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Four point amplitude at strong coupling

Motivations

We will be interested in gluon scattering amplitudes of planar
N = 4 super Yang-Mills.

Motivation: It can give non trivial information about more realistic
theories but is more tractable. In the last years, many tools
become available.

Perturbative computations are easier (as you will see in this
school!).

The strong coupling regime can be studied, by means of the
gauge/string duality, through a weakly coupled string sigma
model.
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N = 4 Super-Yang Mills

Most symmetric four dimensional quantum field theory.

SU(N) gauge group → fixed Lagrangian.

Parametrized by Nc and g
YM

.

We will focus in the planar limit: Nc � 1, λ = g2
YMNc fixed:

A(gYM ,Nc)→ A(λ)

We will scatter gluons in this theory!
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Four point amplitude at strong coupling

Gluon state |G〉 = |h, kµ, a〉

AL,Full
n ∼

∑
ρ Tr(T aρ(1) ...T aρ(n))A

(L)
n (ρ(1), ..., ρ(2))

Leading Nc color ordered n−points amplitude at L loops: A
(L)
n

A
(L)
n depends only on the kinematics and the helicities of the

gluons.
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What about the helicities?

SuSy Ward identities → A(±,+,+,+, ...,+) = 0.

First non trivial, A(−,−,+,+, ...+), MHV amplitudes.

Lorentz structure already captured by the tree level amplitude!

Reduced M
(L)
n (ε) = A

(L)
n (ε)/A

(0)
n , only function of the

kinematical invariants.
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The amplitudes are IR divergent so we need to introduce a
regulator.

Dimensional regularization D = 4− 2ε→ A
(L)
n (ε) = 1/ε2L + ...

IR divergences ”exponentiate”:

MN = 1 + λM
(1)
N + λ2M

(2)
N + ...

MN = ef (λ)M
(1)
N eRN(ki ,λ)

All IR-divergences are contained in the first factor
M(1) = 1

ε2 + ....

RN(ki , λ): finite piece, depends only on cross-ratios and the
coupling constant.
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f (λ): Cusp anomalous dimension!

Very well understood in the AdS/CFT .

It appears in a lot of computations!

Using integrability an equation was written, which computes it
at all values of the coupling!!

f (λ) = λ+ ..., λ� 1; f (λ) =

√
λ

π
+ ..., λ� 1

Question: How do we compute amplitudes at strong coupling?!
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AdS/CFT duality

Four dimensional maximally
SUSY Yang-Mills

( g
YM

, N ) ⇔

Type IIB string theory on
AdS5 × S5

( gs , R)

√
λ ≡

√
g2
YM

N =
R2

α′
1

N
≈ gs

The AdS/CFT is a very powerful computational tool!
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Consider F (λ)

The gauge theory is only good/reliable for λ� 1

F (λ) = F (0) + λF (1) + λ2F (2) + ...

Systematic way to compute these terms, but the complexity
grows really fast!
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What to do for large values of λ? use AdS/CFT ! (R ≈ λ1/4)

F (λ) =
√
λ F̃ (0) + F̃ (1) +

1√
λ
F̃ (2) + ...

Some geometrical computation!

In N = 4 SYM we have the luxury of the AdS/CFT duality.

We can compute quantities of N = 4 SYM at strong coupling
by doing geometrical computations on AdS .

Disclaimer:

Sometimes hard to build the AdS/CFT dictionary!

Scattering amplitudes: First we need to introduce a regulator!
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String theory set up

ds2 = R2 dx
2
3+1 + dz2

z2

Regulator: Place a D-brane extended along x3+1 and located
at some large zIR .

Z = Z
IR

Z = 0

The asymptotic states are open strings
ending on the D-brane.

Consider the scattering of these open
strings.

The proper momentum of these strings,
kpr = k zIR

R is very large, so we are
interested in the regime of fixed angle and
very high momentum.
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This regime was considered in flat space ( Gross and Mende)

Key feature

The amplitude is dominated by a saddle point of the classical
action.
⇓

We need to consider a classical string on AdS

Important difference: k doesn’t need to be too large.
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World-sheet with the topology of a disk with vertex operator
insertions (corresponding to external states)

Near each vertex operator, the momentum of the external
state fixes the form of the solution.

In the boundary of the world-sheet z = zIR
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Four point amplitude at strong coupling

”T-duality”: ds2 = w2(z)dxµdx
µ → ∂αy

µ = iw2(z)εαβ∂βx
µ

Boundary conditions: xµ carries momentum kµ → yµ has
winding ∆yµ = 2πkµ.

After a change of coordinates r = R2/z we end up again with
AdS5

ds2 = R2 dy
2
3+1 + dr2

r2

What happened to the world-sheet?

Its boundary is a sequence of lines constructed as follows:
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For each particle with momentum kµ draw a segment joining
two points separated by ∆yµ = 2πkµ

Y1

Y2

Y0

Y1

Concatenate the segments according to
the ordering of the insertions on the disk
(particular color ordering)

Momentum conservation: Closed diagram.

Massless gluons → light-like edges.

As zIR →∞ the boundary of the world-sheet moves to r = 0.
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An(λ) at strong coupling → Minimal area problem in AdS!

r = 0

1

k2 k3

k4
k5

k6

t

x

y

k1

k2 k3

k4

k5k6

k

An ≈ e−
√
λ

2π
Amin , λ� 1
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Prescription

An ∼ e−
√
λ

2π
Amin

An: Leading exponential behavior of the n−point scattering
amplitude.

Amin(kµ1 , k
µ
2 , ..., k

µ
n ): Area of a minimal surface that ends on a

sequence of light-like segments on the boundary.

Comments:

Prefactors are subleading in 1/
√
λ, and we don’t compute

them.

In particular our computation is blind to helicity, etc.
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Remember a similar problem: Expectation value of Wilson
loops at strong coupling (Maldacena, Rey)

r=0

ds2 = R2 dx2
3+1+dz2

r2

We need to consider the minimal area
ending (at r = 0 ) on the Wilson loop.

〈W 〉 ∼ e−
√
λ

2π
Amin

Our computation is exactly equivalent to the computation of
the vev of a WL given by a sequence of null segments!!
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Scattering Amplitudes at Strong Coupling

Lecture 2: Four gluons amplitude (N=4, sorry!) and minimal
surfaces in AdS3
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Four point amplitude at strong coupling

Consider k1 + k3 → k2 + k4

s = −(k1 + k2)2

t = −(k1 + k4)2

Y1

Y2

Y0

Y1

Y2

Need to find the minimal surface ending on
such sequence of light-like segments.
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Use Poincare coordinates (r , y0, y1, y2) and parametrize the
surface by its projection to (y1, y2) plane.

SNG : Action for two fields r(y1, y2), y0(y1, y2). E.g. if s = t
the fields live on a square parametrized by y1, y2.

SNG =
R2

2π

∫
dy1dy2

√
1 + (∂i r)2 − (∂iy0)2 − (∂1r∂2y0 − ∂2r∂1y0)2

r2

By scale invariance, edges of the square at y1, y2 = ±1

Boundary conditions

r(±1, y2) = r(y1,±1) = 0, y0(±1, y2) = ±y2, y0(y1,±1) = ±y1
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Four point amplitude at strong coupling Solving the problem

Put the action in Mathematica. Deduce the Euler-Lagrange
equations.

Start making educated guesses

Hope to be lucky!

y0(y1, y2) = y1y2, r(y1, y2) =
√

(1− y2
1 )(1− y2

2 )

Easily seen to satisfy all the boundary conditions and actually
solves the eoms!

However, s = t is somehow a boring case...
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We would like to capture the kinematical dependence of the
amplitude. We need to consider s 6= t.

The square will be deformed to a rhombus

(a) (b)

1

2 2

1
t

s
s

t
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Embedding coordinates

−Y 2
−1 − Y 2

0 + Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 = −1

Y µ =
yµ

r
, µ = 0, ..., 3

Y−1 + Y4 =
1

r
, Y−1 − Y4 =

r2 + yµy
µ

r

Embedding coordinates surface

Y0Y−1 = Y1Y2 Y3 = Y4 = 0

We can perform SO(2, 4) transformations and get new
solutions. This is a ”dual” conformal symmetry.

e.g. a boost in the 0− 4 direction gives a new solution with
s 6= t.
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Conformal gauge action

iS = −R2

2π

∫
du1du2

1

2

∂r∂r + ∂yµ∂y
µ

r2

Solution for the rhombus

r =
a

cosh u1 cosh u2 + b sinh u1 sinh u2
,

y0 = r
√

1 + b2 sinh u1 sinh u2

y1 = r sinh u1 cosh u2, y2 = r cosh u1 sinh u2

The parameters a and b encode the kinematical information.

−s(2π)2 =
8a2

(1− b)2
, −t(2π)2 =

8a2

(1 + b)2
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Let’s compute the area...

Small problem: The area diverges!

Dimensional reduction scheme: Theory in D = 4− 2ε
dimensions but with 16 supercharges.

For integer D this is exactly the low energy theory living on
Dp−branes (p = D − 1 = 3− 2ε)

Gravity dual

ds2 = h−1/2dx2
D + h1/2

(
dr2 + r2dΩ2

9−D
)
, h =

R4

r8−D
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T-dual coordinates

ds2 = R2

(
dy2

D + dr2

r2+ε

)
→ Sε =

R2

2π

∫
Lε=0

r ε

Presence of ε will make the integrals convergent.

The eoms will depend on ε but if we plug the original solution
into the new action, the answer is accurate enough.

plugging everything into the action...

iS = −
√
λ

2πaε

(
πΓ
[
− ε

2

]2
Γ
[

1−ε
2

] 2F1

(
1

2
,− ε

2
,

1− ε
2

; b2

)
+ 1/2

)
+O(ε)

Just expand in powers of ε...
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Final answer

A = e iS = exp

[
iSdiv +

√
λ

8π

(
log

s

t

)2
+ C̃

]
Sdiv ≈ − 1

ε2

1

2π

√
λ

Should be compared to the field theory expectations:

A ∼ Adiv exp

{
f (λ)

8
(ln s/t)2 + R

}
Adiv ≈ exp

{
− 1

2ε2
f (λ)

}
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Exactly agrees with field theory expectations!

After using the correct strong coupling limit of f (λ) and

With R = 0 (or a constant)

Reason: R can depend only on cross-ration, but for N = 4 we can
construct none!
Question: What about N > 4??

For N = 5, again, we cannot construct cross-ratios.

Starting from N = 6 the answer will be non-trivial!

How do we find these minimal surfaces!?
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Scattering Amplitudes at Strong Coupling

Lecture 3: Minimal surfaces in AdS3
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Four point amplitude at strong coupling Solving the problem

Math problem: Minimal surfaces/Soap bubbles in AdS

��

����

������

AdS radial
direction

Polygon parametrized by xi .

We want Amin(xi )

Ys =
(xi−xj )2(xk−xl )2

(xi−xk )2(xj−xl )2 are cross-ratios.

N gluons: 3N − 15 of them. We want Amin(Ys).

For AdS3, only N − 6 cross-ratios.
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Surface on AdS3: Ends in a 2D polygon, e.g. in the cylinder.

Zig-zagged Wilson loop of N = 2n sides

Parametrized by n coordinates x+
i and n

coordinates x−i .

We can build 2n − 6 cross ratios:
x+
ij x

+
kl

x+
ik x

+
jl

X
!
2

X
!
4X

+
1

X
+
3

X
+
2 X

!
3

!1 1

Minimal surfaces on AdS3 ↔ Classical strings on AdS3.

Luis Fernando Alday Scattering Amplitudes at Strong coupling



Four point amplitude at strong coupling Solving the problem

Classical strings on AdS3

ds2 =
dr2 + dx+dx−

r2

Embedding coordinates: −X 2
−1 − X 2

0 + X 2
1 + X 2

2 = −1

X−1 + X2 = 1/r , X1 ± X0 =
x±

r

X−1 − X2 =
r2 + x+x−

r2

Boundary of AdS3 (r → 0):

X ′s very large: −X 2
−1 − X 2

0 + X 2
1 + X 2

2 = 0.
X and λX are identified.

Point at the boundary

x± =
X1 ± X0

X−1 ± X2
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Classical strings on AdS3

Strings on AdS3 : ~X (z , z̄), ~X .~X = −X 2
−1 − X 2

0 + X 2
1 + X 2

2 = −1

Eoms : ∂∂̄~X − (∂~X .∂̄ ~X )~X = 0, Virasoro : ∂~X .∂~X = ∂̄ ~X .∂̄ ~X = 0

Pohlmeyer kind of reduction → generalized Sinh-Gordon

α(z , z̄) = log(∂~X .∂̄ ~X ), p2 = ∂2~X .∂2~X

↓
p = p(z), ∂∂̄α− eα + |p(z)|2e−α = 0

α(z , z̄) and p(z) invariant under conformal transformations.

Area of the world sheet: A =
∫
eαd2z
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Standard form of the sinh-Gordon equation: go to the w−plane

dw =
√
p(z)dz , α̂ = α− 1

4
log pp̄ → ∂w ∂̄w̄ α̂ = sinhα̂

Simpler equation in a more complicated space.

Convenient to understand some features of the solution.

A =

∫
eαd2z =

∫
eα̂d2w
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Generalized Sinh-Gordon → Strings on AdS3?

From α, p construct flat connections BL,R and solve two linear
auxiliary problems.

(d + BL)ψL
a = 0

(d + BR)ψR
ȧ = 0

BL
z =

(
∂α eα

e−αp(z) −∂α

)

Important: ∂Bz̄ − ∂̄Bz + [Bz ,Bz̄ ] = 0

Space-time coordinates

Xa,ȧ =

(
X−1 + X2 X1 − X0

X1 + X0 X−1 − X2

)
= ψL

aψ
R
ȧ

One can check that X constructed that way has all the correct
properties.
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Flat connection: ∂Bz̄ − ∂̄Bz + [Bz ,Bz̄ ] = 0.

We can introduce a spectral parameter, and the connection is
still flat!!

Bz → Bz(ζ) =

(
∂α 0
0 −∂α

)
+

1

ζ

(
0 eα

e−αp(z) 0

)
Bz̄ → Bz(ζ) =

(
−∂̄α 0

0 ∂̄α

)
+ ζ

(
0 p̄(z̄)e−α

eα 0

)

Sign of integrability!

Unified picture:

BL is simply B(ζ = 1).
BR is simply B(ζ = i)
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Bonus: Relation to Hitchin equations (ζ = eθ)

Bz = Az + Φ→ Bz(θ) = Az + e−θΦ

Bz̄ = Az̄ + Φ∗ → Bz̄(θ) = Az̄ + eθΦ∗

Additional symmetry: B(θ + iπ) = σ3B(θ)σ3

Hitchin equations

Consider self-dual YM in 4d reduced to 2d

A1,2 → A1,2 : 2d gauge field, A3,4 → Φ,Φ∗ : Higgs field.

Hitchin equations

F (4) = ∗F (4) →
Dz̄Φ = DzΦ∗ = 0

Fzz̄ + [Φ,Φ∗] = 0

Flatness for all θ implies the above equations!

Particular case of SU(2) Hitchin equations.
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What is p(z) for our problem?

What are the boundary conditions for α?

Four cusps solution (n = 2): p(z) = 1, α̂ = 0

For the solutions relevant to scattering amplitudes we require:

p(z) to be a polynomial.

α̂ to decay at infinity, where the boundary is located (we
approach the vacuum solution).

We are interested in the regularized area:

A =

∫
eα̂d2w → Areg =

∫
(eα̂ − 1)d2w , → A = Adiv +Areg
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Consider a generic polynomial of degree n − 2

p(z) = zn−2 + cn−4z
n−4 + ...+ c1z + c0

We have used translations and re-scalings in order to fix the
first two coefficients to one and zero.

For a polynomial of degree n− 2 we are left with 2n− 6 (real)
variables.

This is exactly the number of invariant cross-ratios in two
dimensions for the scattering of 2n gluons!

Null polygons of 2n sides ⇔ pn−2(z) and α̂(z , z̄)→ 0

Luis Fernando Alday Scattering Amplitudes at Strong coupling



Four point amplitude at strong coupling Solving the problem

Solution close to the boundary?

Is this really what we want?!

We want to understand the solution close to the boundary
|z | � 1

p(z) = zn−2 → w ≈ zn/2

As we go around the z−plane once, in the w -plane we go
around n/2 times.

As |w | � 1→ α̂ ≈ 0. The linear problems simplify drastically!
and we can write a general solution.
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Solution close to the boundary?

Gral solution of the left problem:

ψL
a = c+

a

(
1
0

)
ew+w̄ + c−a

(
0
1

)
e−(w+w̄), (ψL

a,α)

w!plane, left problem

i+1 Si

next sheet

S

Focus in the left problem.

Each sheet divided into two
regions/sectors, ±Re(w) > 0

In each sector, one of the two
solutions dominates.

The right-problem is similar: ψR
ȧ = d+

ȧ

(
e
w−w̄

i

0

)
+ d−ȧ

(
0

e−
w−w̄

i

)
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X
!
iX

+
i(      ,      )

X
+
i+1 X

!
i(       ,       )

X
+
i+1 X

!
i+1

X
+
i+2 X

!
i+1(       ,       )(       ,       )

w!plane

next sheet

X
+

X
!

X
!
iX

+
i(      ,      )

X
+
i+1 X

!
i(       ,       )

X
+
i+1 X

!
i+1(       ,       )

The w−plane is divided into quadrants.

At each quadrant, one solution of each
problem is dominant.

Xa,ȧ≈c+
a d+

ȧXa,ȧ≈c−a d+
ȧ

The whole region corresponds to a single
point in space-time (at the boundary), a
cusp.

As we cross one of the axis, the dominant
solution L or R changes and we jump to the
next cusp.

At each step only one changes → in R1,1

only the x+ or x− coordinate changes

As we go around the w−plane n/2 times, we
get the 2n cusps!
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Comments

The locations of the cusps can be written as: X i
a,ȧ = λiaλ̃

i
ȧ

The distance between consecutive cusps is null, as only one
dominant solution changes:

x2
ij = εabεȧḃX i

aȧX
j

bḃ
≡ X i · X j

Which is zero, if X i ,X j share a common λ!

Similar for generic polynomial. General picture:

p(z) = zn−2 + cn−4z
n−4 + ...+ c1z + c0

Degree of the polynomial → number of cusps.
Coefficients of the polynomial → shape of the polygon.
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General strategy

Choose a polynomial p(z):

Solve the inverse problem and find the space-time cross-ratios
for that polynomial.

Find α with the correct boundary conditions and compute the
regularized area.

All fine except two little obstacles! we need a better idea...

Integrable model

If one finds the appropriate trick, one is going to be able to
perform computations.
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Let us focus on the left problem.

In each sector, the small solution is well defined (up to a
normalization constant). The large solution is not, as we can add
to it a part of the small solution

sLi : Small solution at the ith sector. So we have s0, s1, ..., sn−1

SL(2) invariant product:

ψL
a ∧ ψL

b ≡ εαβψL
α,aψ

L
β,b = εa,b

The small solutions can be used to extract the large
components of the solution!

ψL
a ∧ sLi = λia
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Four point amplitude at strong coupling Solving the problem

How do we construct cross-ratios?

Remember that X i
a,ȧ = λiaλ̃

i
ȧ

(x i − x j)2 ≈ X i .X j = 〈λiλj〉〈λ̃i λ̃j〉, 〈λiλj〉 ≡ εabλiaλ
j
b

Important identity: 〈λiλj〉 = (fi fj)s
L
i ∧ sLj

Cross-ratios can be constructed from products of the small
solutions in the the corresponding sectors!

x+
12x

+
34

x+
13x

+
24

=
(sL1 ∧ sL2 )(sL3 ∧ sL4 )

(sL1 ∧ sL3 )(sL2 ∧ sL4 )

The normalization constant of each sLi goes away!

We can define the cross-ratios in terms of the small solutions
ONLY, that were the ones well defined!
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Let’s try to use integrability!

Introduce the spectral parameter θ (ζ = eθ)

Ys → Ys(θ)

Study the θ dependence of such deformed cross-ratios.

How do we do that?

Study the small flat sections of the connection B(θ)

(d + B(θ))si = 0

χijkl(θ) =
(si ∧ sj)(sk ∧ sl)

(si ∧ sk)(sj ∧ sl)

χ(θ = 0)→ x+ cross-ratios.

χ(θ = iπ/2)→ x− cross-ratios.
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Two more elements...

B(θ + iπ) = σ3B(θ)σ3 → si ∧ sj(θ + iπ) = si+1 ∧ sj+1(θ)

Choose a normalization such that si ∧ si+1 = 1

Now the derivation is completely trivial!
Choose a basis s0, s1, with s0 ∧ s1 = 1 and write everything in
terms of them:

sk = (sk ∧ s1)s0 − (sk ∧ s0)s1

sk+1 = (sk+1 ∧ s1)s0 − (sk+1 ∧ s0)s1

Introduce f ± = f (θ ± iπ/2), then

sk∧sk+1 = 1→ −(sk−1∧s0)++(sk+1∧s0)+(sk∧s0)++(sk∧s0) = 1

Luis Fernando Alday Scattering Amplitudes at Strong coupling



Four point amplitude at strong coupling Solving the problem

Some technicalities, but bear with me...

Call Tk ≡ s0 ∧ sk+1(θ − i(k + 1)π/2) and

Introduce the Y−functions Ys ≡ Ts−1Ts+1.

These are actually cross-ratios!

Yk(θ) =
(s0 ∧ sk)(s−1 ∧ sk+1)

(s−1 ∧ s0)(sk ∧ sk+1)
(θ − ikπ/2)

But just the wedges in the denominator are equal to one.

What about the above equation in terms of the Y ′s??
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Y-system equations!

Ys(θ + iπ/2)Ys(θ − iπ/2) = (1 + Ys+1(θ))(1 + Ys−1(θ))

The Ys are our deformed cross-ratios.

Ys non zero for s = 1, ..., n − 3.

Evaluating Ys at θ = 0, iπ/2 we obtain the physical
cross-ratios.

These equations came from trivial identities (e.g no
information about p(z)!)

Need to supplement them with the analytic properties of Y (θ)
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Ys(θ) are analytic away from θ = ±∞
As θ → ±∞ the flat connection simplifies and we can use a
WKB approximation!

logYs ≈ −ms cosh θ + ..., for large θ.

ms encode the information in the polynomial p(z)

They are usually complex → 2(n − 3) d.o.f!

Old integrability trick:

Functional equations

Boundary conditions
} Integral equations for the Y ′s!
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TBA equations!

logYs = −ms cosh θ+

∫ ∞
−∞

dθ′

2π

1

cosh(θ − θ′)
log(1+Ys−1(θ′))(1+Ys+1(θ′))

And the area is....

Free energy!

Amin =
∑
s

∫
dθ

2π
ms cosh θ log(1 + Ys(θ))

General strategy:

Choose some ms and solve the integral equations.

From Ys(θ = 0, iπ/2) we get the
”physical” cross ratios.

From the free energy we get the area.

} Area for these cross-ratios!
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Scattering Amplitudes at Strong Coupling

Lecture 4: What else can we compute?! Correlation functions of
Wilson loops with local operators.
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Correlation functions in N = 4 SYM (in the planar limit) and how
to compute them at strong coupling.

Natural generalization of two branches of AdS/CFT in which
a lot of progress has been made:

Spectral problem.
Scattering amplitudes.

Prove the theory at the non-planar level.

〈OO〉 ∼ 1→ 〈OOO〉 ∼ 1

N
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Spectral problem:
Two point functions of single trace local operators in N = 4 SYM.

O1 = trZZXX − trZXZX , O2 = trZZXX + trZXZX

Conformal symmetry: 〈Oi (x1)Oj(x2)〉 =
δij

|x12|2∆i

Spectral problem: Compute ∆i to all values of the coupling!

∆1 = 4, ∆2 = 4 +
3

π2
λ+ ...

AdS/CFT

∆ at strong coupling: Energy of a particular string configuration.

∆1 = 4, ∆2 = 2λ1/4 + ...
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What about three-point functions?

Conformal symmetry

〈O1(x1)O2(x2)O3(x3)〉 =
C123

x∆1+∆2−∆3
12 x∆1+∆3−∆2

13 x∆2+∆3−∆1
23

We would like to compute C123(λ) to all values of the
coupling constant.

Knowing ∆i (λ) plus C (λ) we could compute any correlation
function!

〈O1O2O3O4〉 →
∑
p

〈O1O2Op〉〈OpO3O4〉

Luis Fernando Alday Scattering Amplitudes at Strong coupling



Four point amplitude at strong coupling Solving the problem

Scattering amplitudes:

Scattering of gluons A(k1, ..., kn, λ)

(Dual) Conformal symmetry → A(cross-ratios, λ)

Can be computed at strong
coupling: Area of minimal
surfaces

��

����

������

AdS radial
direction

Scattering amplitudes are naturally on-shell quantities.
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Off-shell analogous of scattering amplitude → correlation
functions!

Much richer objects (depend on many more cross-ratios).

Scattering amplitudes are a particular case of them.
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Different kind of operators

VL: light states, ∆ ∼ 1 (e.g. sugra modes)

VH : semiclassical/heavy states ∆ ∼
√
λ (harder to consider)

We are able to compute:

〈VHVHVL〉

Another interesting quantity: Correlation of a Wilson loop with a
local operator!

〈WV∆
L (x)〉
〈W〉
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Computation at strong coupling: two ingredients:

Classical solution (minimal surface) corresponding to 〈W〉
(parametrized by Xclas)

A particular propagator K∆(x), which propagates from a point
x in the boundary to the world-sheet of the classical solution.

〈WV∆
L (x)〉
〈W〉

=

∫
d2ζK (x(ζ)clas − x̂ , z(ζ)clas)

K∆(x , z) =

(
z

z2 + x2

)∆( 1

z2
((∂iz)2 + (∂ix)2)

)
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Interesting quantity to consider, our Wilson loops.

Conformal invariance fix some dependence!

〈W4V
∆
L (x)〉

〈W4〉
=

(x2
13x

4
24)∆/2∏

i |x − xi |∆/2
F (ζ, λ)

where ζ = (x−x2)2(x−x4)2(x1−x3)2

(x−x1)2(x−x3)2(x2−x4)2

Nice observable to try to extrapolate!

Hard to compute for higher N!

Can we use integrability?!
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