ, |p⊥| sin φ, |p⊥| sinh y). We shall work in the Euclidean

region, where the Wilson loop is real. There the Mandelstam invariants are taken as all

negative, and in the QMRK of a pair along the ladder they are ordered as follows,

− s12 " −s34,−s56,−s345,−s123 " −s23,−s45,−s61,−s234 . (3.2)

Introducing a parameter λ $ 1, the hierarchy above is equivalent to the rescaling

{s34, s56, s123, s345} = O(λ) , {s23, s45, s61, s234} = O(λ2) . (3.3)
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where x2
ij = (xi−xj)2, and using eq. (2.2) one sees that x2

i,i+2 = si,i+1 and x2
i,i+3 = si,i+1,i+2,

where the labels are understood to be modulo 6.
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which does not modify the analytic dependence of R(2)
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those limits to feature an exact Regge factorisation of w(2)
6 , and in fact in general of w(L)

6 ,

is the QMRK of a pair along the ladder [25, 26]. In those kinematics, the outgoing gluons

are strongly ordered in rapidity, except for a central pair of gluons along the ladder, while

their transverse momenta are all of the same size. In the physical region, defining 1 and 2

as the incoming gluons and 3, 4, 5, 6 as the outgoing gluons, the ordering can be chosen as

y3 " y4 # y5 " y6; |p3⊥| # |p4⊥| # |p5⊥| # |p6⊥| , (3.1)

where the particle momentum p is parametrised in terms of the rapidity y and the azimuthal

angle φ, p = (|p⊥| cosh y, |p⊥| cos φ, |p⊥| sin φ, |p⊥| sinh y). We shall work in the Euclidean

region, where the Wilson loop is real. There the Mandelstam invariants are taken as all

negative, and in the QMRK of a pair along the ladder they are ordered as follows,

− s12 " −s34,−s56,−s345,−s123 " −s23,−s45,−s61,−s234 . (3.2)

Introducing a parameter λ $ 1, the hierarchy above is equivalent to the rescaling
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2 . (2.9)
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n given by eqs. (2.8) and (2.9) and the two-loop MHV
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where x2
ij = (xi−xj)2, and using eq. (2.2) one sees that x2

i,i+2 = si,i+1 and x2
i,i+3 = si,i+1,i+2,

where the labels are understood to be modulo 6.
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which does not modify the analytic dependence of R(2)
6,WL on u1, u2, u3. The simplest of

those limits to feature an exact Regge factorisation of w(2)
6 , and in fact in general of w(L)

6 ,

is the QMRK of a pair along the ladder [25, 26]. In those kinematics, the outgoing gluons

are strongly ordered in rapidity, except for a central pair of gluons along the ladder, while

their transverse momenta are all of the same size. In the physical region, defining 1 and 2

as the incoming gluons and 3, 4, 5, 6 as the outgoing gluons, the ordering can be chosen as

y3 " y4 # y5 " y6; |p3⊥| # |p4⊥| # |p5⊥| # |p6⊥| , (3.1)

where the particle momentum p is parametrised in terms of the rapidity y and the azimuthal

angle φ, p = (|p⊥| cosh y, |p⊥| cos φ, |p⊥| sin φ, |p⊥| sinh y). We shall work in the Euclidean

region, where the Wilson loop is real. There the Mandelstam invariants are taken as all

negative, and in the QMRK of a pair along the ladder they are ordered as follows,

− s12 " −s34,−s56,−s345,−s123 " −s23,−s45,−s61,−s234 . (3.2)

Introducing a parameter λ $ 1, the hierarchy above is equivalent to the rescaling

{s34, s56, s123, s345} = O(λ) , {s23, s45, s61, s234} = O(λ2) . (3.3)
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• Instead of having to deal with the 9 scales, we ‘only’ have 3 
cross ratios:

ID=6
6 = �(u1, u2, u3)
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Example: Hexagons in 6 dimensions
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• We are in 6 dimensions, so no twistors a priori.
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6 = �(u1, u2, u3)
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which does not modify the analytic dependence of R(2)
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those limits to feature an exact Regge factorisation of w(2)
6 , and in fact in general of w(L)

6 ,

is the QMRK of a pair along the ladder [25, 26]. In those kinematics, the outgoing gluons

are strongly ordered in rapidity, except for a central pair of gluons along the ladder, while

their transverse momenta are all of the same size. In the physical region, defining 1 and 2

as the incoming gluons and 3, 4, 5, 6 as the outgoing gluons, the ordering can be chosen as

y3 " y4 # y5 " y6; |p3⊥| # |p4⊥| # |p5⊥| # |p6⊥| , (3.1)

where the particle momentum p is parametrised in terms of the rapidity y and the azimuthal

angle φ, p = (|p⊥| cosh y, |p⊥| cos φ, |p⊥| sin φ, |p⊥| sinh y). We shall work in the Euclidean

region, where the Wilson loop is real. There the Mandelstam invariants are taken as all

negative, and in the QMRK of a pair along the ladder they are ordered as follows,

− s12 " −s34,−s56,−s345,−s123 " −s23,−s45,−s61,−s234 . (3.2)
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6 , and in fact in general of w(L)
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is the QMRK of a pair along the ladder [25, 26]. In those kinematics, the outgoing gluons

are strongly ordered in rapidity, except for a central pair of gluons along the ladder, while

their transverse momenta are all of the same size. In the physical region, defining 1 and 2
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which does not modify the analytic dependence of R(2)
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those limits to feature an exact Regge factorisation of w(2)
6 , and in fact in general of w(L)
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is the QMRK of a pair along the ladder [25, 26]. In those kinematics, the outgoing gluons

are strongly ordered in rapidity, except for a central pair of gluons along the ladder, while

their transverse momenta are all of the same size. In the physical region, defining 1 and 2

as the incoming gluons and 3, 4, 5, 6 as the outgoing gluons, the ordering can be chosen as

y3 " y4 # y5 " y6; |p3⊥| # |p4⊥| # |p5⊥| # |p6⊥| , (3.1)

where the particle momentum p is parametrised in terms of the rapidity y and the azimuthal

angle φ, p = (|p⊥| cosh y, |p⊥| cos φ, |p⊥| sin φ, |p⊥| sinh y). We shall work in the Euclidean

region, where the Wilson loop is real. There the Mandelstam invariants are taken as all

negative, and in the QMRK of a pair along the ladder they are ordered as follows,

− s12 " −s34,−s56,−s345,−s123 " −s23,−s45,−s61,−s234 . (3.2)

Introducing a parameter λ $ 1, the hierarchy above is equivalent to the rescaling

{s34, s56, s123, s345} = O(λ) , {s23, s45, s61, s234} = O(λ2) . (3.3)
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Example: Hexagons in 6 dimensions
x1

x2

x3x4

x5

x6

x0

• We are in 6 dimensions, so no twistors a priori.

• However, the only thing that matters are the cross ratios:

ID=6
6 = �(u1, u2, u3)

➡ We can choose our momenta to lie in a 4D subspace.
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Example: Hexagons in 6 dimensions
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• We are in 6 dimensions, so no twistors a priori.

• However, the only thing that matters are the cross ratios:

ID=6
6 = �(u1, u2, u3)

➡ We can choose our momenta to lie in a 4D subspace.
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hX1X3ihX4X6i
hX3X6ihX4X1i
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h6123ih3456i
h2356ih3461i

➡ space time cross ratios:

➡ new cross ratios:

x

+
1 = �h6345ih1245i

h6145ih2345i
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where the function I6(u1, u2, u3) is manifestly dual conformal in-
variant. Furthermore, the integral I D=6

6 as a function of the exter-
nal momenta pi has a dihedral symmetry D6 generated by cyclic
rotations pi → pi+1 and the reflection pi → p6−i+1. It is easy to
check that the dihedral symmetry of I D=6

6 implies that the func-
tion I6(u1, u2, u3) must be totally symmetric in the three cross
ratios.

2. The analytic expression for I D=6
6

We start by deriving a Mellin–Barnes (MB) representation for
I D=6
6 using the AMBRE package [5]. Although the integral is fi-

nite, the resulting MB representation has a spurious singularity
that must cancel in the end. We therefore derive the MB repre-
sentation in D = 6 − 2ε dimensions and resolve the singularities
in ε using the strategy introduced in Refs. [6–9] by applying the
codes MB [10] and MBresolve [11] and obtain a set of MB in-
tegrals which can be safely expanded in ε under the integration
sign. After applying these codes, all the integration contours are
straight vertical lines. At the end of this procedure, all the poles in
ε cancel and we are left with a manifestly finite and conformally
invariant threefold MB integral to compute,

I6 =
+i∞∫

−i∞

( 3∏

i=1

dzi

2π i
Γ (−zi)

2uzi
i

)

× Γ (1 + z1 + z2)Γ (1 + z2 + z3)Γ (1 + z3 + z1), (8)

where the contours are straight vertical lines whose real parts are
given by

Re(z1) = −1
3
, Re(z2) = −1

4
, Re(z3) = −1

5
. (9)

Albeit simpler, the integral (8) is similar to the threefold MB inte-
gral contributing to the two-loop hexagon Wilson loop in N = 4
Super Yang–Mills [12,13], hence it can be computed in the same
fashion. Following the strategy of Ref. [13], we can turn each MB
integration into an Euler-type integral via the formula,

+i∞∫

−i∞

dz
2π i

Γ (−z)Γ (c − z)Γ (b + z)Γ (c + z)X z

= Γ (a)Γ (b + c)

1∫

0

dv vb−1(1 − v)a+c−1(1 − X v)−a, (10)

with X = 1 − X and where the contours are such as to separate
the poles in Γ (. . . − zi) from those in Γ (. . . + zi). This leaves us
with the following three-fold parametric integral to compute,

I6 =
1∫

0

( 3∏

i=1

dvi

)
1

[1 − v2(1 − u1 v1)]

× 1
[1 − v1(1 − u2 − v3(1 − u2 − u3 v2)) − (1 − u3 v2)v3]

.

(11)

The integral is easily performed in terms of multiple polyloga-
rithms [14]. The resulting expression is rather lengthy and involves
a combination of multiple polylogarithms of uniform weight three,
whose arguments are complicated algebraic functions involving the
square root of the quantity,

$ = (u1 + u2 + u3 − 1)2 − 4u1u2u3. (12)

However, the similarity between the MB integral (8) and the corre-
sponding integral of Ref. [13] suggests that it should be possible to
rewrite the answer in a simpler form, in the same way as the ana-
lytic result of Ref. [13] was rewritten in simplified form in Ref. [15].
The cornerstone of the simplification of the two-loop six-point re-
mainder function was the so-called symbol map, a linear map S
that associates a certain tensor to an iterated integral, and thus
to a multiple polylogarithm. In the following we give a very brief
summary of the symbol technique, referring to Ref. [15] for fur-
ther details. As an example, the tensor associated to the classical
polylogarithm Lin(x) is,

S
(
Lin(x)

)
= −(1 − x) ⊗ x ⊗ · · · ⊗ x︸ ︷︷ ︸

(n−1) times

. (13)

Furthermore, the tensor maps products that appear inside the ten-
sor product to a sum of tensors,

· · · ⊗ (x · y) ⊗ · · · = · · · ⊗ x ⊗ · · · + · · · ⊗ y ⊗ · · · . (14)

It is conjectured that all the functional identities among (multiple)
polylogarithms are mapped under the symbol map S to algebraic
relations among the tensors. Hence, if the symbol map is applied
to our complicated expression for I6(u1, u2, u3), it should capture
and resolve all the functional identities among the polylogarithms,
and therefore allow us to rewrite the result in a simpler form. In
order to apply this technology, it is however important that all
the arguments that enter the tensor be multiplicatively indepen-
dent. As in our case the arguments of the polylogarithms involve
square roots of $, this requirement is not fulfilled. In Ref. [15] a
reparametrization of the cross ratios ui in terms of six points zi in
CP1 was proposed,

u1 = z23z56

z25z36
, u2 = z34z61

z36z41
, u3 = z45z12

z41z52
, (15)

with zi j = zi − z j . It is easy to check that with this parametrization
the right-hand side of Eq. (12) becomes a perfect square. Hence, af-
ter this reparametrization all the arguments of the polylogarithms
are rational functions in the zi j variables, making this parametriza-
tion well suited to apply the symbol map S .

Using the parametrization (15) and the symbol map, it is easy
to construct a simpler candidate expression with the same symbol
as our original expression. However, the kernel of the map S is
non-trivial, and it allows us to fix the candidate expression only up
to terms proportional to zeta values, which in turn must be fixed
by looking at particular values of the cross ratios. At the end of
this procedure, we arrive at the following expression for the scalar
massless hexagon integral,

I6(u1, u2, u3)

= 1√
$

[

−2
3∑

i=1

L3
(
x+

i , x−
i

)
+ 1

3

( 3∑

i=1

%1
(
x+

i

)
− %1

(
x−

i

)
)3

+ π2

3
χ

3∑

i=1

(
%1

(
x+

i

)
− %1

(
x−

i

))
]

, (16)

where

x±
i = uix

±, x± = u1 + u2 + u3 − 1 ±
√

$

2u1u2u3
, (17)

and $ is defined in Eq. (12), and with

L3
(
x+, x−)

=
2∑

k=0

(−1)k

(2k)!! lnk(x+x−)(
%3−k

(
x+)

− %3−k
(
x−))

,

%n(x) = 1
2

(
Lin(x) − (−1)nLin(1/x)

)
, (18)
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I6 =
1∫

0

( 3∏

i=1

dvi

)
1

[1 − v2(1 − u1 v1)]

× 1
[1 − v1(1 − u2 − v3(1 − u2 − u3 v2)) − (1 − u3 v2)v3]

.

(11)

The integral is easily performed in terms of multiple polyloga-
rithms [14]. The resulting expression is rather lengthy and involves
a combination of multiple polylogarithms of uniform weight three,
whose arguments are complicated algebraic functions involving the
square root of the quantity,

$ = (u1 + u2 + u3 − 1)2 − 4u1u2u3. (12)

However, the similarity between the MB integral (8) and the corre-
sponding integral of Ref. [13] suggests that it should be possible to
rewrite the answer in a simpler form, in the same way as the ana-
lytic result of Ref. [13] was rewritten in simplified form in Ref. [15].
The cornerstone of the simplification of the two-loop six-point re-
mainder function was the so-called symbol map, a linear map S
that associates a certain tensor to an iterated integral, and thus
to a multiple polylogarithm. In the following we give a very brief
summary of the symbol technique, referring to Ref. [15] for fur-
ther details. As an example, the tensor associated to the classical
polylogarithm Lin(x) is,

S
(
Lin(x)

)
= −(1 − x) ⊗ x ⊗ · · · ⊗ x︸ ︷︷ ︸

(n−1) times

. (13)

Furthermore, the tensor maps products that appear inside the ten-
sor product to a sum of tensors,

· · · ⊗ (x · y) ⊗ · · · = · · · ⊗ x ⊗ · · · + · · · ⊗ y ⊗ · · · . (14)

It is conjectured that all the functional identities among (multiple)
polylogarithms are mapped under the symbol map S to algebraic
relations among the tensors. Hence, if the symbol map is applied
to our complicated expression for I6(u1, u2, u3), it should capture
and resolve all the functional identities among the polylogarithms,
and therefore allow us to rewrite the result in a simpler form. In
order to apply this technology, it is however important that all
the arguments that enter the tensor be multiplicatively indepen-
dent. As in our case the arguments of the polylogarithms involve
square roots of $, this requirement is not fulfilled. In Ref. [15] a
reparametrization of the cross ratios ui in terms of six points zi in
CP1 was proposed,

u1 = z23z56

z25z36
, u2 = z34z61

z36z41
, u3 = z45z12

z41z52
, (15)

with zi j = zi − z j . It is easy to check that with this parametrization
the right-hand side of Eq. (12) becomes a perfect square. Hence, af-
ter this reparametrization all the arguments of the polylogarithms
are rational functions in the zi j variables, making this parametriza-
tion well suited to apply the symbol map S .

Using the parametrization (15) and the symbol map, it is easy
to construct a simpler candidate expression with the same symbol
as our original expression. However, the kernel of the map S is
non-trivial, and it allows us to fix the candidate expression only up
to terms proportional to zeta values, which in turn must be fixed
by looking at particular values of the cross ratios. At the end of
this procedure, we arrive at the following expression for the scalar
massless hexagon integral,
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where the function I6(u1, u2, u3) is manifestly dual conformal in-
variant. Furthermore, the integral I D=6

6 as a function of the exter-
nal momenta pi has a dihedral symmetry D6 generated by cyclic
rotations pi → pi+1 and the reflection pi → p6−i+1. It is easy to
check that the dihedral symmetry of I D=6

6 implies that the func-
tion I6(u1, u2, u3) must be totally symmetric in the three cross
ratios.

2. The analytic expression for I D=6
6

We start by deriving a Mellin–Barnes (MB) representation for
I D=6
6 using the AMBRE package [5]. Although the integral is fi-

nite, the resulting MB representation has a spurious singularity
that must cancel in the end. We therefore derive the MB repre-
sentation in D = 6 − 2ε dimensions and resolve the singularities
in ε using the strategy introduced in Refs. [6–9] by applying the
codes MB [10] and MBresolve [11] and obtain a set of MB in-
tegrals which can be safely expanded in ε under the integration
sign. After applying these codes, all the integration contours are
straight vertical lines. At the end of this procedure, all the poles in
ε cancel and we are left with a manifestly finite and conformally
invariant threefold MB integral to compute,

I6 =
+i∞∫

−i∞

( 3∏

i=1

dzi

2π i
Γ (−zi)

2uzi
i

)

× Γ (1 + z1 + z2)Γ (1 + z2 + z3)Γ (1 + z3 + z1), (8)

where the contours are straight vertical lines whose real parts are
given by

Re(z1) = −1
3
, Re(z2) = −1

4
, Re(z3) = −1

5
. (9)

Albeit simpler, the integral (8) is similar to the threefold MB inte-
gral contributing to the two-loop hexagon Wilson loop in N = 4
Super Yang–Mills [12,13], hence it can be computed in the same
fashion. Following the strategy of Ref. [13], we can turn each MB
integration into an Euler-type integral via the formula,
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Γ (−z)Γ (c − z)Γ (b + z)Γ (c + z)X z

= Γ (a)Γ (b + c)

1∫

0

dv vb−1(1 − v)a+c−1(1 − X v)−a, (10)

with X = 1 − X and where the contours are such as to separate
the poles in Γ (. . . − zi) from those in Γ (. . . + zi). This leaves us
with the following three-fold parametric integral to compute,

I6 =
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( 3∏

i=1

dvi

)
1

[1 − v2(1 − u1 v1)]

× 1
[1 − v1(1 − u2 − v3(1 − u2 − u3 v2)) − (1 − u3 v2)v3]

.

(11)

The integral is easily performed in terms of multiple polyloga-
rithms [14]. The resulting expression is rather lengthy and involves
a combination of multiple polylogarithms of uniform weight three,
whose arguments are complicated algebraic functions involving the
square root of the quantity,

$ = (u1 + u2 + u3 − 1)2 − 4u1u2u3. (12)

However, the similarity between the MB integral (8) and the corre-
sponding integral of Ref. [13] suggests that it should be possible to
rewrite the answer in a simpler form, in the same way as the ana-
lytic result of Ref. [13] was rewritten in simplified form in Ref. [15].
The cornerstone of the simplification of the two-loop six-point re-
mainder function was the so-called symbol map, a linear map S
that associates a certain tensor to an iterated integral, and thus
to a multiple polylogarithm. In the following we give a very brief
summary of the symbol technique, referring to Ref. [15] for fur-
ther details. As an example, the tensor associated to the classical
polylogarithm Lin(x) is,

S
(
Lin(x)

)
= −(1 − x) ⊗ x ⊗ · · · ⊗ x︸ ︷︷ ︸

(n−1) times

. (13)

Furthermore, the tensor maps products that appear inside the ten-
sor product to a sum of tensors,

· · · ⊗ (x · y) ⊗ · · · = · · · ⊗ x ⊗ · · · + · · · ⊗ y ⊗ · · · . (14)

It is conjectured that all the functional identities among (multiple)
polylogarithms are mapped under the symbol map S to algebraic
relations among the tensors. Hence, if the symbol map is applied
to our complicated expression for I6(u1, u2, u3), it should capture
and resolve all the functional identities among the polylogarithms,
and therefore allow us to rewrite the result in a simpler form. In
order to apply this technology, it is however important that all
the arguments that enter the tensor be multiplicatively indepen-
dent. As in our case the arguments of the polylogarithms involve
square roots of $, this requirement is not fulfilled. In Ref. [15] a
reparametrization of the cross ratios ui in terms of six points zi in
CP1 was proposed,

u1 = z23z56

z25z36
, u2 = z34z61

z36z41
, u3 = z45z12

z41z52
, (15)

with zi j = zi − z j . It is easy to check that with this parametrization
the right-hand side of Eq. (12) becomes a perfect square. Hence, af-
ter this reparametrization all the arguments of the polylogarithms
are rational functions in the zi j variables, making this parametriza-
tion well suited to apply the symbol map S .

Using the parametrization (15) and the symbol map, it is easy
to construct a simpler candidate expression with the same symbol
as our original expression. However, the kernel of the map S is
non-trivial, and it allows us to fix the candidate expression only up
to terms proportional to zeta values, which in turn must be fixed
by looking at particular values of the cross ratios. At the end of
this procedure, we arrive at the following expression for the scalar
massless hexagon integral,
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where the function I6(u1, u2, u3) is manifestly dual conformal in-
variant. Furthermore, the integral I D=6

6 as a function of the exter-
nal momenta pi has a dihedral symmetry D6 generated by cyclic
rotations pi → pi+1 and the reflection pi → p6−i+1. It is easy to
check that the dihedral symmetry of I D=6

6 implies that the func-
tion I6(u1, u2, u3) must be totally symmetric in the three cross
ratios.

2. The analytic expression for I D=6
6

We start by deriving a Mellin–Barnes (MB) representation for
I D=6
6 using the AMBRE package [5]. Although the integral is fi-

nite, the resulting MB representation has a spurious singularity
that must cancel in the end. We therefore derive the MB repre-
sentation in D = 6 − 2ε dimensions and resolve the singularities
in ε using the strategy introduced in Refs. [6–9] by applying the
codes MB [10] and MBresolve [11] and obtain a set of MB in-
tegrals which can be safely expanded in ε under the integration
sign. After applying these codes, all the integration contours are
straight vertical lines. At the end of this procedure, all the poles in
ε cancel and we are left with a manifestly finite and conformally
invariant threefold MB integral to compute,

I6 =
+i∞∫

−i∞

( 3∏

i=1

dzi

2π i
Γ (−zi)

2uzi
i

)

× Γ (1 + z1 + z2)Γ (1 + z2 + z3)Γ (1 + z3 + z1), (8)

where the contours are straight vertical lines whose real parts are
given by

Re(z1) = −1
3
, Re(z2) = −1

4
, Re(z3) = −1

5
. (9)

Albeit simpler, the integral (8) is similar to the threefold MB inte-
gral contributing to the two-loop hexagon Wilson loop in N = 4
Super Yang–Mills [12,13], hence it can be computed in the same
fashion. Following the strategy of Ref. [13], we can turn each MB
integration into an Euler-type integral via the formula,

+i∞∫

−i∞

dz
2π i

Γ (−z)Γ (c − z)Γ (b + z)Γ (c + z)X z

= Γ (a)Γ (b + c)

1∫

0

dv vb−1(1 − v)a+c−1(1 − X v)−a, (10)

with X = 1 − X and where the contours are such as to separate
the poles in Γ (. . . − zi) from those in Γ (. . . + zi). This leaves us
with the following three-fold parametric integral to compute,

I6 =
1∫

0

( 3∏

i=1

dvi

)
1

[1 − v2(1 − u1 v1)]

× 1
[1 − v1(1 − u2 − v3(1 − u2 − u3 v2)) − (1 − u3 v2)v3]

.

(11)

The integral is easily performed in terms of multiple polyloga-
rithms [14]. The resulting expression is rather lengthy and involves
a combination of multiple polylogarithms of uniform weight three,
whose arguments are complicated algebraic functions involving the
square root of the quantity,

$ = (u1 + u2 + u3 − 1)2 − 4u1u2u3. (12)

However, the similarity between the MB integral (8) and the corre-
sponding integral of Ref. [13] suggests that it should be possible to
rewrite the answer in a simpler form, in the same way as the ana-
lytic result of Ref. [13] was rewritten in simplified form in Ref. [15].
The cornerstone of the simplification of the two-loop six-point re-
mainder function was the so-called symbol map, a linear map S
that associates a certain tensor to an iterated integral, and thus
to a multiple polylogarithm. In the following we give a very brief
summary of the symbol technique, referring to Ref. [15] for fur-
ther details. As an example, the tensor associated to the classical
polylogarithm Lin(x) is,

S
(
Lin(x)

)
= −(1 − x) ⊗ x ⊗ · · · ⊗ x︸ ︷︷ ︸

(n−1) times

. (13)

Furthermore, the tensor maps products that appear inside the ten-
sor product to a sum of tensors,

· · · ⊗ (x · y) ⊗ · · · = · · · ⊗ x ⊗ · · · + · · · ⊗ y ⊗ · · · . (14)

It is conjectured that all the functional identities among (multiple)
polylogarithms are mapped under the symbol map S to algebraic
relations among the tensors. Hence, if the symbol map is applied
to our complicated expression for I6(u1, u2, u3), it should capture
and resolve all the functional identities among the polylogarithms,
and therefore allow us to rewrite the result in a simpler form. In
order to apply this technology, it is however important that all
the arguments that enter the tensor be multiplicatively indepen-
dent. As in our case the arguments of the polylogarithms involve
square roots of $, this requirement is not fulfilled. In Ref. [15] a
reparametrization of the cross ratios ui in terms of six points zi in
CP1 was proposed,

u1 = z23z56

z25z36
, u2 = z34z61

z36z41
, u3 = z45z12

z41z52
, (15)

with zi j = zi − z j . It is easy to check that with this parametrization
the right-hand side of Eq. (12) becomes a perfect square. Hence, af-
ter this reparametrization all the arguments of the polylogarithms
are rational functions in the zi j variables, making this parametriza-
tion well suited to apply the symbol map S .

Using the parametrization (15) and the symbol map, it is easy
to construct a simpler candidate expression with the same symbol
as our original expression. However, the kernel of the map S is
non-trivial, and it allows us to fix the candidate expression only up
to terms proportional to zeta values, which in turn must be fixed
by looking at particular values of the cross ratios. At the end of
this procedure, we arrive at the following expression for the scalar
massless hexagon integral,
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where the function I6(u1, u2, u3) is manifestly dual conformal in-
variant. Furthermore, the integral I D=6

6 as a function of the exter-
nal momenta pi has a dihedral symmetry D6 generated by cyclic
rotations pi → pi+1 and the reflection pi → p6−i+1. It is easy to
check that the dihedral symmetry of I D=6

6 implies that the func-
tion I6(u1, u2, u3) must be totally symmetric in the three cross
ratios.

2. The analytic expression for I D=6
6

We start by deriving a Mellin–Barnes (MB) representation for
I D=6
6 using the AMBRE package [5]. Although the integral is fi-

nite, the resulting MB representation has a spurious singularity
that must cancel in the end. We therefore derive the MB repre-
sentation in D = 6 − 2ε dimensions and resolve the singularities
in ε using the strategy introduced in Refs. [6–9] by applying the
codes MB [10] and MBresolve [11] and obtain a set of MB in-
tegrals which can be safely expanded in ε under the integration
sign. After applying these codes, all the integration contours are
straight vertical lines. At the end of this procedure, all the poles in
ε cancel and we are left with a manifestly finite and conformally
invariant threefold MB integral to compute,

I6 =
+i∞∫

−i∞

( 3∏

i=1

dzi

2π i
Γ (−zi)

2uzi
i

)

× Γ (1 + z1 + z2)Γ (1 + z2 + z3)Γ (1 + z3 + z1), (8)

where the contours are straight vertical lines whose real parts are
given by

Re(z1) = −1
3
, Re(z2) = −1

4
, Re(z3) = −1

5
. (9)

Albeit simpler, the integral (8) is similar to the threefold MB inte-
gral contributing to the two-loop hexagon Wilson loop in N = 4
Super Yang–Mills [12,13], hence it can be computed in the same
fashion. Following the strategy of Ref. [13], we can turn each MB
integration into an Euler-type integral via the formula,

+i∞∫

−i∞

dz
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Γ (−z)Γ (c − z)Γ (b + z)Γ (c + z)X z

= Γ (a)Γ (b + c)

1∫

0

dv vb−1(1 − v)a+c−1(1 − X v)−a, (10)

with X = 1 − X and where the contours are such as to separate
the poles in Γ (. . . − zi) from those in Γ (. . . + zi). This leaves us
with the following three-fold parametric integral to compute,
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[1 − v2(1 − u1 v1)]

× 1
[1 − v1(1 − u2 − v3(1 − u2 − u3 v2)) − (1 − u3 v2)v3]

.

(11)

The integral is easily performed in terms of multiple polyloga-
rithms [14]. The resulting expression is rather lengthy and involves
a combination of multiple polylogarithms of uniform weight three,
whose arguments are complicated algebraic functions involving the
square root of the quantity,

$ = (u1 + u2 + u3 − 1)2 − 4u1u2u3. (12)

However, the similarity between the MB integral (8) and the corre-
sponding integral of Ref. [13] suggests that it should be possible to
rewrite the answer in a simpler form, in the same way as the ana-
lytic result of Ref. [13] was rewritten in simplified form in Ref. [15].
The cornerstone of the simplification of the two-loop six-point re-
mainder function was the so-called symbol map, a linear map S
that associates a certain tensor to an iterated integral, and thus
to a multiple polylogarithm. In the following we give a very brief
summary of the symbol technique, referring to Ref. [15] for fur-
ther details. As an example, the tensor associated to the classical
polylogarithm Lin(x) is,

S
(
Lin(x)

)
= −(1 − x) ⊗ x ⊗ · · · ⊗ x︸ ︷︷ ︸

(n−1) times

. (13)

Furthermore, the tensor maps products that appear inside the ten-
sor product to a sum of tensors,

· · · ⊗ (x · y) ⊗ · · · = · · · ⊗ x ⊗ · · · + · · · ⊗ y ⊗ · · · . (14)

It is conjectured that all the functional identities among (multiple)
polylogarithms are mapped under the symbol map S to algebraic
relations among the tensors. Hence, if the symbol map is applied
to our complicated expression for I6(u1, u2, u3), it should capture
and resolve all the functional identities among the polylogarithms,
and therefore allow us to rewrite the result in a simpler form. In
order to apply this technology, it is however important that all
the arguments that enter the tensor be multiplicatively indepen-
dent. As in our case the arguments of the polylogarithms involve
square roots of $, this requirement is not fulfilled. In Ref. [15] a
reparametrization of the cross ratios ui in terms of six points zi in
CP1 was proposed,

u1 = z23z56

z25z36
, u2 = z34z61

z36z41
, u3 = z45z12

z41z52
, (15)

with zi j = zi − z j . It is easy to check that with this parametrization
the right-hand side of Eq. (12) becomes a perfect square. Hence, af-
ter this reparametrization all the arguments of the polylogarithms
are rational functions in the zi j variables, making this parametriza-
tion well suited to apply the symbol map S .

Using the parametrization (15) and the symbol map, it is easy
to construct a simpler candidate expression with the same symbol
as our original expression. However, the kernel of the map S is
non-trivial, and it allows us to fix the candidate expression only up
to terms proportional to zeta values, which in turn must be fixed
by looking at particular values of the cross ratios. At the end of
this procedure, we arrive at the following expression for the scalar
massless hexagon integral,
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where the function I6(u1, u2, u3) is manifestly dual conformal in-
variant. Furthermore, the integral I D=6

6 as a function of the exter-
nal momenta pi has a dihedral symmetry D6 generated by cyclic
rotations pi → pi+1 and the reflection pi → p6−i+1. It is easy to
check that the dihedral symmetry of I D=6

6 implies that the func-
tion I6(u1, u2, u3) must be totally symmetric in the three cross
ratios.

2. The analytic expression for I D=6
6

We start by deriving a Mellin–Barnes (MB) representation for
I D=6
6 using the AMBRE package [5]. Although the integral is fi-

nite, the resulting MB representation has a spurious singularity
that must cancel in the end. We therefore derive the MB repre-
sentation in D = 6 − 2ε dimensions and resolve the singularities
in ε using the strategy introduced in Refs. [6–9] by applying the
codes MB [10] and MBresolve [11] and obtain a set of MB in-
tegrals which can be safely expanded in ε under the integration
sign. After applying these codes, all the integration contours are
straight vertical lines. At the end of this procedure, all the poles in
ε cancel and we are left with a manifestly finite and conformally
invariant threefold MB integral to compute,

I6 =
+i∞∫

−i∞

( 3∏

i=1

dzi

2π i
Γ (−zi)

2uzi
i

)

× Γ (1 + z1 + z2)Γ (1 + z2 + z3)Γ (1 + z3 + z1), (8)

where the contours are straight vertical lines whose real parts are
given by

Re(z1) = −1
3
, Re(z2) = −1

4
, Re(z3) = −1

5
. (9)

Albeit simpler, the integral (8) is similar to the threefold MB inte-
gral contributing to the two-loop hexagon Wilson loop in N = 4
Super Yang–Mills [12,13], hence it can be computed in the same
fashion. Following the strategy of Ref. [13], we can turn each MB
integration into an Euler-type integral via the formula,

+i∞∫

−i∞

dz
2π i

Γ (−z)Γ (c − z)Γ (b + z)Γ (c + z)X z

= Γ (a)Γ (b + c)

1∫

0

dv vb−1(1 − v)a+c−1(1 − X v)−a, (10)

with X = 1 − X and where the contours are such as to separate
the poles in Γ (. . . − zi) from those in Γ (. . . + zi). This leaves us
with the following three-fold parametric integral to compute,

I6 =
1∫

0

( 3∏

i=1

dvi

)
1

[1 − v2(1 − u1 v1)]

× 1
[1 − v1(1 − u2 − v3(1 − u2 − u3 v2)) − (1 − u3 v2)v3]

.

(11)

The integral is easily performed in terms of multiple polyloga-
rithms [14]. The resulting expression is rather lengthy and involves
a combination of multiple polylogarithms of uniform weight three,
whose arguments are complicated algebraic functions involving the
square root of the quantity,

$ = (u1 + u2 + u3 − 1)2 − 4u1u2u3. (12)

However, the similarity between the MB integral (8) and the corre-
sponding integral of Ref. [13] suggests that it should be possible to
rewrite the answer in a simpler form, in the same way as the ana-
lytic result of Ref. [13] was rewritten in simplified form in Ref. [15].
The cornerstone of the simplification of the two-loop six-point re-
mainder function was the so-called symbol map, a linear map S
that associates a certain tensor to an iterated integral, and thus
to a multiple polylogarithm. In the following we give a very brief
summary of the symbol technique, referring to Ref. [15] for fur-
ther details. As an example, the tensor associated to the classical
polylogarithm Lin(x) is,

S
(
Lin(x)

)
= −(1 − x) ⊗ x ⊗ · · · ⊗ x︸ ︷︷ ︸

(n−1) times

. (13)

Furthermore, the tensor maps products that appear inside the ten-
sor product to a sum of tensors,

· · · ⊗ (x · y) ⊗ · · · = · · · ⊗ x ⊗ · · · + · · · ⊗ y ⊗ · · · . (14)

It is conjectured that all the functional identities among (multiple)
polylogarithms are mapped under the symbol map S to algebraic
relations among the tensors. Hence, if the symbol map is applied
to our complicated expression for I6(u1, u2, u3), it should capture
and resolve all the functional identities among the polylogarithms,
and therefore allow us to rewrite the result in a simpler form. In
order to apply this technology, it is however important that all
the arguments that enter the tensor be multiplicatively indepen-
dent. As in our case the arguments of the polylogarithms involve
square roots of $, this requirement is not fulfilled. In Ref. [15] a
reparametrization of the cross ratios ui in terms of six points zi in
CP1 was proposed,

u1 = z23z56

z25z36
, u2 = z34z61

z36z41
, u3 = z45z12

z41z52
, (15)

with zi j = zi − z j . It is easy to check that with this parametrization
the right-hand side of Eq. (12) becomes a perfect square. Hence, af-
ter this reparametrization all the arguments of the polylogarithms
are rational functions in the zi j variables, making this parametriza-
tion well suited to apply the symbol map S .

Using the parametrization (15) and the symbol map, it is easy
to construct a simpler candidate expression with the same symbol
as our original expression. However, the kernel of the map S is
non-trivial, and it allows us to fix the candidate expression only up
to terms proportional to zeta values, which in turn must be fixed
by looking at particular values of the cross ratios. At the end of
this procedure, we arrive at the following expression for the scalar
massless hexagon integral,

I6(u1, u2, u3)

= 1√
$

[

−2
3∑

i=1

L3
(
x+

i , x−
i

)
+ 1

3

( 3∑

i=1

%1
(
x+

i

)
− %1

(
x−

i

)
)3

+ π2

3
χ

3∑

i=1

(
%1

(
x+

i

)
− %1

(
x−

i

))
]

, (16)

where

x±
i = uix

±, x± = u1 + u2 + u3 − 1 ±
√

$

2u1u2u3
, (17)

and $ is defined in Eq. (12), and with

L3
(
x+, x−)

=
2∑

k=0

(−1)k

(2k)!! lnk(x+x−)(
%3−k

(
x+)

− %3−k
(
x−))

,

%n(x) = 1
2

(
Lin(x) − (−1)nLin(1/x)

)
, (18)

Example: Hexagons in 6 dimensions
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