Momentum twistors, special functions and symbols

Lecture 1

Claude Duhr

School of analytic computing
Atrani, 06/10-11/10 2011

Aim of this lecture

- Present mathematical tools that are useful for loop computations.
- Plan:
\Rightarrow Topic 1: Kinematics
\Rightarrow Topic 2: Multiple Polylogarithms
\Rightarrow Topic 3: Some more formal theorems about the special numbers and functions that appear in loops.
\Rightarrow Topic 4: Symbols
- There will likely be connections to other lectures, where some of these concepts will show up.

Kinematics

General considerations

Kinematics of a scattering

- We consider a $2 \rightarrow n$ scattering.

- A priori: Function of n external momenta, i.e., of $4 n$ real degrees of freedom.
- This set of variables is of course highly overconstrained.
- Question: What is a 'good' set of variables?

Kinematics of a scattering

- Assume we have expressed all our tensor integrals as scalar integrals.
\Rightarrow Integrals can only depend on scalar products $s_{i j}=\left(p_{i}+p_{j}\right)^{2}$
- Counting of two-particle invariants $(i \neq j)$:
\Rightarrow A priori: $\binom{n}{2}=\frac{n(n-1)}{2}$

Kinematics of a scattering

- Assume we have expressed all our tensor integrals as scalar integrals.
\Rightarrow Integrals can only depend on scalar products $s_{i j}=\left(p_{i}+p_{j}\right)^{2}$
- Counting of two-particle invariants $(i \neq j)$:
\Rightarrow A priori: $\binom{n}{2}=\frac{n(n-1)}{2}$
\Rightarrow Momentum conservation: $\sum_{i=1}^{n} p_{i}=0 \Rightarrow\binom{n-1}{2}=\frac{(n-1)(n-2)}{2}$

Kinematics of a scattering

- Assume we have expressed all our tensor integrals as scalar integrals.
\Rightarrow Integrals can only depend on scalar products $s_{i j}=\left(p_{i}+p_{j}\right)^{2}$
- Counting of two-particle invariants $(i \neq j)$:
\Rightarrow A priori: $\binom{n}{2}=\frac{n(n-1)}{2}$
\Rightarrow Momentum conservation: $\sum_{i=1}^{n} p_{i}=0 \Rightarrow\binom{n-1}{2}=\frac{(n-1)(n-2)}{2}$
\Rightarrow All momenta must be on-shell, $p_{i}^{2}=m_{i}^{2}$

Kinematics of a scattering

- Assume we have expressed all our tensor integrals as scalar integrals.
\Rightarrow Integrals can only depend on scalar products $s_{i j}=\left(p_{i}+p_{j}\right)^{2}$
- Counting of two-particle invariants $(i \neq j)$:
\Rightarrow A priori: $\binom{n}{2}=\frac{n(n-1)}{2}$
\Rightarrow Momentum conservation: $\sum_{i=1}^{n} p_{i}=0 \Rightarrow\binom{n-1}{2}=\frac{(n-1)(n-2)}{2}$
\Rightarrow All momenta must be on-shell, $p_{i}^{2}=m_{i}^{2}$
\Rightarrow A sum of ($n-1$) on-shell momenta does not necessarily satisfy the on-shellness constraint for p_{n}

$$
\begin{aligned}
m_{n}^{2}=p_{n}^{2}= & \left(p_{1}+\ldots+p_{n-1}\right)^{2}=\text { polynomial in } s_{i j} \\
& \binom{n-1}{2}-1=\frac{n(n-3)}{2}
\end{aligned}
$$

Example

- A four-point function depends on 4 momenta satisfying

$$
p_{1}+p_{2}+p_{3}+p_{4}=0 \quad p_{i}^{2}=m_{i}^{2}
$$

\Rightarrow Need only to consider invariants that depend on p_{1}, p_{2}, p_{3}

$$
s_{12}=s \quad s_{23}=t \quad s_{13}=u
$$

- On-shellness constraint:

$$
m_{4}^{2}=p_{4}^{2}=\left(p_{1}+p_{2}+p_{3}\right)^{2}=s+t+u-m_{1}^{2}-m_{2}^{2}-m_{3}^{2}
$$

- Counting:

$$
\binom{4-1}{2}-1=\frac{4(4-3)}{2}=2
$$

- Exercise: Show that for $n=5$, the kinematics is described by 5 external masses, and by the 5 invariants $s_{i, i+1}$

Gram determinants

- Starting from 6 points, momentum conservation and onshellness are no longer enough in 4 dimensions:
\Rightarrow Momentum conservation implies 5 independent momenta (subject to the onshellness constraint).
\Rightarrow But only 4 momenta can be linearly independent in 4 dimensions!

$$
\operatorname{Gram}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right)=0
$$

\Rightarrow We obtain a complicated polynomial relation among the invariants.

Gram determinants

- Starting from 6 points, momentum conservation and onshellness are no longer enough in 4 dimensions:
\Rightarrow Momentum conservation implies 5 independent momenta (subject to the onshellness constraint).
\Rightarrow But only 4 momenta can be linearly independent in 4 dimensions!

$$
\operatorname{Gram}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right)=0
$$

$$
\begin{aligned}
& s_{2} t_{2}^{2} s^{2}+s_{2}^{2} t_{2} s^{2}-s_{2} t_{1} t_{2} s^{2}+s_{2} t_{1} t_{3} s^{2}-s_{2} t_{2} t_{3} s^{2}+s_{2}^{2} s_{3}^{2} s+s_{3}^{2} t_{1}^{2} s-s_{3} s_{456} t_{1}^{2} s+s_{2}^{2} t_{2}^{2} s \\
& -s_{2} s_{345} t_{2}^{2} s-s_{2} s_{456} t_{2}^{2} s-s_{345} s_{456} t_{2}^{2} s+s_{3}^{2} t_{3}^{2} s-s_{3} s_{345} t_{3}^{2} s-2 s_{2} s_{3}^{2} t_{1} s+s_{2} s_{3} s_{456} t_{1} s \\
& -2 s_{2}^{2} s_{3} t_{2} s+s_{2} s_{3} s_{345} t_{2} s+s_{2} s_{3} s_{456} t_{2} s-2 s_{2} s_{345} s_{456} t_{2} s+2 s_{2} s_{3} t_{1} t_{2} s-s_{3} s_{345} t_{1} t_{2} s \\
& +s_{2} s_{456} t_{1} t_{2} s+s_{3} s_{456} t_{1} t_{2} s+s_{345} s_{456} t_{1} t_{2} s-2 s_{2} s_{3}^{2} t_{3} s+s_{2} s_{3} s_{345} t_{3} s-2 s_{3}^{2} t_{1} t_{3} s \\
& -4 s_{2} s_{3} t_{1} t_{3} s+s_{3} s_{345} t_{1} t_{3} s+s_{3} s_{456} t_{1} t_{3} s-s_{345} s_{456} t_{1} t_{3} s+2 s_{2} s_{3} t_{2} t_{3} s+s_{2} s_{345} t_{3} s \\
& +s_{3} s_{345} t_{2} t_{3} s-s_{3} s_{456} t_{2} t_{3} s+s_{345} s_{456} t_{2} t_{3} s+s_{3} s_{456}^{2} t_{1}^{2}+s_{345} s_{456}^{2} t_{2}^{2}+s_{345}^{2} s_{456} t_{2}^{2} \\
& -s_{2} s_{345} s_{456} t_{2}^{2}+s_{3} s_{345}^{2} t_{3}^{2}-s_{2} s_{3}^{2} s_{345} s_{456}+s_{3}^{2} s_{456}^{2} t_{1}-s_{3} s_{345} s_{456}^{2} t_{1}+s_{3}^{2} s_{345} s_{456} t_{1} \\
& +s_{345}^{2} s_{456}^{2} t_{2}-s_{3} s_{345} s_{456}^{2} t_{2}-s_{3} s_{345}^{2} s_{456} t_{2}+2 s_{2} s_{3} s_{345} s_{456} t_{2}-s_{3} s_{456}^{2} t_{1} t_{2} \\
& -s_{345}^{2} s_{456}^{2} t_{1} t_{2}-s_{3} s_{345} s_{456} t_{1} t_{2}+s_{3}^{2} s_{345}^{2} t_{3}-s_{3} s_{345}^{2} s_{456} t_{3}+s_{3}^{2} s_{345} s_{456} t_{3} \\
& +2 s_{3} s_{345} s_{456} t_{1} t_{3}-s_{3} s_{345}^{2} t_{2} t_{3}-s_{345}^{2} s_{456} t_{2} t_{3}-s_{3} s_{345} s_{456} t_{2} t_{3}=0 .
\end{aligned}
$$

Gram determinants

- Starting from 6 points, momentum conservation and onshellness are no longer enough in 4 dimensions:
- Momentum conservation implies 5 independent momenta (subject to the onshellness constraint).
\Rightarrow But only 4 momenta can be linearly independent in 4 dimensions!

$$
\operatorname{Gram}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right)=0
$$

\Rightarrow We obtain a complicated polynomial relation among the invariants.

- Counting:

$$
\frac{n(n-3)}{2}-\binom{n-4}{2}=3 n-10
$$

- N.B.: For $n=4,5$, we have

$$
\frac{n(n-3)}{2}=3 n-10
$$

Summary

- Contraints:
\Rightarrow Momentum conservation.
\Rightarrow On-shellness.
$3 n-10$ independent variables in 4 dimensions
\Rightarrow Gram determinant.

,

Kinematics

Massless particles:
 Spinor-helicity formalism

Spinor-Helicity formalism

- Real 4-vectors can be parametrized by hermitian 2×2 matrices:

$$
P_{i}^{a \dot{a}}=p_{i}^{\mu} \sigma_{\mu}^{a \dot{a}} \quad \operatorname{det} P_{i}=\left\|p_{i}\right\|^{2}
$$

- For null vectors, we can parametrize this matrix by

$$
P_{i}^{a \dot{a}}=\lambda_{i}^{a} \bar{\lambda}_{i}^{\dot{a}}
$$

where λ_{i}^{a} and $\bar{\lambda}_{i}^{\dot{a}}$ are two component $(1 / 2,0)$ and $(0,1 / 2)$ spinors.

- Mandelstam invariants are expressed via spinor products.

$$
\begin{gathered}
\langle i j\rangle=\epsilon_{a b} \lambda_{i}^{a} \lambda_{j}^{b}=\bar{u}_{-}(i) u_{+}(j) \quad[i j]=\epsilon_{\dot{a} \dot{b}} \bar{\lambda}_{i}^{\dot{a}} \bar{\lambda}_{j}^{\dot{b}}=\bar{u}_{+}(i) u_{-}(j) \\
s_{i j}=\langle i j\rangle[i j]
\end{gathered}
$$

Spinor-Helicity formalism

- Advantage: the spinor-helicity solves the on-shellness constraint!

$$
\begin{gathered}
\langle i j\rangle=\epsilon_{a b} \lambda_{i}^{a} \lambda_{j}^{b}=\bar{u}_{-}(i) u_{+}(j) \quad[i j]=\epsilon_{a \dot{a} b} \bar{\lambda}_{i}^{\dot{a}} \bar{\lambda}_{j}^{\dot{b}}=\bar{u}_{+}(i) u_{-}(j) \\
s_{i j}=\langle i j\rangle[i j]
\end{gathered}
$$

- In other words, choose n spinors λ_{i}^{a} (and their complex conjugates $\bar{\lambda}{ }_{i}^{\dot{a}}$) that constraint by
\Rightarrow Momentum conservation: $\sum_{i} \lambda_{i}^{a} \bar{\lambda}_{i}^{\dot{a}}=0$
\Rightarrow Satisfy the Gram determinant constraint.

Kinematics

Planar graphs: Dual coordinates

Planar graphs

- Definition: A graph is said to be planar if it can be drawn in a plane without selfcrossings.
- Examples:

- N.B.: Tree and one-loop graphs are always planar! [Why?]

Planar graphs

- Definition: A graph is said to be planar if it can be drawn in a plane without selfcrossings.
- Examples:

- N.B.: Tree and one-loop graphs are always planar! [Why?]

Planar graphs

- Definition: A graph is said to be planar if it can be drawn in a plane without selfcrossings.
- Examples:

- N.B.: Tree and one-loop graphs are always planar! [Why?]

Planar graphs

- Definition: A graph is said to be planar if it can be drawn in a plane without selfcrossings.
- Examples:

- N.B.: Tree and one-loop graphs are always planar! [Why?]
- Planar graphs appear for example in the limit of a large number of colors.

Planar graphs

- Definition: A graph is said to be planar if it can be drawn in a plane without selfcrossings.
- Examples:

- N.B.: Tree and one-loop graphs are always planar! [Why?]
- Planar graphs appear for example in the limit of a large number of colors.
- Planar graphs can only depend on consecutive Mandelstam invariants.

Dual coordinates

- In a planar graph, there is a natural way to define so-called dual coordinates (or region momenta).

Dual coordinates

- In a planar graph, there is a natural way to define so-called dual coordinates (or region momenta).

Dual coordinates

- In a planar graph, there is a natural way to define so-called dual coordinates (or region momenta).
x_{3}

Dual coordinates

- In a planar graph, there is a natural way to define so-called dual coordinates (or region momenta).
x_{3}

- External momenta take the form $p_{i}=x_{i}-x_{i+1}$.
- Consecutive Mandelstam invariants take the form

$$
\left(p_{i}+p_{i+1}+\ldots+p_{j-1}\right)^{2}=\left(x_{i}-x_{j}\right)^{2} \equiv x_{i j}^{2}
$$

Dual coordinates

- The integral can be directly written in terms of dual coordinates:

$$
\int \frac{\mathrm{d}^{D} k \mathrm{~d}^{D} l}{\left(i \pi^{D / 2}\right)^{2}} \frac{1}{k^{2}\left(k+p_{1}\right)^{2}\left(k+p_{1}+p_{2}\right)^{2} l^{2}(l-k)^{2}\left(l+p_{1}+p_{2}\right)^{2}\left(l-p_{4}\right)^{2}}
$$

$$
l=x_{6}-x_{1}
$$

Dual coordinates

- The integral can be directly written in terms of dual coordinates:

$$
\int \frac{\mathrm{d}^{D} k \mathrm{~d}^{D} l}{\left(i \pi^{D / 2}\right)^{2}} \frac{1}{k^{2}\left(k+p_{1}\right)^{2}\left(k+p_{1}+p_{2}\right)^{2} l^{2}(l-k)^{2}\left(l+p_{1}+p_{2}\right)^{2}\left(l-p_{4}\right)^{2}}
$$

- We perform the change of variables:

$$
p_{i}=x_{i}-x_{i+1} \quad k=x_{5}-x_{1} \quad l=x_{6}-x_{1}
$$

Dual coordinates

- The integral can be directly written in terms of dual coordinates:

$$
\int \frac{\mathrm{d}^{D} k \mathrm{~d}^{D} l}{\left(i \pi^{D / 2}\right)^{2}} \frac{1}{k^{2}\left(k+p_{1}\right)^{2}\left(k+p_{1}+p_{2}\right)^{2} l^{2}(l-k)^{2}\left(l+p_{1}+p_{2}\right)^{2}\left(l-p_{4}\right)^{2}}
$$

- We perform the change of variables:

$$
\begin{gathered}
p_{i}=x_{i}-x_{i+1} \quad k=x_{5}-x_{1} \quad l=x_{6}-x_{1} \\
\int \frac{\mathrm{~d}^{D} x_{5} \mathrm{~d}^{D} x_{6}}{\left(i \pi^{D / 2}\right)^{2}} \frac{1}{x_{51}^{2} x_{52}^{2} x_{53}^{2} x_{56}^{2} x_{63}^{2} x_{64}^{2} x_{61}^{2}}
\end{gathered}
$$

- Exercise: Proof this!

Dual coordinates

- Some properties:
\Rightarrow The integral can only depend on distances

$$
x_{i j}^{2}=\left(x_{i}-x_{j}\right)^{2}\left(=\left(p_{i}+p_{i+1}+\ldots+p_{j-1}\right)^{2}\right)
$$

\Rightarrow Dual coordinates make momentum conservation manifest.

Dual coordinates

- Some properties:
\Rightarrow The integral can only depend on distances

$$
x_{i j}^{2}=\left(x_{i}-x_{j}\right)^{2}\left(=\left(p_{i}+p_{i+1}+\ldots+p_{j-1}\right)^{2}\right)
$$

\Rightarrow Dual coordinates make momentum conservation manifest.

$$
p_{1}+p_{2}+\ldots+p_{n}
$$

Dual coordinates

- Some properties:
\Rightarrow The integral can only depend on distances

$$
x_{i j}^{2}=\left(x_{i}-x_{j}\right)^{2}\left(=\left(p_{i}+p_{i+1}+\ldots+p_{j-1}\right)^{2}\right)
$$

\Rightarrow Dual coordinates make momentum conservation manifest.

$$
\begin{aligned}
& p_{1}+p_{2}+\ldots+p_{n} \\
& \quad=\left(x_{1}-x_{2}\right)+\left(x_{2}-x_{3}\right)+\ldots+\left(x_{n}-x_{1}\right)
\end{aligned}
$$

Dual coordinates

- Some properties:
\Rightarrow The integral can only depend on distances

$$
x_{i j}^{2}=\left(x_{i}-x_{j}\right)^{2}\left(=\left(p_{i}+p_{i+1}+\ldots+p_{j-1}\right)^{2}\right)
$$

\Rightarrow Dual coordinates make momentum conservation manifest.

$$
\begin{aligned}
p_{1} & +p_{2}+\ldots+p_{n} \\
& =\left(x_{1}-x_{2}\right)+\left(x_{2}-x_{3}\right)+\ldots+\left(x_{n}-x_{1}\right) \\
& =0
\end{aligned}
$$

Dual coordinates

- Some properties:
\Rightarrow The integral can only depend on distances

$$
x_{i j}^{2}=\left(x_{i}-x_{j}\right)^{2}\left(=\left(p_{i}+p_{i+1}+\ldots+p_{j-1}\right)^{2}\right)
$$

\Rightarrow Dual coordinates make momentum conservation manifest.
\Rightarrow The on-shellness constraint must however be imposed by hand.

Dual coordinates

- Some properties:
\Rightarrow The integral can only depend on distances

$$
x_{i j}^{2}=\left(x_{i}-x_{j}\right)^{2}\left(=\left(p_{i}+p_{i+1}+\ldots+p_{j-1}\right)^{2}\right)
$$

\Rightarrow Dual coordinates make momentum conservation manifest.
\Rightarrow The on-shellness constraint must however be imposed by hand.

- A side remark: The kinematics is encoded in a polygon in dual space! \longrightarrow Link to Wilson loops! [See Henn's lecture]

Dual coordinates

- Some properties:
\Rightarrow The integral can only depend on distances

$$
x_{i j}^{2}=\left(x_{i}-x_{j}\right)^{2}\left(=\left(p_{i}+p_{i+1}+\ldots+p_{j-1}\right)^{2}\right)
$$

\Rightarrow Dual coordinates make momentum conservation manifest.
\Rightarrow The on-shellness constraint must however be imposed by hand.

- A side remark: The kinematics is encoded in a polygon in dual space! \rightarrow Link to Wilson loops! [See Henn's lecture]

Dual coordinates

- Some properties:
\Rightarrow The integral can only depend on distances

$$
x_{i j}^{2}=\left(x_{i}-x_{j}\right)^{2}\left(=\left(p_{i}+p_{i+1}+\ldots+p_{j-1}\right)^{2}\right)
$$

\Rightarrow Dual coordinates make momentum conservation manifest.
\Rightarrow The on-shellness constraint must however be imposed by hand.

- A side remark: The kinematics is encoded in a polygon in dual space! \rightarrow Link to Wilson loops! [See Henn's lecture]

Dual conformal invariance Smirnov, Sokatchev]

- Some integrals can exhibit an unexpected symmetry in dual coordinates!
$\int \frac{\mathrm{d}^{4} x_{5} \mathrm{~d}^{4} x_{6}}{\pi^{4}} \frac{\left(x_{13}^{2}\right)^{2} x_{24}^{2}}{x_{51}^{2} x_{52}^{2} x_{53}^{2} x_{56}^{2} x_{63}^{2} x_{64}^{2} x_{61}^{2}}$

with all external legs massive (integral is finite!)

Duat confornandiner [Drummond, Henn, Smirnov, Sokatchev]

- Some integrals can exhibit an unexpected symmetry in dual coordinates!
$\int \frac{\mathrm{d}^{4} x_{5} \mathrm{~d}^{4} x_{6}}{\pi^{4}} \frac{\left(x_{13}^{2}\right)^{2} x_{24}^{2}}{x_{51}^{2} x_{52}^{2} x_{53}^{2} x_{56}^{2} x_{63}^{2} x_{64}^{2} x_{61}^{2}}$

with all external legs massive (integral is finite!)
- Translational and rotational invariance is manifest.

Duat confornnat invariance [Drummond, Henn, Smirnov, Sokatchev]

- Some integrals can exhibit an unexpected symmetry in dual coordinates!
$\int \frac{\mathrm{d}^{4} x_{5} \mathrm{~d}^{4} x_{6}}{\pi^{4}} \frac{\left(x_{13}^{2}\right)^{2} x_{24}^{2}}{x_{51}^{2} x_{52}^{2} x_{53}^{2} x_{56}^{2} x_{63}^{2} x_{64}^{2} x_{61}^{2}}$

with all external legs massive (integral is finite!)
- Translational and rotational invariance is manifest.
- Dilatation invariance $x_{i} \rightarrow \lambda x_{i}$.

Dual conformal invariance
 [Drummond, Henn, Smirnov, Sokatchev]

- Some integrals can exhibit an unexpected symmetry in dual coordinates!
$\int \frac{\mathrm{d}^{4} x_{5} \mathrm{~d}^{4} x_{6}}{\pi^{4}} \frac{\left(x_{13}^{2}\right)^{2} x_{24}^{2}}{x_{51}^{2} x_{52}^{2} x_{53}^{2} x_{56}^{2} x_{63}^{2} x_{64}^{2} x_{61}^{2}}$

with all external legs massive (integral is finite!)
- Translational and rotational invariance is manifest.
- Dilatation invariance $x_{i} \rightarrow \lambda x_{i}$.
- Inversion invariance $x_{i} \rightarrow x_{i} / x_{i}^{2}$,

$$
x_{i j}^{2} \rightarrow x_{i j}^{2} /\left(x_{i}^{2} x_{j}^{2}\right) \quad \mathrm{d}^{4} x_{i} \rightarrow \mathrm{~d}^{4} x_{i} /\left(x_{i}^{2}\right)^{4}
$$

Dual conformal invariance
 [Drummond, Henn, Smirnov, Sokatchev]

- Some integrals can exhibit an unexpected symmetry in dual coordinates!
$\int \frac{\mathrm{d}^{4} x_{5} \mathrm{~d}^{4} x_{6}}{\pi^{4}} \frac{\left(x_{13}^{2}\right)^{2} x_{24}^{2}}{x_{51}^{2} x_{52}^{2} x_{53}^{2} x_{56}^{2} x_{63}^{2} x_{64}^{2} x_{61}^{2}}$

with all external legs massive (integral is finite!)
- Translational and rotational invariance is manifest.
- Dilatation invariance $x_{i} \rightarrow \lambda x_{i}$.
- Inversion invariance $x_{i} \rightarrow x_{i} / x_{i}^{2}$,

$$
x_{i j}^{2} \rightarrow x_{i j}^{2} /\left(x_{i}^{2} x_{j}^{2}\right) \quad \mathrm{d}^{4} x_{i} \rightarrow \mathrm{~d}^{4} x_{i} /\left(x_{i}^{2}\right)^{4}
$$

- In total, we get a conformal symmetry group!

Dual conformal invariance
 [Drummond, Henn, Smirnov, Sokatchev]

- The integral is a (dual) conformal invariant.
- A conformal invariant can only depend on conformal cross ratios:

$$
\frac{x_{i j}^{2} x_{k l}^{2}}{x_{i l}^{2} x_{k j}^{2}}
$$

- For a 4 -mass box, there are only two independent cross ratios:

$$
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

$$
v=\frac{x_{23}^{2} x_{14}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

$$
=\Phi(u, v)
$$

- N.B.: This was naively a function of 6 scales!

Dual conformal invariance
 [Drummond, Henn, Smirnov, Sokatchev]

- Simplest example: The one-loop 4-mass box:

$$
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}} \quad v=\frac{x_{23}^{2} x_{14}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

$$
\alpha_{ \pm} \equiv \frac{2 u}{1+u-v \pm \sqrt{(1-u-v)^{2}-4 u v}}
$$

$$
\operatorname{Li}_{2}\left(1-\alpha^{+}\right)-\operatorname{Li}_{2}\left(1-\alpha^{-}\right)+1 / 2 \ln v \ln \frac{\alpha^{+}}{\alpha^{-}}-1 / 2 \ln u \ln v
$$

- N.B.: Divergences in general destroy dual conformal invariance! [Why?]
- Exercise: Proof that every (finite) n-gon in $D=n$ is dual conformal invariant.

Summary

- Contraints:
\Rightarrow Momentum conservation.
\Rightarrow On-shellness.
$3 n-10$ independent variables in 4 dimensions
\Rightarrow Gram determinant.

Kinematics

Momentum twistors

Momentum twistors

- Define 4 -component objects transforming under $\operatorname{SU}(2,2)$

$$
Z_{i}=\binom{\lambda_{i}}{\bar{\mu}_{i}} \quad \bar{\mu}_{i}^{\dot{a}}=i x_{i}^{a \dot{a}} \lambda_{i a}
$$

- Such objects are called twistors.
- Twistors are the spinorial representation of the conformal group.
- The point x is said to incident to the twistor Z.
- Momentum twistors have nice properties:
- They solve the momentum conservation constraint.
\Rightarrow They solve the on-shellness constraint.
$\boldsymbol{\Rightarrow}$ They even solve the Gram determinant constraint!
\Rightarrow Kinematic configurations are described by geometric configurations in twistor space.

Twistor space in a nutshell

- We consider the space \mathbb{C}^{4} transforming under $\operatorname{SU}(2,2)$.
- We can define 'dual twistors' \bar{Z}_{i} as the objects transforming in the complex conjugate representation.
- Then there are two invariant forms on this space:

$$
Z_{i} \cdot \bar{Z}_{j}=\langle i j\rangle+[i j] \quad\langle i j k l\rangle=\epsilon_{I J K L} Z_{i}^{I} Z_{j}^{J} Z_{k}^{K} Z_{l}^{L}
$$

Twistor space in a nutshell

- We consider the space \mathbb{C}^{4} transforming under $\operatorname{SU}(2,2)$.
- We can define 'dual twistors' \bar{Z}_{i} as the objects transforming in the complex conjugate representation.
- Then there are two invariant forms on this space:

$$
Z_{i} \cdot \bar{Z}_{j}=\langle i j\rangle+[i j] \quad\langle i j k l\rangle=\epsilon_{I J K L} Z_{i}^{I} Z_{j}^{J} Z_{k}^{K} Z_{l}^{L}
$$

- This allows us to give an interpretation to dual twistors: Consider the locus of all twistors Z satisfying $Z \cdot \bar{Z}_{i}=0$ for some fixed \bar{Z}_{i}.

Twistor space in a nutshell

- We consider the space \mathbb{C}^{4} transforming under $\operatorname{SU}(2,2)$.
- We can define 'dual twistors' \bar{Z}_{i} as the objects transforming in the complex conjugate representation.
- Then there are two invariant forms on this space:

$$
Z_{i} \cdot \bar{Z}_{j}=\langle i j\rangle+[i j] \quad\langle i j k l\rangle=\epsilon_{I J K L} Z_{i}^{I} Z_{j}^{J} Z_{k}^{K} Z_{l}^{L}
$$

- This allows us to give an interpretation to dual twistors: Consider the locus of all twistors Z satisfying $Z \cdot \bar{Z}_{i}=0$ for some fixed \bar{Z}_{i}.
\Rightarrow Dual twistors are hyperplanes in twistor space!

Incidence relation

- We want to link twistor space to Minkowski space
\Rightarrow Incidence relation:

$$
Z_{i}=\binom{\lambda_{i}}{\bar{\mu}_{i}} \quad \bar{\mu}_{i}^{\dot{a}}=i x_{i}^{a \dot{a}} \lambda_{i a}
$$

\Rightarrow The incidence relation is invariant under a rescaling of Z, and we should therefore rather work with a projective space $\mathbb{C P}^{3}$.

Incidence relation

- We want to link twistor space to Minkowski space
- Incidence relation:

$$
Z_{i}=\binom{\lambda_{i}}{\bar{\mu}_{i}} \quad \bar{\mu}_{i}^{\dot{a}}=i x_{i}^{a \dot{a}} \lambda_{i a}
$$

\Rightarrow The incidence relation is invariant under a rescaling of Z, and we should therefore rather work with a projective space $\mathbb{C P}^{3}$.

- Given a twistor Z incident to \mathfrak{x}, which points in Minkowski space is it incident to?

Incidence relation

- We want to link twistor space to Minkowski space
- Incidence relation:

$$
Z_{i}=\binom{\lambda_{i}}{\bar{\mu}_{i}} \quad \bar{\mu}_{i}^{\dot{a}}=i x_{i}^{a \dot{a}} \lambda_{i a}
$$

\Rightarrow The incidence relation is invariant under a rescaling of Z, and we should therefore rather work with a projective space $\mathbb{C P}^{3}$.

- Given a twistor Z incident to x, which points in Minkowski space is it incident to?
\Rightarrow Answer:The light-ray through x in the direction $p^{a \dot{a}}=\lambda^{a} \bar{\lambda}^{\dot{a}}$

Incidence relation

- We want to link twistor space to Minkowski space
- Incidence relation:

$$
Z_{i}=\binom{\lambda_{i}}{\bar{\mu}_{i}} \quad \bar{\mu}_{i}^{\dot{a}}=i x_{i}^{a \dot{a}} \lambda_{i a}
$$

\Rightarrow The incidence relation is invariant under a rescaling of Z, and we should therefore rather work with a projective space $\mathbb{C P}^{3}$.

- Given a twistor Z incident to x, which points in Minkowski space is it incident to?
\Rightarrow Answer:The light-ray through x in the direction $p^{a \dot{a}}=\lambda^{a} \bar{\lambda}^{\dot{a}}$
\Rightarrow Proof: $y^{a \dot{a}}=x_{a \dot{a}}+t \lambda^{a} \bar{\lambda}^{\dot{a}}$

Incidence relation

- We want to link twistor space to Minkowski space
- Incidence relation:

$$
Z_{i}=\binom{\lambda_{i}}{\bar{\mu}_{i}} \quad \bar{\mu}_{i}^{\dot{a}}=i x_{i}^{a \dot{a}} \lambda_{i a}
$$

\Rightarrow The incidence relation is invariant under a rescaling of Z, and we should therefore rather work with a projective space $\mathbb{C P}^{3}$.

- Given a twistor Z incident to x, which points in Minkowski space is it incident to?
\Rightarrow Answer:The light-ray through x in the direction $p^{a \dot{a}}=\lambda^{a} \bar{\lambda}^{\dot{a}}$
- Proof: $y^{a \dot{a}}=x_{a \dot{a}}+t \lambda^{a} \bar{\lambda}^{\dot{a}}$

$$
i y^{a \dot{a}} \lambda_{a}=i x^{a \dot{a}} \lambda_{a}+i t\langle\lambda \lambda\rangle \bar{\lambda}^{\dot{a}}=i x^{a \dot{a}} \lambda_{a}=\bar{\mu}^{\dot{a}}
$$

Incidence relation

- We want to link twistor space to Minkowski space
- Incidence relation:

$$
Z_{i}=\binom{\lambda_{i}}{\bar{\mu}_{i}} \quad \bar{\mu}_{i}^{\dot{a}}=i x_{i}^{a \dot{a}} \lambda_{i a}
$$

- The incidence relation is invariant under a rescaling of Z, and we should therefore rather work with a projective space $\mathbb{C P}^{3}$.
- Given a twistor Z incident to x, which points in Minkowski space is it incident to?
\Rightarrow Answer:The light-ray through x in the direction $p^{a \dot{a}}=\lambda^{a} \bar{\lambda}^{\dot{a}}$
- Conversely, a line in twistor space corresponds to a point in Minkowski space!

Twistor 'dictionary'

points in Minkowski space \longleftrightarrow lines in twistor space light rays in Minkowski space \longleftrightarrow points in twistor space

Twistor 'dictionary'

points in Minkowski space \longleftrightarrow lines in twistor space light rays in Minkowski space \longleftrightarrow points in twistor space

Twistor 'dictionary'

points in Minkowski space \longleftrightarrow lines in twistor space light rays in Minkowski space \longleftrightarrow points in twistor space light-like distances \longleftrightarrow intersection of lines

Twistor geometry

- Notation:
\Rightarrow The line passing L through Z_{1} and Z_{2} :

$$
L=Z_{1} \wedge Z_{2}=-Z_{2} \wedge Z_{1}
$$

\Rightarrow The plane P passing through Z_{1}, Z_{2} and Z_{3} :

$$
P=Z_{1} \wedge Z_{2} \wedge Z_{3}
$$

- Geometric statements are now encoded in the 'twistor bracket':
$\Rightarrow L_{1}=Z_{1} \wedge Z_{2}$ and $L_{2}=Z_{3} \wedge Z_{4}$ intersect iff

$$
\left\langle L_{1} L_{2}\right\rangle \equiv\langle 1234\rangle=0
$$

$\Rightarrow Z$ lies on the plane $P=Z_{1} \wedge Z_{2} \wedge Z_{3}$ iff

$$
\langle Z P\rangle \equiv\langle Z 123\rangle=0
$$

- Exercise: Proof this!

Momentum twistors

- Consider amplitude with massless external legs:

- An n-point massless amplitudes can be given by n momentum twistors.
- All the constraints in 4 dimensions are now trivial!
- The the point x_{i} in dual space is associated the line

$$
X_{i}=Z_{i} \wedge Z_{i-1}
$$

- Dual momentum twistors ('planes') are given by

$$
\begin{equation*}
\bar{Z}_{i}=Z_{i-1} \wedge Z_{i} \wedge Z_{i-1} \tag{Why?}
\end{equation*}
$$

Momentum twistors

- Consider amplitude with massless external legs:

- An n-point massless amplitudes can be given by n momentum twistors.
- All the constraints in 4 dimensions are now trivial!
- The the point x_{i} in dual space is associated the line

$$
X_{i}=Z_{i} \wedge Z_{i-1}
$$

- Dual momentum twistors ('planes') are given by

$$
\begin{equation*}
\bar{Z}_{i}=Z_{i-1} \wedge Z_{i} \wedge Z_{i-1} \tag{Why?}
\end{equation*}
$$

Momentum twistors

- Consider amplitude with massless external legs:

- An n-point massless amplitudes can be given by n momentum twistors.
- All the constraints in 4 dimensions are now trivial!
- The the point x_{i} in dual space is associated the line

$$
X_{i}=Z_{i} \wedge Z_{i-1}
$$

- Dual momentum twistors ('planes') are given by

$$
\begin{equation*}
\bar{Z}_{i}=Z_{i-1} \wedge Z_{i} \wedge Z_{i-1} \tag{Why?}
\end{equation*}
$$

Momentum twistors

- Distances in dual space are now expressed through twistor and spinor brackets:

$$
x_{i j}^{2}=\frac{\langle i-1 i j-1 j\rangle}{\langle i-1 i\rangle\langle j-1 j\rangle}=\frac{\left\langle X_{i} X_{j}\right\rangle}{\langle i-1 i\rangle\langle j-1 j\rangle}
$$

- N.B.: Spinor brackets must cancel out from dual conformal quantities:

$$
\frac{x_{i j}^{2} x_{k l}^{2}}{x_{i l}^{2} x_{k j}^{2}}=\frac{\left\langle X_{i} X_{j}\right\rangle\left\langle X_{k} X_{l}\right\rangle}{\left\langle X_{i} X_{l}\right\rangle\left\langle X_{k} X_{j}\right\rangle}=\frac{\left\langle Z_{i-1} Z_{i} Z_{j-1} Z_{j}\right\rangle\left\langle Z_{k-1} Z_{k} Z_{l-1} Z_{l}\right\rangle}{\left\langle Z_{i-1} Z_{i} Z_{l-1} Z_{l}\right\rangle\left\langle Z_{k-1} Z_{k} Z_{j-1} Z_{j}\right\rangle}
$$

Momentum twistors

- Distances in dual space are now expressed through twistor and spinor brackets:

$$
x_{i j}^{2}=\frac{\langle i-1 i j-1 j\rangle}{\langle i-1 i\rangle\langle j-1 j\rangle}=\frac{\left\langle X_{i} X_{j}\right\rangle}{\langle i-1 i\rangle\langle j-1 j\rangle}
$$

- N.B.: Spinor brackets must cancel out from dual conformal quantities:

$$
\frac{x_{i j}^{2} x_{k l}^{2}}{x_{i l}^{2} x_{k j}^{2}}=\frac{\left\langle X_{i} X_{j}\right\rangle\left\langle X_{k} X_{l}\right\rangle}{\left\langle X_{i} X_{l}\right\rangle\left\langle X_{k} X_{j}\right\rangle}=\frac{\left\langle Z_{i-1} Z_{i} Z_{j-1} Z_{j}\right\rangle\left\langle Z_{k-1} Z_{k} Z_{l-1} Z_{l}\right\rangle}{\left\langle Z_{i-1} Z_{i} Z_{l-1} Z_{l}\right\rangle\left\langle Z_{k-1} Z_{k} Z_{j-1} Z_{j}\right\rangle}
$$

- Dual conformal invariant integrals can be written directly in twistor space:

[See Caron-Huot's lecture]

$$
\int \frac{\mathrm{d}^{4} x_{5} \mathrm{~d}^{4} x_{6}}{\pi^{4}} \frac{\left(x_{13}^{2}\right)^{2} x_{24}^{2}}{x_{51}^{2} x_{52}^{2} x_{53}^{2} x_{56}^{2} x_{63}^{2} x_{64}^{2} x_{61}^{2}}
$$

Momentum twistors

- Distances in dual space are now expressed through twistor and spinor brackets:

$$
x_{i j}^{2}=\frac{\langle i-1 i j-1 j\rangle}{\langle i-1 i\rangle\langle j-1 j\rangle}=\frac{\left\langle X_{i} X_{j}\right\rangle}{\langle i-1 i\rangle\langle j-1 j\rangle}
$$

- N.B.: Spinor brackets must cancel out from dual conformal quantities:

$$
\frac{x_{i j}^{2} x_{k l}^{2}}{x_{i l}^{2} x_{k j}^{2}}=\frac{\left\langle X_{i} X_{j}\right\rangle\left\langle X_{k} X_{l}\right\rangle}{\left\langle X_{i} X_{l}\right\rangle\left\langle X_{k} X_{j}\right\rangle}=\frac{\left\langle Z_{i-1} Z_{i} Z_{j-1} Z_{j}\right\rangle\left\langle Z_{k-1} Z_{k} Z_{l-1} Z_{l}\right\rangle}{\left\langle Z_{i-1} Z_{i} Z_{l-1} Z_{l}\right\rangle\left\langle Z_{k-1} Z_{k} Z_{j-1} Z_{j}\right\rangle}
$$

- Dual conformal invariant integrals can be written directly in twistor space:

[See Caron-Huot's lecture]

$$
\int \frac{\mathrm{d} Z_{A B} \mathrm{~d} Z_{C D}}{\pi^{4}} \frac{\langle 1234\rangle^{3}}{\langle A B 41\rangle\langle A B 12\rangle\langle A B 23\rangle\langle A B C D\rangle\langle C D 23\rangle\langle C D 34\rangle\langle C D 41\rangle}
$$

Example: Hexagons in 6 dimensions

$$
I_{6}^{D=6}=\int \frac{\mathrm{d}^{6} k}{i \pi^{3}} \prod_{i=0}^{5} \frac{1}{D_{i}}
$$

$$
D_{0}=k^{2} \quad \text { and } \quad D_{i}=\left(k+p_{i}\right)^{2}, \text { for } i=1, \ldots, 5
$$

\Rightarrow This integral is finite!
\Rightarrow Function of 9 scales.

Example: Hexagons in 6 dimensions

$$
I_{6}^{D=6}=\int \frac{\mathrm{d}^{6} k}{i \pi^{3}} \prod_{i=0}^{5} \frac{1}{D_{i}}
$$

$$
D_{0}=k^{2} \quad \text { and } D_{i}=\left(k+p_{i}\right)^{2}, \text { for } i=1, \ldots, 5
$$

\Rightarrow This integral is finite!
\Rightarrow Function of 9 scales.

- Integral in dual coordinates

$$
I_{6}^{D=6}=\int \frac{\mathrm{d}^{6} x_{0}}{i \pi^{3}} \frac{x_{13}^{2} x_{24}^{2} x_{36}^{2}}{x_{01}^{2} x_{02}^{2} x_{03}^{2} x_{04}^{2} x_{05}^{2} x_{06}^{2}}
$$

Example: Hexagons in 6 dimensions

$$
I_{6}^{D=6}=\int \frac{\mathrm{d}^{6} k}{i \pi^{3}} \prod_{i=0}^{5} \frac{1}{D_{i}}
$$

$D_{0}=k^{2}$ and $D_{i}=\left(k+p_{i}\right)^{2}$, for $i=1, \ldots, 5$.
\Rightarrow This integral is finite!
\Rightarrow Function of 9 scales.

- Integral in dual coordinates

$$
x_{2}
$$

$$
I_{6}^{D=6}=\int \frac{\mathrm{d}^{6} x_{0}}{i \pi^{3}} \frac{x_{13}^{2} x_{24}^{2} x_{36}^{2}}{x_{01}^{2} x_{02}^{2} x_{03}^{2} x_{04}^{2} x_{05}^{2} x_{06}^{2}}
$$

\Rightarrow The integral is dual conformally invariant in 6 dimensions!

Example: Hexagons in 6 dimensions

$$
I_{6}^{D=6}=\int \frac{\mathrm{d}^{6} x_{0}}{i \pi^{3}} \frac{x_{13}^{2} x_{24}^{2} x_{36}^{2}}{x_{01}^{2} x_{02}^{2} x_{03}^{2} x_{04}^{2} x_{05}^{2} x_{06}^{2}}
$$

- There are 3 independent cross ratios we can form:

$$
u_{1}=\frac{x_{13}^{2} x_{46}^{2}}{x_{36}^{2} x_{41}^{2}} \quad u_{2}=\frac{x_{15}^{2} x_{24}^{2}}{x_{14}^{2} x_{25}^{2}} \quad u_{3}=\frac{x_{26}^{2} x_{35}^{2}}{x_{25}^{2} x_{36}^{2}}
$$

Example: Hexagons in 6 dimensions

$$
I_{6}^{D=6}=\int \frac{\mathrm{d}^{6} x_{0}}{i \pi^{3}} \frac{x_{13}^{2} x_{24}^{2} x_{36}^{2}}{x_{01}^{2} x_{02}^{2} x_{03}^{2} x_{04}^{2} x_{05}^{2} x_{06}^{2}}
$$

- There are 3 independent cross ratios we can form:

$$
u_{1}=\frac{x_{13}^{2} x_{46}^{2}}{x_{36}^{2} x_{41}^{2}} \quad u_{2}=\frac{x_{15}^{2} x_{24}^{2}}{x_{14}^{2} x_{25}^{2}} \quad u_{3}=\frac{x_{26}^{2} x_{35}^{2}}{x_{25}^{2} x_{36}^{2}}
$$

- Instead of having to deal with the 9 scales, we 'only' have 3 cross ratios:

$$
I_{6}^{D=6}=\Phi\left(u_{1}, u_{2}, u_{3}\right)
$$

Example: Hexagons in 6 dimensions

$$
\begin{gathered}
I_{6}^{D=6}=\Phi\left(u_{1}, u_{2}, u_{3}\right) \\
u_{1}=\frac{x_{13}^{2} x_{46}^{2}}{x_{36}^{2} x_{41}^{2}} \quad u_{2}=\frac{x_{15}^{2} x_{24}^{2}}{x_{14}^{2} x_{25}^{2}} \quad u_{3}=\frac{x_{26}^{2} x_{35}^{2}}{x_{25}^{2} x_{36}^{2}}
\end{gathered}
$$

- We are in 6 dimensions, so no twistors a priori.

Example: Hexagons in 6 dimensions

$$
\begin{gathered}
I_{6}^{D=6}=\Phi\left(u_{1}, u_{2}, u_{3}\right) \\
u_{1}=\frac{x_{113}^{2} x_{46}^{2}}{x_{36}^{2} x_{41}^{2}} \quad u_{2}=\frac{x_{15}^{2} x_{24}^{2}}{x_{14}^{2} x_{25}^{2}} \quad u_{3}=\frac{x_{26}^{2} x_{35}^{2}}{x_{25}^{2} x_{36}^{2}}
\end{gathered}
$$

- We are in 6 dimensions, so no twistors a priori.
- However, the only thing that matters are the cross ratios:
\Rightarrow We can choose our momenta to lie in a 4 D subspace.

Example: Hexagons in 6 dimensions

$$
\begin{gathered}
I_{6}^{D=6}=\Phi\left(u_{1}, u_{2}, u_{3}\right) \\
u_{1}=\frac{x_{13}^{2} x_{46}^{2}}{x_{36}^{2} x_{41}^{2}} \quad u_{2}=\frac{x_{15}^{2} x_{24}^{2}}{x_{14}^{2} x_{25}^{2}} \quad u_{3}=\frac{x_{26}^{2} x_{35}^{2}}{x_{25}^{2} x_{36}^{2}}
\end{gathered}
$$

- We are in 6 dimensions, so no twistors a priori.
- However, the only thing that matters are the cross ratios:
\Rightarrow We can choose our momenta to lie in a 4 D subspace.

\Rightarrow space time cross ratios:

$$
u_{1}=\frac{\left\langle X_{1} X_{3}\right\rangle\left\langle X_{4} X_{6}\right\rangle}{\left\langle X_{3} X_{6}\right\rangle\left\langle X_{4} X_{1}\right\rangle}=\frac{\langle 6123\rangle\langle 3456\rangle}{\langle 2356\rangle\langle 3461\rangle}
$$

\Rightarrow new cross ratios:

$$
x_{1}^{+}=-\frac{\langle 6345\rangle\langle 1245\rangle}{\langle 6145\rangle\langle 2345\rangle}
$$

Example: Hexagons in 6 dimensions

$$
\begin{gathered}
\frac{1}{\sqrt{\Delta}}\left[-2 \sum_{i=1}^{3} L_{3}\left(x_{i}^{+}, x_{i}^{-}\right)+\frac{1}{3}\left(\sum_{i=1}^{3} \ell_{1}\left(x_{i}^{+}\right)-\ell_{1}\left(x_{i}^{-}\right)\right)^{3}+\frac{\pi^{2}}{3} x \sum_{i=1}^{3}\left(\ell_{1}\left(x_{i}^{+}\right)-\ell_{1}\left(x_{i}^{-}\right)\right)\right], \\
x_{i}^{ \pm}=u_{i} x^{ \pm}, \quad x^{ \pm}=\frac{u_{1}+u_{2}+u_{3}-1 \pm \sqrt{\Delta}}{2 u_{1} u_{2} u_{3}}, \\
\Delta=\left(u_{1}+u_{2}+u_{3}-1\right)^{2}-4 u_{1} u_{2} u_{3} . \\
L_{3}\left(x^{+}, x^{-}\right)=\sum_{k=0}^{2} \frac{(-1)^{k}}{(2 k)!!} \ln ^{k}\left(x^{+} x^{-}\right)\left(\ell_{3-k}\left(x^{+}\right)-\ell_{3-k}\left(x^{-}\right)\right), \\
\ell_{n}(x)=\frac{1}{2}\left(\operatorname{Li}_{n}(x)-(-1)^{n} \operatorname{Li}_{n}(1 / x)\right),
\end{gathered}
$$

[Dixon, Drummond, Henn; Del Duca, CD, Smirnov]

Summary lecture 1

Summary lecture 1

