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• 1st lecture: Kinematics

➡ What are the kind of functions that can appear in loop 
computations?

• Today’s lecture:

➡ What are the arguments of the special functions?

➡ Properties of some of these functions.
➡ General theorems.
➡ Numerical evaluation of some of these functions.
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The two-mass easy box function

• Computation can be done via various methods. 
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(C.7)

The masses Q2 and P 2 and the Mandelstam invariants s and t can be related to the two

and three-particle invariants in a straightforward way,

Q2 = s, P 2 = s2, s = s345, t = s456. (C.8)

The multi-Regge limit we are interested in corresponds to the limit defined by the rescaling

(−Q2) ∼ 1

λ2
, (−s), (−t) ∼ 1

λ
, (−P 2) ∼ 1, (C.9)

where λ→ 0. Furthermore, eq. (B.7) imposes the constraint

Q2P 2 ≡ st. (C.10)

We can expand the dilogarithms that appear in eq. (C.7) in this limit,
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(C.11)

and it is straightforward to check that we find

µ2ε F 2me(s, t, P 2, Q2) ≡ 0. (C.12)

Let us turn to the region defined by s, t < 0 and P 2, Q2 > 0, which corresponds

to the region analysed in ref. [15] for the full six-point amplitude. If we perform the

analytic continuation of eq. (C.7) to this region according to the standard prescription

– 33 –

• Not an elementary function. Needs the dilogarithm:
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The four-mass box function
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in the two cross-ratios—then let us define the following ‘modified four-mass’ function

⌥�4(i, j, k, l) ⇤ �4(ui,j,k,l, uj,k,l,i)�
1

2
log(ui,j,k,l) log(uj,k,l,i), (5.7)

where

�4(u, v) ⇤ Li2(1� �+)� Li2(1� ��) +
1

2
log(v) log(�+/��), (5.8)

and

�± ⇤ 2u

1 + u� v ±
�
(1� u� v)2 � 4uv

; (5.9)

here, we have used the four indices {i, j, k, l} to signify the (generally time-like
separated) spacetime points corresponding to the lines (i i+1), (j j+1), (k k+1), and
(l l+1) in twistor space, which together define the cross-ratios
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The principle distinction between ⌥�4(i, j, k, l) and the more familiar four-mass
box function is that ⌥�4(i, j, k, l) remains finite even when many of the spacetime
points become null-separated (or even become identified). In particular,
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Of course, if we use ⌥�4’s to represent I8(3, 6, 9, 12), for example, then each four-
mass box will contribute a ‘log-log’-term. It may be worried that this will greatly
clutter the final expression, but this turns out to not be the case: taken together,
these 16 additional ‘log-log’ terms combine into a single such term.

With this new function, the general octagon integral—together with all its
degenerations—becomes extremely simple. Explicitly, the general octagon I8(i, j, k, l)
integral is given by,
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• Again a dilogarithm, but this time with algebraic rather 
than rational argument (square root!)
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One-loop Hexagon in 6 dimensions
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where the function I6(u1, u2, u3) is manifestly dual conformal in-
variant. Furthermore, the integral I D=6

6 as a function of the exter-
nal momenta pi has a dihedral symmetry D6 generated by cyclic
rotations pi → pi+1 and the reflection pi → p6−i+1. It is easy to
check that the dihedral symmetry of I D=6

6 implies that the func-
tion I6(u1, u2, u3) must be totally symmetric in the three cross
ratios.

2. The analytic expression for I D=6
6

We start by deriving a Mellin–Barnes (MB) representation for
I D=6
6 using the AMBRE package [5]. Although the integral is fi-

nite, the resulting MB representation has a spurious singularity
that must cancel in the end. We therefore derive the MB repre-
sentation in D = 6 − 2ε dimensions and resolve the singularities
in ε using the strategy introduced in Refs. [6–9] by applying the
codes MB [10] and MBresolve [11] and obtain a set of MB in-
tegrals which can be safely expanded in ε under the integration
sign. After applying these codes, all the integration contours are
straight vertical lines. At the end of this procedure, all the poles in
ε cancel and we are left with a manifestly finite and conformally
invariant threefold MB integral to compute,
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where the contours are straight vertical lines whose real parts are
given by

Re(z1) = −1
3
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4
, Re(z3) = −1

5
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Albeit simpler, the integral (8) is similar to the threefold MB inte-
gral contributing to the two-loop hexagon Wilson loop in N = 4
Super Yang–Mills [12,13], hence it can be computed in the same
fashion. Following the strategy of Ref. [13], we can turn each MB
integration into an Euler-type integral via the formula,

+i∞∫

−i∞

dz
2π i

Γ (−z)Γ (c − z)Γ (b + z)Γ (c + z)X z

= Γ (a)Γ (b + c)

1∫

0

dv vb−1(1 − v)a+c−1(1 − X v)−a, (10)

with X = 1 − X and where the contours are such as to separate
the poles in Γ (. . . − zi) from those in Γ (. . . + zi). This leaves us
with the following three-fold parametric integral to compute,
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The integral is easily performed in terms of multiple polyloga-
rithms [14]. The resulting expression is rather lengthy and involves
a combination of multiple polylogarithms of uniform weight three,
whose arguments are complicated algebraic functions involving the
square root of the quantity,

$ = (u1 + u2 + u3 − 1)2 − 4u1u2u3. (12)

However, the similarity between the MB integral (8) and the corre-
sponding integral of Ref. [13] suggests that it should be possible to
rewrite the answer in a simpler form, in the same way as the ana-
lytic result of Ref. [13] was rewritten in simplified form in Ref. [15].
The cornerstone of the simplification of the two-loop six-point re-
mainder function was the so-called symbol map, a linear map S
that associates a certain tensor to an iterated integral, and thus
to a multiple polylogarithm. In the following we give a very brief
summary of the symbol technique, referring to Ref. [15] for fur-
ther details. As an example, the tensor associated to the classical
polylogarithm Lin(x) is,

S
(
Lin(x)

)
= −(1 − x) ⊗ x ⊗ · · · ⊗ x︸ ︷︷ ︸

(n−1) times

. (13)

Furthermore, the tensor maps products that appear inside the ten-
sor product to a sum of tensors,

· · · ⊗ (x · y) ⊗ · · · = · · · ⊗ x ⊗ · · · + · · · ⊗ y ⊗ · · · . (14)

It is conjectured that all the functional identities among (multiple)
polylogarithms are mapped under the symbol map S to algebraic
relations among the tensors. Hence, if the symbol map is applied
to our complicated expression for I6(u1, u2, u3), it should capture
and resolve all the functional identities among the polylogarithms,
and therefore allow us to rewrite the result in a simpler form. In
order to apply this technology, it is however important that all
the arguments that enter the tensor be multiplicatively indepen-
dent. As in our case the arguments of the polylogarithms involve
square roots of $, this requirement is not fulfilled. In Ref. [15] a
reparametrization of the cross ratios ui in terms of six points zi in
CP1 was proposed,

u1 = z23z56

z25z36
, u2 = z34z61

z36z41
, u3 = z45z12

z41z52
, (15)

with zi j = zi − z j . It is easy to check that with this parametrization
the right-hand side of Eq. (12) becomes a perfect square. Hence, af-
ter this reparametrization all the arguments of the polylogarithms
are rational functions in the zi j variables, making this parametriza-
tion well suited to apply the symbol map S .

Using the parametrization (15) and the symbol map, it is easy
to construct a simpler candidate expression with the same symbol
as our original expression. However, the kernel of the map S is
non-trivial, and it allows us to fix the candidate expression only up
to terms proportional to zeta values, which in turn must be fixed
by looking at particular values of the cross ratios. At the end of
this procedure, we arrive at the following expression for the scalar
massless hexagon integral,
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and $ is defined in Eq. (12), and with
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nite, the resulting MB representation has a spurious singularity
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in ε using the strategy introduced in Refs. [6–9] by applying the
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sponding integral of Ref. [13] suggests that it should be possible to
rewrite the answer in a simpler form, in the same way as the ana-
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that associates a certain tensor to an iterated integral, and thus
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(n−1) times

. (13)

Furthermore, the tensor maps products that appear inside the ten-
sor product to a sum of tensors,

· · · ⊗ (x · y) ⊗ · · · = · · · ⊗ x ⊗ · · · + · · · ⊗ y ⊗ · · · . (14)

It is conjectured that all the functional identities among (multiple)
polylogarithms are mapped under the symbol map S to algebraic
relations among the tensors. Hence, if the symbol map is applied
to our complicated expression for I6(u1, u2, u3), it should capture
and resolve all the functional identities among the polylogarithms,
and therefore allow us to rewrite the result in a simpler form. In
order to apply this technology, it is however important that all
the arguments that enter the tensor be multiplicatively indepen-
dent. As in our case the arguments of the polylogarithms involve
square roots of $, this requirement is not fulfilled. In Ref. [15] a
reparametrization of the cross ratios ui in terms of six points zi in
CP1 was proposed,

u1 = z23z56

z25z36
, u2 = z34z61

z36z41
, u3 = z45z12

z41z52
, (15)

with zi j = zi − z j . It is easy to check that with this parametrization
the right-hand side of Eq. (12) becomes a perfect square. Hence, af-
ter this reparametrization all the arguments of the polylogarithms
are rational functions in the zi j variables, making this parametriza-
tion well suited to apply the symbol map S .

Using the parametrization (15) and the symbol map, it is easy
to construct a simpler candidate expression with the same symbol
as our original expression. However, the kernel of the map S is
non-trivial, and it allows us to fix the candidate expression only up
to terms proportional to zeta values, which in turn must be fixed
by looking at particular values of the cross ratios. At the end of
this procedure, we arrive at the following expression for the scalar
massless hexagon integral,
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where
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√

$

2u1u2u3
, (17)

and $ is defined in Eq. (12), and with
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)
, (18)

JID:PLB AID:27837 /SCO Doctopic: Theory [m5Gv1.3; v 1.58; Prn:10/08/2011; 14:48] P.2 (1-3)

2 V. Del Duca et al. / Physics Letters B ••• (••••) •••–•••

where the function I6(u1, u2, u3) is manifestly dual conformal in-
variant. Furthermore, the integral I D=6

6 as a function of the exter-
nal momenta pi has a dihedral symmetry D6 generated by cyclic
rotations pi → pi+1 and the reflection pi → p6−i+1. It is easy to
check that the dihedral symmetry of I D=6

6 implies that the func-
tion I6(u1, u2, u3) must be totally symmetric in the three cross
ratios.

2. The analytic expression for I D=6
6

We start by deriving a Mellin–Barnes (MB) representation for
I D=6
6 using the AMBRE package [5]. Although the integral is fi-

nite, the resulting MB representation has a spurious singularity
that must cancel in the end. We therefore derive the MB repre-
sentation in D = 6 − 2ε dimensions and resolve the singularities
in ε using the strategy introduced in Refs. [6–9] by applying the
codes MB [10] and MBresolve [11] and obtain a set of MB in-
tegrals which can be safely expanded in ε under the integration
sign. After applying these codes, all the integration contours are
straight vertical lines. At the end of this procedure, all the poles in
ε cancel and we are left with a manifestly finite and conformally
invariant threefold MB integral to compute,

I6 =
+i∞∫

−i∞

( 3∏

i=1

dzi

2π i
Γ (−zi)

2uzi
i

)

× Γ (1 + z1 + z2)Γ (1 + z2 + z3)Γ (1 + z3 + z1), (8)

where the contours are straight vertical lines whose real parts are
given by

Re(z1) = −1
3
, Re(z2) = −1

4
, Re(z3) = −1

5
. (9)

Albeit simpler, the integral (8) is similar to the threefold MB inte-
gral contributing to the two-loop hexagon Wilson loop in N = 4
Super Yang–Mills [12,13], hence it can be computed in the same
fashion. Following the strategy of Ref. [13], we can turn each MB
integration into an Euler-type integral via the formula,

+i∞∫

−i∞

dz
2π i

Γ (−z)Γ (c − z)Γ (b + z)Γ (c + z)X z

= Γ (a)Γ (b + c)

1∫

0

dv vb−1(1 − v)a+c−1(1 − X v)−a, (10)

with X = 1 − X and where the contours are such as to separate
the poles in Γ (. . . − zi) from those in Γ (. . . + zi). This leaves us
with the following three-fold parametric integral to compute,
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[1 − v2(1 − u1 v1)]

× 1
[1 − v1(1 − u2 − v3(1 − u2 − u3 v2)) − (1 − u3 v2)v3]

.

(11)

The integral is easily performed in terms of multiple polyloga-
rithms [14]. The resulting expression is rather lengthy and involves
a combination of multiple polylogarithms of uniform weight three,
whose arguments are complicated algebraic functions involving the
square root of the quantity,

$ = (u1 + u2 + u3 − 1)2 − 4u1u2u3. (12)

However, the similarity between the MB integral (8) and the corre-
sponding integral of Ref. [13] suggests that it should be possible to
rewrite the answer in a simpler form, in the same way as the ana-
lytic result of Ref. [13] was rewritten in simplified form in Ref. [15].
The cornerstone of the simplification of the two-loop six-point re-
mainder function was the so-called symbol map, a linear map S
that associates a certain tensor to an iterated integral, and thus
to a multiple polylogarithm. In the following we give a very brief
summary of the symbol technique, referring to Ref. [15] for fur-
ther details. As an example, the tensor associated to the classical
polylogarithm Lin(x) is,

S
(
Lin(x)

)
= −(1 − x) ⊗ x ⊗ · · · ⊗ x︸ ︷︷ ︸

(n−1) times

. (13)

Furthermore, the tensor maps products that appear inside the ten-
sor product to a sum of tensors,

· · · ⊗ (x · y) ⊗ · · · = · · · ⊗ x ⊗ · · · + · · · ⊗ y ⊗ · · · . (14)

It is conjectured that all the functional identities among (multiple)
polylogarithms are mapped under the symbol map S to algebraic
relations among the tensors. Hence, if the symbol map is applied
to our complicated expression for I6(u1, u2, u3), it should capture
and resolve all the functional identities among the polylogarithms,
and therefore allow us to rewrite the result in a simpler form. In
order to apply this technology, it is however important that all
the arguments that enter the tensor be multiplicatively indepen-
dent. As in our case the arguments of the polylogarithms involve
square roots of $, this requirement is not fulfilled. In Ref. [15] a
reparametrization of the cross ratios ui in terms of six points zi in
CP1 was proposed,

u1 = z23z56

z25z36
, u2 = z34z61

z36z41
, u3 = z45z12

z41z52
, (15)

with zi j = zi − z j . It is easy to check that with this parametrization
the right-hand side of Eq. (12) becomes a perfect square. Hence, af-
ter this reparametrization all the arguments of the polylogarithms
are rational functions in the zi j variables, making this parametriza-
tion well suited to apply the symbol map S .

Using the parametrization (15) and the symbol map, it is easy
to construct a simpler candidate expression with the same symbol
as our original expression. However, the kernel of the map S is
non-trivial, and it allows us to fix the candidate expression only up
to terms proportional to zeta values, which in turn must be fixed
by looking at particular values of the cross ratios. At the end of
this procedure, we arrive at the following expression for the scalar
massless hexagon integral,

I6(u1, u2, u3)

= 1√
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where
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and $ is defined in Eq. (12), and with
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(
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=
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where the function I6(u1, u2, u3) is manifestly dual conformal in-
variant. Furthermore, the integral I D=6

6 as a function of the exter-
nal momenta pi has a dihedral symmetry D6 generated by cyclic
rotations pi → pi+1 and the reflection pi → p6−i+1. It is easy to
check that the dihedral symmetry of I D=6

6 implies that the func-
tion I6(u1, u2, u3) must be totally symmetric in the three cross
ratios.

2. The analytic expression for I D=6
6

We start by deriving a Mellin–Barnes (MB) representation for
I D=6
6 using the AMBRE package [5]. Although the integral is fi-

nite, the resulting MB representation has a spurious singularity
that must cancel in the end. We therefore derive the MB repre-
sentation in D = 6 − 2ε dimensions and resolve the singularities
in ε using the strategy introduced in Refs. [6–9] by applying the
codes MB [10] and MBresolve [11] and obtain a set of MB in-
tegrals which can be safely expanded in ε under the integration
sign. After applying these codes, all the integration contours are
straight vertical lines. At the end of this procedure, all the poles in
ε cancel and we are left with a manifestly finite and conformally
invariant threefold MB integral to compute,

I6 =
+i∞∫

−i∞

( 3∏

i=1

dzi

2π i
Γ (−zi)

2uzi
i

)

× Γ (1 + z1 + z2)Γ (1 + z2 + z3)Γ (1 + z3 + z1), (8)

where the contours are straight vertical lines whose real parts are
given by

Re(z1) = −1
3
, Re(z2) = −1

4
, Re(z3) = −1

5
. (9)

Albeit simpler, the integral (8) is similar to the threefold MB inte-
gral contributing to the two-loop hexagon Wilson loop in N = 4
Super Yang–Mills [12,13], hence it can be computed in the same
fashion. Following the strategy of Ref. [13], we can turn each MB
integration into an Euler-type integral via the formula,

+i∞∫

−i∞

dz
2π i

Γ (−z)Γ (c − z)Γ (b + z)Γ (c + z)X z

= Γ (a)Γ (b + c)

1∫

0

dv vb−1(1 − v)a+c−1(1 − X v)−a, (10)

with X = 1 − X and where the contours are such as to separate
the poles in Γ (. . . − zi) from those in Γ (. . . + zi). This leaves us
with the following three-fold parametric integral to compute,

I6 =
1∫

0

( 3∏

i=1

dvi

)
1

[1 − v2(1 − u1 v1)]

× 1
[1 − v1(1 − u2 − v3(1 − u2 − u3 v2)) − (1 − u3 v2)v3]

.

(11)

The integral is easily performed in terms of multiple polyloga-
rithms [14]. The resulting expression is rather lengthy and involves
a combination of multiple polylogarithms of uniform weight three,
whose arguments are complicated algebraic functions involving the
square root of the quantity,

$ = (u1 + u2 + u3 − 1)2 − 4u1u2u3. (12)

However, the similarity between the MB integral (8) and the corre-
sponding integral of Ref. [13] suggests that it should be possible to
rewrite the answer in a simpler form, in the same way as the ana-
lytic result of Ref. [13] was rewritten in simplified form in Ref. [15].
The cornerstone of the simplification of the two-loop six-point re-
mainder function was the so-called symbol map, a linear map S
that associates a certain tensor to an iterated integral, and thus
to a multiple polylogarithm. In the following we give a very brief
summary of the symbol technique, referring to Ref. [15] for fur-
ther details. As an example, the tensor associated to the classical
polylogarithm Lin(x) is,

S
(
Lin(x)

)
= −(1 − x) ⊗ x ⊗ · · · ⊗ x︸ ︷︷ ︸

(n−1) times

. (13)

Furthermore, the tensor maps products that appear inside the ten-
sor product to a sum of tensors,

· · · ⊗ (x · y) ⊗ · · · = · · · ⊗ x ⊗ · · · + · · · ⊗ y ⊗ · · · . (14)

It is conjectured that all the functional identities among (multiple)
polylogarithms are mapped under the symbol map S to algebraic
relations among the tensors. Hence, if the symbol map is applied
to our complicated expression for I6(u1, u2, u3), it should capture
and resolve all the functional identities among the polylogarithms,
and therefore allow us to rewrite the result in a simpler form. In
order to apply this technology, it is however important that all
the arguments that enter the tensor be multiplicatively indepen-
dent. As in our case the arguments of the polylogarithms involve
square roots of $, this requirement is not fulfilled. In Ref. [15] a
reparametrization of the cross ratios ui in terms of six points zi in
CP1 was proposed,

u1 = z23z56

z25z36
, u2 = z34z61

z36z41
, u3 = z45z12

z41z52
, (15)

with zi j = zi − z j . It is easy to check that with this parametrization
the right-hand side of Eq. (12) becomes a perfect square. Hence, af-
ter this reparametrization all the arguments of the polylogarithms
are rational functions in the zi j variables, making this parametriza-
tion well suited to apply the symbol map S .

Using the parametrization (15) and the symbol map, it is easy
to construct a simpler candidate expression with the same symbol
as our original expression. However, the kernel of the map S is
non-trivial, and it allows us to fix the candidate expression only up
to terms proportional to zeta values, which in turn must be fixed
by looking at particular values of the cross ratios. At the end of
this procedure, we arrive at the following expression for the scalar
massless hexagon integral,
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where
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2u1u2u3
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and $ is defined in Eq. (12), and with
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,
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Lin(x) − (−1)nLin(1/x)
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, (18)• Dilogarithm no longer enough. Need trilogarithm!
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Three-loop form factor
A5,3 A6,5 A6,6

A4 A5,4 A6,1

A6,4

A5,1 A5,2

A6,2 A6,3

A7,2 A7,5 A8 A9,1

A9,2

cl = 0















































































cl = 1

cl = 2

cl = 3

A9,4

A7,3A7,1 A7,4

Figure 1: Master integrals for the three-loop form factors. Internal lines denote
massless propagators 1/(k2 + i0).

[20].
The high orders of ε-expansion allowed us to guess, for all master integrals, ex-

cept A6,4 and the three most complicated ones (A9,1, A9,2, and A9,4), the factors
which makes the expansion homogeneous in the transcendentality weight. Taking
into account the fact that these four master integrals can be replaced by the integrals
with numerators [9] (or denominator squared for A6,4), see Fig. 2, which are also
homogeneous in the transcendentality weight, we have a complete basis of master
integrals with homogeneous transcendentality weight. Let us present the results for
the expansion of the integrals in this basis. We arrange the results in the order of
increasing complexity level, the notion introduced in Ref. [4]. The loop integration

3

A6,6(4− 2ε) =
Γ(1− ε)6Γ(ε)3

Γ(2− 2ε)3

=
e−3γε

(1− 2ε)3

{

1

ε3
−

π2

4ε
− 7ζ3 −

37π4ε

480
+ ε2

(

7π2ζ3
4

−
93ζ5
5

)

+ε3
(

49ζ23
2

−
943π6

120960

)

+ ε4
(

259π4ζ3
480

+
93π2ζ5
20

−
381ζ7
7

)

+ε5
(

−
49

8
π2ζ23 +

651ζ5ζ3
5

+
6527π8

9676800

)

+O
(

ε6
)

}

, (4)

A4(4− 2ε) =
Γ(1− ε)4Γ(3ε− 2)

Γ(4− 4ε)

=
e−3γε

(1− 4ε)(3− 4ε)(1− 3ε)(2− 3ε)(1− 2ε)

{

1

6ε
−

π2ε

24
−

29ε2ζ3
6

−
71π4ε3

960
− ε4

(

421ζ5
10

−
29π2ζ3
24

)

+ ε5
(

841ζ23
12

−
11539π6

145152

)

−ε6
(

−
2059

960
π4ζ3 −

421π2ζ5
40

+
6189ζ7
14

)

+ ε7
(

−
841

48
π2ζ23 +

12209ζ5ζ3
10

−
737687π8

8294400

)

+O
(

ε8
)

}

, (5)

A5,1(4− 2ε) = −
Γ(2− 3ε)2Γ(1− ε)3Γ(2ε− 1)Γ(3ε− 1)

Γ(3− 4ε)Γ(3− 3ε)

=
e−3γε

(1− 4ε)(2− 3ε)(1− 2ε)2

{

−
1

12ε2
−

π2

16
+

23εζ3
12

−
7π4ε2

1152

+ε3
(

23π2ζ3
16

+
351ζ5
20

)

+ ε4
(

65243π6

1451520
−

529ζ23
24

)

+ ε5
(

161π4ζ3
1152

+
1053π2ζ5

80
+

5503ζ7
28

)

+ ε6
(

−
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32
π2ζ23 −

8073ζ5ζ3
20

+
75527π8

860160

)

+O
(

ε7
)

}

, (6)

5

• No dilogarithms or trilogarithms, only zeta values (up to an 
overall scale):

⇣m =
1X

n=1

1
nm

➡ Link to dilogarithms and trilogarithms?

[Lee, Smirnov, Smirnov]
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Massive double box

• ???

where

P1 =
1

m4

−1
∑

i=−4

Aiε
i + O(ε0) , (C.33)

A−4 =
1

24(1 + y)2
,

A−3 =
1

96(1 + y)2

[

−10G(−1; y) + 3G(0;x) − 6G(1;x)
]

,

A−2 =
1

192(1 + y)2

[

−47ζ(2) − 24G(−1; y)G(0;x) + 48G(−1; y)G(1;x) + 32G(−1,−1; y)

−6G(0,−1; y)
]

,

A−1 =
1

192(1 + y)2

[

−85ζ(3) + 188ζ(2)G(−1; y) + 96ζ(2)G(1;x) − 96ζ(2) G (−1/y;x)

+96G(0;x)G(−1,−1; y) − 96G(1;x)G(−1,−1; y) − 48G (−1/y;x) G(−1,−1; y)
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]

.(C.34)

Finally, the topology in Fig. 3-(f) involves three MIs. The first MI we chose is

=

∫
Ddk1D

dk2

P0(k1)P0(k2)P0(k1−k2)P0(k2−p1)P0(k1−p1−p2)P0(k2−p1−p2)Pm(k1−p3)
, (C.35)

where
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– 24 –
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+48G(−1; y)G(−y, 1;x) + 64G(−1,−1,−1; y) − 24G(−1, 0,−1; y)

−12G(0,−1,−1; y) + 6G(0, 0,−1; y) + 24G(1, 0, 0;x) − 48G(1, 0, 1;x)

−48G(1, 1, 0;x) + 96G(1, 1, 1;x) − 24G (−1/y, 0, 0;x) + 48G (−1/y, 0, 1;x)

+24G (−1/y,1, 0;x)−48G (−1/y,1,1;x)+24G(−y,1, 0;x)−48G(−y, 1, 1;x)
]

.(C.34)

Finally, the topology in Fig. 3-(f) involves three MIs. The first MI we chose is

=

∫
Ddk1D

dk2

P0(k1)P0(k2)P0(k1−k2)P0(k2−p1)P0(k1−p1−p2)P0(k2−p1−p2)Pm(k1−p3)
, (C.35)

where

=
1

m6

−1
∑

i=−4

Aiε
i + O(ε0) , (C.36)

A−4 =
x2

24(1 − x)4(1 + y)
,

A−3 =
x2

96(1 − x)4(1 + y)

[

−10G(−1; y) + 3G(0;x) − 6G(1;x)
]

,

– 24 –

[Bonciani, Ferroglia,
Gehrmann, Studerus]
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Summary
• Loop integrals are in general not elementary functions        

(they are so-called transcendental functions, see next lecture)

• Functions we obtained form the previous examples:
➡ Logarithms
➡ Dilogarithms

➡ Trilogarithms

➡ Zeta Values

➡ Even other functions...

Li2(z) = �
Z z

0

dt

t
ln(1� t) =

1X

n=1

zn

n2

Li3(z) =
Z z

0

dt

t
Li2(t) =

1X

n=1

zn

n3

⇣m =
1X

n=1

1
nm

• In all cases: arguments are rational or algebraic.
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Aim

• Can we classify the kind of functions that can appear?

• What are the properties of these functions?

• Is there some a priori knowledge about which functions / 
numbers can appear in a given Feynman integral, and 
which cannot?

• How can we evaluate these functions numerically?
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Special functions

Polylogarithms
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The dilogarithm
• Definition:

• The series is convergent for             . 

• The integral representation however allows to define the 
function outside the unit disc, but it then develops an 
imaginary part:

• The dilogarithm satisfies many other identities, e.g.,

Li2(z) = �
Z z

0

dt

t
ln(1� t) =

1X

n=1

zn

n2

|z|  1

The very same reasoning show that the terms depending on x±
7,j and x±

8,j cancel each other. The terms

depending on x±
4,j and x±

5,j are slightly more subtle, because the functions !n(x) are divergent when

x approaches either 0 or ∞. Let us concentrate on x±
4,j . We can use the inversion formulas for the

polylogarithms,

Li1(x) = Li1(1/x) + ln(−x) ,

Li2(x) = −Li2(1/x) −
1

2
ln2(−x) −

π2

6
,

Li3(x) = Li3(1/x) −
1

6
ln3(−x) −

π2

6
ln(−x) .

(18)

this allows to write the !n functions in the form,

!1(x) = Li1(x) +
1

2
ln(−x) ,

!2(x) = Li2(x) +
1

4
ln2(−x) +

π2

12
,

!3(x) = Li3(x) +
1

12
ln3(−x) +

π2

12
ln(−x) .

(19)

In the limit x → 0, the !n function hence split into two pieces, a polylogarithmic piece that vanishes
powerlike and a logarithmically divergent piece. A little algebra then shows that the logarithms conspire
such that

lim
u62→0

(

L3(x
+
4,j , x

−
4,j) −

1

6
(!1(x

+
4,j) − !1(x

−
4,j))

3 −
π2

6
(!1(x

+
4,j) − !1(x

−
4,j))

)

= 0 . (20)

The same reasoning of course also applies to x±
5,j .

Despite the fact that the result we got for the one-mass hexagon looks very nice and has all the
symmetries and collinear limits manifest, this expression is only valid in the region where ∆71 < 0 (and
in some other regions, like in the region where all u’s are smaller than 1). A similar problem was already
present in massless case (1). Let us thus first review the massless case. There we have two choices:

1. We introduce the χ variable, and all polylogs are understood as !n(x±
i + iε).

2. As Lance told Vittorio at Moriond, there is another possibility, which is to choose χ = 1 every-
where, and the branch cuts for the polylogs are chose as !n(x±

i ± iε).

Let us explain this last choice in more detail: Consider a phase space point where ∆ < 0. Since ui > 0,
it is easy to see that

sign(Im(x±
i )) = ±1 . (21)

Hence the x+
i variables always live in the upper half-plane, whereas the x−

i variables always live in the
lower half plane. If we know approach the real axis, i.e., ∆ ≥ 0, Then x+

i (x−
i ) approaches the real axis

from above (below), and hence the assignment x±
i ± iε is the correct one. I checked numerically that

both variants described above give the same result numerically.
In the one-mass case the situation is unfortunately much more difficult. Consider for example,

x±
2,1 =

(1 − u4)χ± − 2u4u25u36u62

2u4u36(−u4 − u25u62 + 1)
, (22)

4

Li2(1� z) = �Li2(z)� ln z ln(1� z) +
⇡2

6

• How to obtain such identities will be the subject of lecture 
4 & 5.
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Classical Polylogarithms
• Definition:

• The series is convergent for             . 

• The integral representation however allows to define the 
function outside the unit disc, but it then develops an 
imaginary part.

• The trilogarithm also satisfies many other identities.

|z|  1

Lim(z) =
Z z

0

dt

t
Lim�1(t) =

1X

n=1

zn

nm

Li1(z) = � ln(1� z) =
1X

n=1

zn

n

• These are all functions of only one scale... what if we have 
multiple scales?

• m is called the weight.
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Massive double box

• Need to generalize the previous functions to more than one 
variable!

where

P1 =
1

m4

−1
∑

i=−4

Aiε
i + O(ε0) , (C.33)

A−4 =
1

24(1 + y)2
,

A−3 =
1

96(1 + y)2

[

−10G(−1; y) + 3G(0;x) − 6G(1;x)
]

,

A−2 =
1

192(1 + y)2

[

−47ζ(2) − 24G(−1; y)G(0;x) + 48G(−1; y)G(1;x) + 32G(−1,−1; y)

−6G(0,−1; y)
]

,

A−1 =
1

192(1 + y)2

[

−85ζ(3) + 188ζ(2)G(−1; y) + 96ζ(2)G(1;x) − 96ζ(2) G (−1/y;x)

+96G(0;x)G(−1,−1; y) − 96G(1;x)G(−1,−1; y) − 48G (−1/y;x) G(−1,−1; y)

−48G(−y;x)G(−1,−1; y) − 24G(0;x)G(0,−1; y) + 24G (−1/y;x) G(0,−1; y)

+24G(−y;x)G(0,−1; y) + 48G(−1; y)G(1, 0;x) − 96G(−1; y)G(1, 1;x)

−24G(−1; y)G (−1/y, 0;x) + 48G(−1; y)G (−1/y, 1;x) − 24G(−1; y)G(−y, 0;x)

+48G(−1; y)G(−y, 1;x) + 64G(−1,−1,−1; y) − 24G(−1, 0,−1; y)

−12G(0,−1,−1; y) + 6G(0, 0,−1; y) + 24G(1, 0, 0;x) − 48G(1, 0, 1;x)

−48G(1, 1, 0;x) + 96G(1, 1, 1;x) − 24G (−1/y, 0, 0;x) + 48G (−1/y, 0, 1;x)

+24G (−1/y,1, 0;x)−48G (−1/y,1,1;x)+24G(−y,1, 0;x)−48G(−y, 1, 1;x)
]

.(C.34)

Finally, the topology in Fig. 3-(f) involves three MIs. The first MI we chose is

=

∫
Ddk1D

dk2

P0(k1)P0(k2)P0(k1−k2)P0(k2−p1)P0(k1−p1−p2)P0(k2−p1−p2)Pm(k1−p3)
, (C.35)

where

=
1

m6

−1
∑

i=−4

Aiε
i + O(ε0) , (C.36)

A−4 =
x2

24(1 − x)4(1 + y)
,

A−3 =
x2

96(1 − x)4(1 + y)

[

−10G(−1; y) + 3G(0;x) − 6G(1;x)
]

,

– 24 –
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,

A−1 =
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−85ζ(3) + 188ζ(2)G(−1; y) + 96ζ(2)G(1;x) − 96ζ(2) G (−1/y;x)
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+24G(−y;x)G(0,−1; y) + 48G(−1; y)G(1, 0;x) − 96G(−1; y)G(1, 1;x)

−24G(−1; y)G (−1/y, 0;x) + 48G(−1; y)G (−1/y, 1;x) − 24G(−1; y)G(−y, 0;x)

+48G(−1; y)G(−y, 1;x) + 64G(−1,−1,−1; y) − 24G(−1, 0,−1; y)

−12G(0,−1,−1; y) + 6G(0, 0,−1; y) + 24G(1, 0, 0;x) − 48G(1, 0, 1;x)

−48G(1, 1, 0;x) + 96G(1, 1, 1;x) − 24G (−1/y, 0, 0;x) + 48G (−1/y, 0, 1;x)

+24G (−1/y,1, 0;x)−48G (−1/y,1,1;x)+24G(−y,1, 0;x)−48G(−y, 1, 1;x)
]

.(C.34)

Finally, the topology in Fig. 3-(f) involves three MIs. The first MI we chose is

=

∫
Ddk1D

dk2

P0(k1)P0(k2)P0(k1−k2)P0(k2−p1)P0(k1−p1−p2)P0(k2−p1−p2)Pm(k1−p3)
, (C.35)

where

=
1

m6

−1
∑

i=−4

Aiε
i + O(ε0) , (C.36)

A−4 =
x2

24(1 − x)4(1 + y)
,

A−3 =
x2

96(1 − x)4(1 + y)

[

−10G(−1; y) + 3G(0;x) − 6G(1;x)
]

,

– 24 –

[Bonciani, Ferroglia,
Gehrmann, Studerus]
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Multiple Polylogarithms
• Classical polylogarithm:

Lim(z) =
Z z

0

dt

t
Lim�1(t) =

1X

n=1

zn

nm
Li1(z) = � ln(1� z) =

1X

n=1

zn

n

[Goncharov]
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Multiple Polylogarithms
• Classical polylogarithm:

• Mutliple polylogarithms

Lim(z) =
Z z

0

dt

t
Lim�1(t) =

1X

n=1

zn

nm
Li1(z) = � ln(1� z) =

1X

n=1

zn

n

[Goncharov]

G(a1, . . . , am; z) =
Z z

0

dt

t� a1
G(a2, . . . , am; t)

G(a; z) = ln
⇣
1� z

a

⌘
G(~0m; z) =

1
m!

lnm z

• m is called the weight.
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Multiple Polylogarithms
• Classical polylogarithm:

• Mutliple polylogarithms

Lim(z) =
Z z

0

dt

t
Lim�1(t) =

1X

n=1

zn

nm
Li1(z) = � ln(1� z) =

1X

n=1

zn

n

[Goncharov]

G(a1, . . . , am; z) =
Z z

0

dt

t� a1
G(a2, . . . , am; t)

G(a; z) = ln
⇣
1� z

a

⌘
G(~0m; z) =

1
m!

lnm z

• Multiple polylogarithms are a multivariable extension of 
classical ones, which they contain as special cases:

Multiple polylogarithms form hence a quasi-shuffle algebra graded by the weight,

MPL∗
•(W) =

∞
⊕

w=0

MPLw(W) , (204)

In the following, unless there is confusion, we will only write MPL•(W) to denote both the shuffle and
the quasi-shuffle algebra.

Note that Borwein et al. use yet another notation for Goncharov’s polylogarithm which interpolates
between these two notations [11],

λ

(

m1 . . . mk

w1 . . . wk

)

= (−1)k G



0, . . . , 0
︸ ︷︷ ︸

m1−1

, w1, . . . , 0, . . . , 0
︸ ︷︷ ︸

mk−1

, wk; 1



 . (205)

In some cases it is possible to express multiple polylogarithms in terms of other functions, e.g.,

G("0n; z) =
1

n!
lnn z, G("an; z) =

1

n!
lnn
(

1− z

a

)

,

G("0n−1, a; z) = −Lin
(z

a

)

, G("0n,"ap; z) = (−1)p Sn,p

(z

a

)

.
(206)

Furthermore, up to weight three, multiple polylogarithms can be completely expressed in terms of
ordinary logarithms and dilogarithms. In the generic case, we find

G(a, b; z) = Li2

(
b− z

b− a

)

− Li2

(
b

b− a

)

+ log
(

1− z

b

)

log

(
z − a

b− a

)

. (207)

The degenerate cases where some of the elements in the weight vector are equal and/or zero can be
obtained as limiting cases of the generic case.

8.2 Relations among multiple polylogarithms

The algebra properties of the Goncharov polylogarithms imply that not all the G functions are inde-
pendent, but there must be (polynomial) relations among them. In this section we review certain other
relations among multiple polylogarithms, which do no immediately follow from the shuffle and stuffle
identities.

Theorem 27 (Scaling invariance). If the rightmost index of "w is non zero, then, ∀k ∈ C∗, we have,

G(k "w; k z) = G("w; z) . (208)

Proof. The proof goes by induction in the weight. If a $= 0, we have,

G(k a; k z) = ln

(

1− k z

k a

)

= ln
(

1− z

a

)

= G(a; z) . (209)

Then, by induction and putting t = k t′, we get,

G(k a, k "w; k z) =

∫ k z

0

dt

t− k a
G(k "w; t) =

∫ z

0

k dt′

k t′ − k a
G(k "w; k t′) =

∫ z

0

dt′

t′ − a
G("w; t′) = G(a, "w; z) .

(210)

46

• m is called the weight.
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Multiple Polylogarithms
• Some properties (this is only a small selection!)

[Goncharov]
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Multiple Polylogarithms
• Some properties (this is only a small selection!)

[Goncharov]

➡ Scaling: If am 6= 0

G(k a1, . . . , k am; k z) = G(a1, . . . , am; z)
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Multiple Polylogarithms
• Some properties (this is only a small selection!)

[Goncharov]

➡ Scaling: If am 6= 0
 [Prove it!]G(k a1, . . . , k am; k z) = G(a1, . . . , am; z)
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Multiple Polylogarithms
• Some properties (this is only a small selection!)

[Goncharov]

➡ Scaling: If am 6= 0
 [Prove it!]

➡ Hölder convolution:

Theorem 28 (Distribution relation).

Lim1,...,mk
(x1, . . . , xk) = dm1+...+mk−k

∑

yd
j =xj , 1≤j≤k

Lim1,...,mk
(y1, . . . , yk) . (211)

Theorem 29 (Shuffle antipode relation).

G(w1, . . . , wn; z) + (−1)n G(wn, . . . , w1; z)

= G(w1; z)G(w2, . . . , wn; z)−G(w2, w1; z)G(w3, . . . , wn; z) + . . .

+ (−1)n−1 G(wn−1, . . . , w1; z)G(wn; z) .

(212)

Proof. The antipode relation (38), combined with the definition of the antipode in a shuffle algebra (62)
implies,

w(1) · S
(

w(2)
)

=
n
∑

k=0

S (l1 . . . lk) · (lk+1 . . . ln) =
n
∑

k=0

(−1)k (lk . . . l1) · (lk+1 . . . ln) , (213)

and the result follows immediately.

Note that there is a similar, but independent, antipode relation coming form the stuffle algebra.

Theorem 30 (Hölder convolution). If w1 "= 1 and wn "= 0, then, ∀p ∈ C, we have,

G(w1, . . . , wn; 1) =
n
∑

k=0

(−1)k G

(

1− wk, . . . , 1− w1; 1−
1

p

)

G

(

wk+1, . . . , wn;
1

p

)

. (214)

Theorem 31. If both w1 and wn are different from 0 and 1, then,

G(w1, . . . , wn; 1) = (−1)n G (1− wk, . . . , 1− w1; 1) . (215)

Proof. Follows from the Hölder convolution with p =∞.

8.3 Transformations of the argument

The representation of multiple polylogarithms as iterated integrations allows to derive relation between
polylogarithms with related arguments. If h : C → C denotes an invertible rational function, then we
have,

G(w1, . . . , wn; h(z)) =

∫ h(z)

0

dt

t− w1
G(w2, . . . , wn; t) (216)

Performing inside the integral the change of variable t = h(ξ), we find,

G(w1, . . . , wn; h(z)) =

∫ z

h−1(0)

h′(ξ) dξ

h(ξ)− w1
G(w2, . . . , wn; h(ξ)) . (217)

At this point, G(w2, . . . , wn; h(ξ)) is known recursively, and if h is rational, then h′(ξ)/(h(ξ) − w1) is
rational as well, and we can partial fraction this function, and finally arrive at an expression that can be
integrated using the definition of iterated integrals. Since the last integration has z as an upper bound,
we arrive at polylogarithms whose explicit integration variable z.

Note that the case h(ξ) = k ξ is trivial, since it is covered by the scaling identity of Theorem 27. In
Ref. [12] the following particular cases were studied,

h(ξ) = 1− ξ , h(ξ) = 1/ξ , h(ξ) = (1− ξ)/(1 + ξ) , h(ξ) = 1/(1− ξ) . (218)

47

G(k a1, . . . , k am; k z) = G(a1, . . . , am; z)
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Multiple Polylogarithms
• Some properties (this is only a small selection!)

[Goncharov]

➡ Scaling: If am 6= 0
 [Prove it!]

➡ Hölder convolution:

Theorem 28 (Distribution relation).

Lim1,...,mk
(x1, . . . , xk) = dm1+...+mk−k

∑

yd
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Lim1,...,mk
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and the result follows immediately.

Note that there is a similar, but independent, antipode relation coming form the stuffle algebra.

Theorem 30 (Hölder convolution). If w1 "= 1 and wn "= 0, then, ∀p ∈ C, we have,
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1

p

)

G

(

wk+1, . . . , wn;
1

p

)

. (214)

Theorem 31. If both w1 and wn are different from 0 and 1, then,

G(w1, . . . , wn; 1) = (−1)n G (1− wk, . . . , 1− w1; 1) . (215)

Proof. Follows from the Hölder convolution with p =∞.

8.3 Transformations of the argument

The representation of multiple polylogarithms as iterated integrations allows to derive relation between
polylogarithms with related arguments. If h : C → C denotes an invertible rational function, then we
have,

G(w1, . . . , wn; h(z)) =

∫ h(z)

0
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t− w1
G(w2, . . . , wn; t) (216)

Performing inside the integral the change of variable t = h(ξ), we find,

G(w1, . . . , wn; h(z)) =

∫ z

h−1(0)

h′(ξ) dξ

h(ξ)− w1
G(w2, . . . , wn; h(ξ)) . (217)

At this point, G(w2, . . . , wn; h(ξ)) is known recursively, and if h is rational, then h′(ξ)/(h(ξ) − w1) is
rational as well, and we can partial fraction this function, and finally arrive at an expression that can be
integrated using the definition of iterated integrals. Since the last integration has z as an upper bound,
we arrive at polylogarithms whose explicit integration variable z.

Note that the case h(ξ) = k ξ is trivial, since it is covered by the scaling identity of Theorem 27. In
Ref. [12] the following particular cases were studied,

h(ξ) = 1− ξ , h(ξ) = 1/ξ , h(ξ) = (1− ξ)/(1 + ξ) , h(ξ) = 1/(1− ξ) . (218)
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➡ Reduces to classical polylogarithms in special cases, e.g.,

Multiple polylogarithms form hence a quasi-shuffle algebra graded by the weight,

MPL∗
•(W) =

∞
⊕

w=0

MPLw(W) , (204)

In the following, unless there is confusion, we will only write MPL•(W) to denote both the shuffle and
the quasi-shuffle algebra.

Note that Borwein et al. use yet another notation for Goncharov’s polylogarithm which interpolates
between these two notations [11],

λ

(

m1 . . . mk

w1 . . . wk

)

= (−1)k G



0, . . . , 0
︸ ︷︷ ︸

m1−1

, w1, . . . , 0, . . . , 0
︸ ︷︷ ︸

mk−1

, wk; 1



 . (205)

In some cases it is possible to express multiple polylogarithms in terms of other functions, e.g.,

G("0n; z) =
1

n!
lnn z, G("an; z) =

1

n!
lnn
(

1− z

a

)

,

G("0n−1, a; z) = −Lin
(z

a

)

, G("0n,"ap; z) = (−1)p Sn,p

(z

a

)

.
(206)

Furthermore, up to weight three, multiple polylogarithms can be completely expressed in terms of
ordinary logarithms and dilogarithms. In the generic case, we find

G(a, b; z) = Li2

(
b− z

b− a

)

− Li2

(
b

b− a

)

+ log
(

1− z

b

)

log

(
z − a

b− a

)

. (207)

The degenerate cases where some of the elements in the weight vector are equal and/or zero can be
obtained as limiting cases of the generic case.

8.2 Relations among multiple polylogarithms

The algebra properties of the Goncharov polylogarithms imply that not all the G functions are inde-
pendent, but there must be (polynomial) relations among them. In this section we review certain other
relations among multiple polylogarithms, which do no immediately follow from the shuffle and stuffle
identities.

Theorem 27 (Scaling invariance). If the rightmost index of "w is non zero, then, ∀k ∈ C∗, we have,

G(k "w; k z) = G("w; z) . (208)

Proof. The proof goes by induction in the weight. If a $= 0, we have,

G(k a; k z) = ln

(

1− k z

k a

)

= ln
(

1− z

a

)

= G(a; z) . (209)

Then, by induction and putting t = k t′, we get,

G(k a, k "w; k z) =

∫ k z

0

dt

t− k a
G(k "w; t) =

∫ z

0

k dt′

k t′ − k a
G(k "w; k t′) =

∫ z

0

dt′

t′ − a
G("w; t′) = G(a, "w; z) .

(210)

46

G(k a1, . . . , k am; k z) = G(a1, . . . , am; z)

Samstag, 8. Oktober 11



Multiple Polylogarithms
• Some properties (this is only a small selection!)

[Goncharov]

➡ Scaling: If am 6= 0
 [Prove it!]

➡ Hölder convolution:

Theorem 28 (Distribution relation).

Lim1,...,mk
(x1, . . . , xk) = dm1+...+mk−k

∑

yd
j =xj , 1≤j≤k

Lim1,...,mk
(y1, . . . , yk) . (211)

Theorem 29 (Shuffle antipode relation).

G(w1, . . . , wn; z) + (−1)n G(wn, . . . , w1; z)

= G(w1; z)G(w2, . . . , wn; z)−G(w2, w1; z)G(w3, . . . , wn; z) + . . .

+ (−1)n−1 G(wn−1, . . . , w1; z)G(wn; z) .

(212)
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w(1) · S
(

w(2)
)

=
n
∑

k=0

S (l1 . . . lk) · (lk+1 . . . ln) =
n
∑

k=0

(−1)k (lk . . . l1) · (lk+1 . . . ln) , (213)

and the result follows immediately.

Note that there is a similar, but independent, antipode relation coming form the stuffle algebra.

Theorem 30 (Hölder convolution). If w1 "= 1 and wn "= 0, then, ∀p ∈ C, we have,

G(w1, . . . , wn; 1) =
n
∑

k=0

(−1)k G

(

1− wk, . . . , 1− w1; 1−
1

p

)

G

(

wk+1, . . . , wn;
1

p

)

. (214)

Theorem 31. If both w1 and wn are different from 0 and 1, then,
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dt
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G(w2, . . . , wn; t) (216)
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∫ z

h−1(0)

h′(ξ) dξ

h(ξ)− w1
G(w2, . . . , wn; h(ξ)) . (217)
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➡ etc.
• Many properties, and we need to be able to deal with them...

➡ Look at math/0103059.

G(k a1, . . . , k am; k z) = G(a1, . . . , am; z)
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The shuffle algebra
• Let’s multiply two mutliple polylogarithms of weight 1:

G(a;z) G(b;z) = ?

G(a; z) G(b; z) =
Z z

0

Z z

0

dt

t� a

dt0

t0 � b

t

t’

z

z
Z z

0

dt
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0

dt0

t0 � b

+
Z z

0

dt0

t0 � b
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dt
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The shuffle algebra
• Let’s multiply two mutliple polylogarithms of weight 1:

G(a;z) G(b;z) = ?

G(a; z) G(b; z) =
Z z

0

Z z

0

dt

t� a

dt0

t0 � b

t

t’

z

z
Z z

0

dt

t� a

Z t

0

dt0

t0 � b

+
Z z

0

dt0

t0 � b

Z t0

0

dt

t� a

= G(a, b; z) + G(b, a; z)
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The shuffle algebra
• This is not a coincidence!

2. Short review of multiple polylogarithms

Definition. Multiple polylogarithms can be defined recursively, for n � 0, via the iterated

integral [1, 2]

G(a
1

, . . . , an;x) =

Z x

0

dt

t� a
1

G(a
2

, . . . , an; t) , (2.1)

with G(x) = G(;x) = 1, an exception being when x = 0 in which case we put G(0) = 0

(clearly any expression
R

0

0

. . . should be zero), and with ai 2 C are chosen constants and x

is a complex variable. In the following, we will also consider G(a
1

, . . . , an;x) to be functions

of a
1

, . . . , an. In the special case where all the ai’s are zero, we define, using the obvious

vector notation ~an = (a, . . . , a
| {z }

n

), a 2 C,

G(~0n;x) =
1

n!
logn x , (2.2)

consistent with the case n = 0 above. Note that, while in the Mathematics literature these

functions appear already in the early 20th century in the works of Poincaré and of Lappo-

Danilevsky [76] as “hyperlogarithms”, as well as in the 1960’s in Chen’s work on iterated

integrals (e.g., [22])1, in the physics literature these functions are often called Goncharov

polylogarithms, due to the wealth of structure that the latter has established for them

over the last 20 years. Throughout this paper, we follow the physics convention for the

definition of the iterated integrals, which di↵ers slightly from the mathematical one; e.g., in

ref. [2], the function corresponding to G(a
1

, . . . , an;x) would be denoted I(0; an, . . . , a1;x),

i.e., with the reverse order of the ai but keeping the same variable x.

We will refer to the vector ~a = (a
1

, . . . , an) as the vector of singularities attached to

the multiple polylogarithm and the number of elements n, counted with multiplicities, in

that vector is called the weight of the multiple polylogarithm.

Properties. We collect here a number of useful and well-known properties (cf. e.g.

ref. [2, 8]). Iterated integrals form a shu✏e algebra [78] (see appendix A for a short review of

shu✏e algebras), which allows one to express the product of two multiple polylogarithms of

weight n
1

and n
2

as a linear combination with integer coe�cients of multiple polylogarithms

of weight n
1

+ n
2

, via

G(a
1

, . . . , an1 ;x)G(an1+1

, . . . , an1+n2 ;x) =
X

�2⌃(n1,n2)

G(a�(1), . . . , a�(n1+n2)
;x), (2.3)

where ⌃(n
1

, n
2

) denotes the set of all shu✏es of n
1

+ n
2

elements, i.e., the subset of the

symmetric group Sn1+n2 defined by (cf. ref. [22], eq. (1.5.6))

⌃(n
1

, n
2

) = {� 2 Sn1+n2 |��1(1) < . . . < ��1(n
1

) and ��1(n
1

+1) < . . . < ��1(n
1

+n
2

)} .
(2.4)

The algebraic properties of multiple polylogarithms imply that not all the G(~a;x) for fixed

x are independent, but that there are (polynomial) relations among them. In particular, we

1In a sense, they already made an appearance in Kummer’s pioneering work [77] in 1840.
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The algebraic properties of multiple polylogarithms imply that not all the G(~a;x) for fixed

x are independent, but that there are (polynomial) relations among them. In particular, we

1In a sense, they already made an appearance in Kummer’s pioneering work [77] in 1840.
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Danilevsky [76] as “hyperlogarithms”, as well as in the 1960’s in Chen’s work on iterated

integrals (e.g., [22])1, in the physics literature these functions are often called Goncharov

polylogarithms, due to the wealth of structure that the latter has established for them

over the last 20 years. Throughout this paper, we follow the physics convention for the

definition of the iterated integrals, which di↵ers slightly from the mathematical one; e.g., in

ref. [2], the function corresponding to G(a
1

, . . . , an;x) would be denoted I(0; an, . . . , a1;x),

i.e., with the reverse order of the ai but keeping the same variable x.

We will refer to the vector ~a = (a
1

, . . . , an) as the vector of singularities attached to

the multiple polylogarithm and the number of elements n, counted with multiplicities, in

that vector is called the weight of the multiple polylogarithm.

Properties. We collect here a number of useful and well-known properties (cf. e.g.

ref. [2, 8]). Iterated integrals form a shu✏e algebra [78] (see appendix A for a short review of

shu✏e algebras), which allows one to express the product of two multiple polylogarithms of

weight n
1

and n
2

as a linear combination with integer coe�cients of multiple polylogarithms

of weight n
1

+ n
2

, via

G(a
1

, . . . , an1 ;x)G(an1+1

, . . . , an1+n2 ;x) =
X

�2⌃(n1,n2)

G(a�(1), . . . , a�(n1+n2)
;x), (2.3)

where ⌃(n
1

, n
2

) denotes the set of all shu✏es of n
1

+ n
2

elements, i.e., the subset of the

symmetric group Sn1+n2 defined by (cf. ref. [22], eq. (1.5.6))

⌃(n
1

, n
2

) = {� 2 Sn1+n2 |��1(1) < . . . < ��1(n
1

) and ��1(n
1

+1) < . . . < ��1(n
1

+n
2

)} .
(2.4)

The algebraic properties of multiple polylogarithms imply that not all the G(~a;x) for fixed

x are independent, but that there are (polynomial) relations among them. In particular, we

1In a sense, they already made an appearance in Kummer’s pioneering work [77] in 1840.

– 3 –

• Shuffles are best understood via examples:
G(a;z) G(b;z) = G(a,b;z) + G(b,a;z)

Samstag, 8. Oktober 11



The shuffle algebra
• This is not a coincidence!

2. Short review of multiple polylogarithms

Definition. Multiple polylogarithms can be defined recursively, for n � 0, via the iterated

integral [1, 2]

G(a
1

, . . . , an;x) =

Z x

0

dt

t� a
1

G(a
2

, . . . , an; t) , (2.1)

with G(x) = G(;x) = 1, an exception being when x = 0 in which case we put G(0) = 0

(clearly any expression
R

0

0

. . . should be zero), and with ai 2 C are chosen constants and x

is a complex variable. In the following, we will also consider G(a
1

, . . . , an;x) to be functions

of a
1

, . . . , an. In the special case where all the ai’s are zero, we define, using the obvious

vector notation ~an = (a, . . . , a
| {z }

n

), a 2 C,

G(~0n;x) =
1

n!
logn x , (2.2)

consistent with the case n = 0 above. Note that, while in the Mathematics literature these

functions appear already in the early 20th century in the works of Poincaré and of Lappo-
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Danilevsky [76] as “hyperlogarithms”, as well as in the 1960’s in Chen’s work on iterated

integrals (e.g., [22])1, in the physics literature these functions are often called Goncharov

polylogarithms, due to the wealth of structure that the latter has established for them

over the last 20 years. Throughout this paper, we follow the physics convention for the

definition of the iterated integrals, which di↵ers slightly from the mathematical one; e.g., in

ref. [2], the function corresponding to G(a
1

, . . . , an;x) would be denoted I(0; an, . . . , a1;x),

i.e., with the reverse order of the ai but keeping the same variable x.

We will refer to the vector ~a = (a
1

, . . . , an) as the vector of singularities attached to

the multiple polylogarithm and the number of elements n, counted with multiplicities, in

that vector is called the weight of the multiple polylogarithm.

Properties. We collect here a number of useful and well-known properties (cf. e.g.

ref. [2, 8]). Iterated integrals form a shu✏e algebra [78] (see appendix A for a short review of

shu✏e algebras), which allows one to express the product of two multiple polylogarithms of

weight n
1

and n
2

as a linear combination with integer coe�cients of multiple polylogarithms

of weight n
1

+ n
2

, via

G(a
1

, . . . , an1 ;x)G(an1+1

, . . . , an1+n2 ;x) =
X

�2⌃(n1,n2)

G(a�(1), . . . , a�(n1+n2)
;x), (2.3)

where ⌃(n
1

, n
2

) denotes the set of all shu✏es of n
1

+ n
2

elements, i.e., the subset of the

symmetric group Sn1+n2 defined by (cf. ref. [22], eq. (1.5.6))

⌃(n
1

, n
2

) = {� 2 Sn1+n2 |��1(1) < . . . < ��1(n
1

) and ��1(n
1

+1) < . . . < ��1(n
1

+n
2

)} .
(2.4)

The algebraic properties of multiple polylogarithms imply that not all the G(~a;x) for fixed

x are independent, but that there are (polynomial) relations among them. In particular, we

1In a sense, they already made an appearance in Kummer’s pioneering work [77] in 1840.

– 3 –

• Multiple polylogarithms form a so-called shuffle algebra:

2. Short review of multiple polylogarithms

Definition. Multiple polylogarithms can be defined recursively, for n � 0, via the iterated

integral [1, 2]

G(a
1

, . . . , an;x) =

Z x

0

dt

t� a
1

G(a
2

, . . . , an; t) , (2.1)

with G(x) = G(;x) = 1, an exception being when x = 0 in which case we put G(0) = 0

(clearly any expression
R

0

0

. . . should be zero), and with ai 2 C are chosen constants and x

is a complex variable. In the following, we will also consider G(a
1

, . . . , an;x) to be functions

of a
1

, . . . , an. In the special case where all the ai’s are zero, we define, using the obvious

vector notation ~an = (a, . . . , a
| {z }

n

), a 2 C,

G(~0n;x) =
1

n!
logn x , (2.2)

consistent with the case n = 0 above. Note that, while in the Mathematics literature these

functions appear already in the early 20th century in the works of Poincaré and of Lappo-
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We will refer to the vector ~a = (a
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, . . . , an) as the vector of singularities attached to
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2
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, . . . , an1 ;x)G(an1+1

, . . . , an1+n2 ;x) =
X
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is a complex variable. In the following, we will also consider G(a
1

, . . . , an;x) to be functions

of a
1

, . . . , an. In the special case where all the ai’s are zero, we define, using the obvious
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• Shuffles are best understood via examples:
G(a;z) G(b;z) = G(a,b;z) + G(b,a;z)

G(a;z) G(b,c;z) = G(a,b,c;z) + G(b,a,c;z) + G(b,c,a;z)

G(a;z) G(b,c,d;z) = G(a,b,c,d;z) + G(b,a,c,d;z) + G(b,c,a,d;z) + G(b,c,d,a;z)

G(a,b;z) G(c,d;z) = G(a,b,c,d;z) + G(a,c,b,d;z) + G(a,c,d,b;z)
                                + G(c,a,b,d;z) + G(c,a,d,b;z) + G(c,d,a,b;z)
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The shuffle algebra
• This is not a coincidence!

2. Short review of multiple polylogarithms

Definition. Multiple polylogarithms can be defined recursively, for n � 0, via the iterated

integral [1, 2]

G(a
1

, . . . , an;x) =

Z x

0

dt

t� a
1

G(a
2

, . . . , an; t) , (2.1)

with G(x) = G(;x) = 1, an exception being when x = 0 in which case we put G(0) = 0

(clearly any expression
R

0

0

. . . should be zero), and with ai 2 C are chosen constants and x

is a complex variable. In the following, we will also consider G(a
1

, . . . , an;x) to be functions

of a
1

, . . . , an. In the special case where all the ai’s are zero, we define, using the obvious

vector notation ~an = (a, . . . , a
| {z }

n

), a 2 C,

G(~0n;x) =
1

n!
logn x , (2.2)

consistent with the case n = 0 above. Note that, while in the Mathematics literature these

functions appear already in the early 20th century in the works of Poincaré and of Lappo-
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x are independent, but that there are (polynomial) relations among them. In particular, we
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• Shuffles are best understood via examples:
G(a;z) G(b;z) = G(a,b;z) + G(b,a;z)

G(a;z) G(b,c;z) = G(a,b,c;z) + G(b,a,c;z) + G(b,c,a;z)

G(a;z) G(b,c,d;z) = G(a,b,c,d;z) + G(b,a,c,d;z) + G(b,c,a,d;z) + G(b,c,d,a;z)

G(a,b;z) G(c,d;z) = G(a,b,c,d;z) + G(a,c,b,d;z) + G(a,c,d,b;z)
                                + G(c,a,b,d;z) + G(c,a,d,b;z) + G(c,d,a,b;z)

• N.B.: Shuffles preserve the weight!
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Harmonic polylogarithms
• Some special classes were (re)discovered independently by 

physicists, and go under the name harmonic polylogarithms.

• They are multiple polylogarithms with                     , but 
with a different sign convention: 

ai 2 {0,±1}

9 Harmonic polylogarithms

9.1 Definition and basic properties

The harmonic polylogarithms (HPL’s) were introduced in Ref. [17] as the iterated integrations,

H(w1, . . . , wn; x) =

∫ x

0
dt f(w1; t)H(w2, . . . , wn; t) , (229)

where wi ∈ {−1, 0, 1} and !w #= !0 and

f(−1; x) =
1

1 + x
, f(0; x) =

1

x
, f(1; x) =

1

1− x
. (230)

For !w = !0, we define,

H(!0n; x) =
1

n!
lnn x . (231)

The vector !w = (w1, . . . , wn) is called the weight vector of the polylogarithm and the number of elements
in the weight vector is called the weight w of the polylogarithm. In other words, harmonic polylogarithms
are nothing but multiple polylogarithms where the weight vector takes values in the set {−1, 0, 1},

H(!w; x) = (−1)p G(!w; x) , (232)

where p is the number of elements in !w equal to (+1). As iterated integrations the harmonic polyloga-
rithms form a shuffle algebra,

H(!w1; x)H(!w2; x) = H(!w1 !w2; x) , (233)

and hence the harmonic polylogarithms form a subalgebra of the shuffle algebra of Goncharov poly-
logarithms. Despite the fact that HPL’s do not offer anything new with respect to generic multiple
polylogarithms, they have many nice properties, which justifies to consider them a species on their own.

The notation we introduced for the HPL’s makes explicit their shuffle algebra structure. There is
however also a notation similar to Eq. (197),

Hm1,...,mk
(x) = H(0, . . . , 0

︸ ︷︷ ︸

|m1|−1

, sign(m1), . . . , 0, . . . , 0
︸ ︷︷ ︸

|mk|−1

, sign(mk); x) . (234)

The relation to the Li notation for MPL’s is

Theorem 32.
Hm1,...,mk

(x) = (−1)p+k Li|mk|,...,|m1|(σk σk−1, . . . ,σ2 σ1,σ1 x) , (235)

with σi = sign(mi) and p = #{σi = +1|1 ≤ i ≤ k}.

50

where p is the number of indices equal to (+1).
• There are other special classes in two variables 

(re)discovered by physicists, called two-dimensional harmonic 
polylogarithms [Gehrmann, Remiddi].

where

P1 =
1

m4

−1
∑

i=−4

Aiε
i + O(ε0) , (C.33)

A−4 =
1

24(1 + y)2
,

A−3 =
1

96(1 + y)2

[

−10G(−1; y) + 3G(0;x) − 6G(1;x)
]

,

A−2 =
1

192(1 + y)2

[

−47ζ(2) − 24G(−1; y)G(0;x) + 48G(−1; y)G(1;x) + 32G(−1,−1; y)

−6G(0,−1; y)
]

,

A−1 =
1

192(1 + y)2

[

−85ζ(3) + 188ζ(2)G(−1; y) + 96ζ(2)G(1;x) − 96ζ(2) G (−1/y;x)

+96G(0;x)G(−1,−1; y) − 96G(1;x)G(−1,−1; y) − 48G (−1/y;x) G(−1,−1; y)

−48G(−y;x)G(−1,−1; y) − 24G(0;x)G(0,−1; y) + 24G (−1/y;x) G(0,−1; y)

+24G(−y;x)G(0,−1; y) + 48G(−1; y)G(1, 0;x) − 96G(−1; y)G(1, 1;x)

−24G(−1; y)G (−1/y, 0;x) + 48G(−1; y)G (−1/y, 1;x) − 24G(−1; y)G(−y, 0;x)

+48G(−1; y)G(−y, 1;x) + 64G(−1,−1,−1; y) − 24G(−1, 0,−1; y)

−12G(0,−1,−1; y) + 6G(0, 0,−1; y) + 24G(1, 0, 0;x) − 48G(1, 0, 1;x)

−48G(1, 1, 0;x) + 96G(1, 1, 1;x) − 24G (−1/y, 0, 0;x) + 48G (−1/y, 0, 1;x)

+24G (−1/y,1, 0;x)−48G (−1/y,1,1;x)+24G(−y,1, 0;x)−48G(−y, 1, 1;x)
]

.(C.34)

Finally, the topology in Fig. 3-(f) involves three MIs. The first MI we chose is

=

∫
Ddk1D

dk2

P0(k1)P0(k2)P0(k1−k2)P0(k2−p1)P0(k1−p1−p2)P0(k2−p1−p2)Pm(k1−p3)
, (C.35)

where

=
1

m6

−1
∑

i=−4

Aiε
i + O(ε0) , (C.36)

A−4 =
x2

24(1 − x)4(1 + y)
,

A−3 =
x2

96(1 − x)4(1 + y)

[

−10G(−1; y) + 3G(0;x) − 6G(1;x)
]

,

– 24 –
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Series representation
• So far we have only looked at the integral representation.

• What about series representations?

• The series representation is nice, because it is closer to 
Mellin-Barnes methods.

Lim(z) =
Z z

0

dt

t
Lim�1(t) =

1X

n=1

zn

nm

Proposition 20.
∂

∂z
G(w1, . . . , wn; z) =

1

z − w1
G(w2, . . . , wn; z) . (191)

Equivalently, the differential and integral operators act as ladder operators on multiple polyloga-
rithms.

Proposition 21 (Goncharov [10]).

dG(w1, . . . , wn; z) =
n
∑

i=1

G(w1, . . . , ŵi, . . . , wn; z) d ln
wi+1 − wi

wi−1 − wi
. (192)

From the definition (187) it is easy to see that,

lim
wi→∞

G("w; z) = 0 . (193)

Furthermore, we have

lim
z→0

G("w; z) =

{

∞, if "w = "0 ,
0, otherwise .

(194)

and in general, for w1 #= 0,
lim

z→w1

G("w; z) =∞ . (195)

Multiple polylogarithms can also be represented as multiple nested sums,

Limk,...,m1(xk, . . . , x1) =
∞
∑

n1=1

xn1
1

nm1
1

n1−1
∑

n2=1

. . .

nk−1−1
∑

nk=1

xnk

k

nmk

k

= Zm1,...,mk
(∞; x1, . . . , xk) . (196)

The functions Li1,...,1 are usually referred to as multiple logarithms. Since the Li functions are the values
at infinity of the Z sums introduced in the previous section, they share all the algebra properties of the
Z sums, i.e., they form in particular a quasi-shuffle algebra. The G and Li functions define in fact the
same class of functions.

Proposition 22.

Limk,...,m1(xk, . . . , x1) = (−1)k G



0, . . . , 0
︸ ︷︷ ︸

m1−1

,
1

x1
, . . . , 0, . . . , 0

︸ ︷︷ ︸

mk−1

,
1

x1 . . . xk
; 1



 . (197)

In order to proof Propostion 22, we first need the equivalent of Lemma 5:

Lemma 6.
∫ z

0

(
dt

t

)m−1 tα dt

t− a
= −aα

∞∑

n=1

zn+α

nm
, (198)

provided that the integral converges.

44

• The multi-dimensional generalization of the series 
representation is
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The functions Li1,...,1 are usually referred to as multiple logarithms. Since the Li functions are the values
at infinity of the Z sums introduced in the previous section, they share all the algebra properties of the
Z sums, i.e., they form in particular a quasi-shuffle algebra. The G and Li functions define in fact the
same class of functions.
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︸ ︷︷ ︸
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,
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In order to proof Propostion 22, we first need the equivalent of Lemma 5:

Lemma 6.
∫ z

0

(
dt

t

)m−1 tα dt

t− a
= −aα

∞∑

n=1

zn+α
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, (198)

provided that the integral converges.

44

• k is called the depth. The weight is                          .m1 + . . . + mk
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Series representation
• The multi-dimensional generalization of the series 

representation is
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rithms.

Proposition 21 (Goncharov [10]).

dG(w1, . . . , wn; z) =
n
∑

i=1

G(w1, . . . , ŵi, . . . , wn; z) d ln
wi+1 − wi

wi−1 − wi
. (192)

From the definition (187) it is easy to see that,

lim
wi→∞

G("w; z) = 0 . (193)

Furthermore, we have

lim
z→0

G("w; z) =

{

∞, if "w = "0 ,
0, otherwise .

(194)

and in general, for w1 #= 0,
lim

z→w1

G("w; z) =∞ . (195)

Multiple polylogarithms can also be represented as multiple nested sums,

Limk,...,m1(xk, . . . , x1) =
∞
∑

n1=1

xn1
1

nm1
1

n1−1
∑

n2=1

. . .

nk−1−1
∑

nk=1

xnk

k

nmk

k

= Zm1,...,mk
(∞; x1, . . . , xk) . (196)

The functions Li1,...,1 are usually referred to as multiple logarithms. Since the Li functions are the values
at infinity of the Z sums introduced in the previous section, they share all the algebra properties of the
Z sums, i.e., they form in particular a quasi-shuffle algebra. The G and Li functions define in fact the
same class of functions.

Proposition 22.

Limk,...,m1(xk, . . . , x1) = (−1)k G



0, . . . , 0
︸ ︷︷ ︸

m1−1

,
1

x1
, . . . , 0, . . . , 0

︸ ︷︷ ︸

mk−1

,
1

x1 . . . xk
; 1



 . (197)

In order to proof Propostion 22, we first need the equivalent of Lemma 5:

Lemma 6.
∫ z

0

(
dt

t

)m−1 tα dt

t− a
= −aα

∞∑

n=1

zn+α

nm
, (198)

provided that the integral converges.

44

• k is called the depth. The weight is                          .m1 + . . . + mk

• These functions contain the classical polylogarithms in an 
obvious way.
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• Again, these functions satisfy various relations, e.g.,Theorem 28 (Distribution relation).

Lim1,...,mk
(x1, . . . , xk) = dm1+...+mk−k

∑

yd
j =xj , 1≤j≤k

Lim1,...,mk
(y1, . . . , yk) . (211)

Theorem 29 (Shuffle antipode relation).

G(w1, . . . , wn; z) + (−1)n G(wn, . . . , w1; z)

= G(w1; z)G(w2, . . . , wn; z)−G(w2, w1; z)G(w3, . . . , wn; z) + . . .

+ (−1)n−1 G(wn−1, . . . , w1; z)G(wn; z) .

(212)

Proof. The antipode relation (38), combined with the definition of the antipode in a shuffle algebra (62)
implies,

w(1) · S
(

w(2)
)

=
n
∑

k=0

S (l1 . . . lk) · (lk+1 . . . ln) =
n
∑

k=0

(−1)k (lk . . . l1) · (lk+1 . . . ln) , (213)

and the result follows immediately.

Note that there is a similar, but independent, antipode relation coming form the stuffle algebra.

Theorem 30 (Hölder convolution). If w1 "= 1 and wn "= 0, then, ∀p ∈ C, we have,

G(w1, . . . , wn; 1) =
n
∑

k=0

(−1)k G

(

1− wk, . . . , 1− w1; 1−
1

p

)

G

(

wk+1, . . . , wn;
1

p

)

. (214)

Theorem 31. If both w1 and wn are different from 0 and 1, then,

G(w1, . . . , wn; 1) = (−1)n G (1− wk, . . . , 1− w1; 1) . (215)

Proof. Follows from the Hölder convolution with p =∞.

8.3 Transformations of the argument

The representation of multiple polylogarithms as iterated integrations allows to derive relation between
polylogarithms with related arguments. If h : C → C denotes an invertible rational function, then we
have,

G(w1, . . . , wn; h(z)) =

∫ h(z)

0

dt

t− w1
G(w2, . . . , wn; t) (216)

Performing inside the integral the change of variable t = h(ξ), we find,

G(w1, . . . , wn; h(z)) =

∫ z

h−1(0)

h′(ξ) dξ

h(ξ)− w1
G(w2, . . . , wn; h(ξ)) . (217)

At this point, G(w2, . . . , wn; h(ξ)) is known recursively, and if h is rational, then h′(ξ)/(h(ξ) − w1) is
rational as well, and we can partial fraction this function, and finally arrive at an expression that can be
integrated using the definition of iterated integrals. Since the last integration has z as an upper bound,
we arrive at polylogarithms whose explicit integration variable z.

Note that the case h(ξ) = k ξ is trivial, since it is covered by the scaling identity of Theorem 27. In
Ref. [12] the following particular cases were studied,

h(ξ) = 1− ξ , h(ξ) = 1/ξ , h(ξ) = (1− ξ)/(1 + ξ) , h(ξ) = 1/(1− ξ) . (218)
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• They also contain the iterated integrals we defined before:
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The Stuffle algebra
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Z sums, i.e., they form in particular a quasi-shuffle algebra. The G and Li functions define in fact the
same class of functions.

Proposition 22.

Limk,...,m1(xk, . . . , x1) = (−1)k G



0, . . . , 0
︸ ︷︷ ︸

m1−1

,
1

x1
, . . . , 0, . . . , 0

︸ ︷︷ ︸

mk−1

,
1

x1 . . . xk
; 1



 . (197)

In order to proof Propostion 22, we first need the equivalent of Lemma 5:

Lemma 6.
∫ z

0

(
dt

t

)m−1 tα dt

t− a
= −aα

∞∑

n=1

zn+α

nm
, (198)

provided that the integral converges.

44

• We proceed in the same way as for the iterated integrals:
Lim(x)Lin(y) =?

n1

n2

Lim,n(x, y) +Lin,m(y, x)+Lim+n(x y)

Samstag, 8. Oktober 11



The Stuffle algebra
• This is again a generic feature.

• In general, the stuffle algebra relations are independent from 
the shuffle algebra relations!

• Stuffle algebra relations preserve the weight (but not the 
depth!)

Samstag, 8. Oktober 11



The Stuffle algebra
• This is again a generic feature.

• In general, the stuffle algebra relations are independent from 
the shuffle algebra relations!

• Stuffle algebra relations preserve the weight (but not the 
depth!)

• In conclusion:

Samstag, 8. Oktober 11



The Stuffle algebra
• This is again a generic feature.

• In general, the stuffle algebra relations are independent from 
the shuffle algebra relations!

• Stuffle algebra relations preserve the weight (but not the 
depth!)

• In conclusion:
➡ Multiple polylogarithms form both a shuffle and a stuffle 

algebra, and the two algebra structures are independent!

Samstag, 8. Oktober 11



The Stuffle algebra
• This is again a generic feature.

• In general, the stuffle algebra relations are independent from 
the shuffle algebra relations!

• Stuffle algebra relations preserve the weight (but not the 
depth!)

• In conclusion:
➡ Multiple polylogarithms form both a shuffle and a stuffle 

algebra, and the two algebra structures are independent!
➡ They satisfy many complicated functional equations:

Samstag, 8. Oktober 11



The Stuffle algebra
• This is again a generic feature.

• In general, the stuffle algebra relations are independent from 
the shuffle algebra relations!

• Stuffle algebra relations preserve the weight (but not the 
depth!)

• In conclusion:
➡ Multiple polylogarithms form both a shuffle and a stuffle 

algebra, and the two algebra structures are independent!
➡ They satisfy many complicated functional equations:

✤ What is a minimal set?
✤ Cancellations?

Samstag, 8. Oktober 11



The Stuffle algebra
• This is again a generic feature.

• In general, the stuffle algebra relations are independent from 
the shuffle algebra relations!

• Stuffle algebra relations preserve the weight (but not the 
depth!)

• In conclusion:
➡ Multiple polylogarithms form both a shuffle and a stuffle 

algebra, and the two algebra structures are independent!
➡ They satisfy many complicated functional equations:

✤ What is a minimal set?
✤ Cancellations?

➡ ALL these relations preserve the weight!
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Three-loop form factor
A5,3 A6,5 A6,6
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cl = 1

cl = 2

cl = 3

A9,4

A7,3A7,1 A7,4

Figure 1: Master integrals for the three-loop form factors. Internal lines denote
massless propagators 1/(k2 + i0).

[20].
The high orders of ε-expansion allowed us to guess, for all master integrals, ex-

cept A6,4 and the three most complicated ones (A9,1, A9,2, and A9,4), the factors
which makes the expansion homogeneous in the transcendentality weight. Taking
into account the fact that these four master integrals can be replaced by the integrals
with numerators [9] (or denominator squared for A6,4), see Fig. 2, which are also
homogeneous in the transcendentality weight, we have a complete basis of master
integrals with homogeneous transcendentality weight. Let us present the results for
the expansion of the integrals in this basis. We arrange the results in the order of
increasing complexity level, the notion introduced in Ref. [4]. The loop integration

3

A6,6(4− 2ε) =
Γ(1− ε)6Γ(ε)3

Γ(2− 2ε)3

=
e−3γε

(1− 2ε)3

{

1

ε3
−

π2

4ε
− 7ζ3 −

37π4ε

480
+ ε2

(

7π2ζ3
4

−
93ζ5
5

)

+ε3
(

49ζ23
2

−
943π6

120960

)

+ ε4
(

259π4ζ3
480

+
93π2ζ5
20

−
381ζ7
7

)

+ε5
(

−
49

8
π2ζ23 +

651ζ5ζ3
5

+
6527π8

9676800

)

+O
(

ε6
)

}

, (4)

A4(4− 2ε) =
Γ(1− ε)4Γ(3ε− 2)

Γ(4− 4ε)

=
e−3γε

(1− 4ε)(3− 4ε)(1− 3ε)(2− 3ε)(1− 2ε)

{

1

6ε
−

π2ε

24
−

29ε2ζ3
6

−
71π4ε3

960
− ε4

(

421ζ5
10

−
29π2ζ3
24

)

+ ε5
(

841ζ23
12

−
11539π6

145152

)

−ε6
(

−
2059

960
π4ζ3 −

421π2ζ5
40

+
6189ζ7
14

)

+ ε7
(

−
841

48
π2ζ23 +

12209ζ5ζ3
10

−
737687π8

8294400

)

+O
(

ε8
)

}

, (5)

A5,1(4− 2ε) = −
Γ(2− 3ε)2Γ(1− ε)3Γ(2ε− 1)Γ(3ε− 1)

Γ(3− 4ε)Γ(3− 3ε)

=
e−3γε

(1− 4ε)(2− 3ε)(1− 2ε)2

{

−
1

12ε2
−

π2

16
+

23εζ3
12

−
7π4ε2

1152

+ε3
(

23π2ζ3
16

+
351ζ5
20

)

+ ε4
(

65243π6

1451520
−

529ζ23
24

)

+ ε5
(

161π4ζ3
1152

+
1053π2ζ5

80
+

5503ζ7
28

)

+ ε6
(

−
529

32
π2ζ23 −

8073ζ5ζ3
20

+
75527π8

860160

)

+O
(

ε7
)

}

, (6)

5

• No dilogarithms or trilogarithms, only zeta values (up to an 
overall scale):

⇣m =
1X

n=1

1
nm

[Lee, Smirnov, Smirnov]
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Zeta values
• Zeta values are special values of classical polylogarithms

⇣m =
1X

n=1

1
nm

= Lim(1)

• Some zeta values are known...

Definition 65. Let m1, . . . , mk be integers (not necessarily positive). Coloured multiple zeta values are
defined by

ζm1,...,mk
=

∑

n1>...>nk≥1

sign(m1)n1

n|m1|
1

. . .
sign(mk)nk

n|mk|
k

. (180)

It is clear that we can relate the coloured MZV’s to Z-sums in the same way as we did for the
ordinary MZV’s. Hence coloured MZV’s form a quasi-shuffle algebra (and, as will become clear in the
next section, also a shuffle algebra). Similar to the MZV’s, we define,

CMZV• =
∞
⊕

w=0

CMZVw , (181)

where we define CMZV0 = Q. Furthermore, there is exactly one independent CMZV of weight one,
CMZV1 = 〈ζ−1〉 = 〈− ln 2〉 .

7.2 Algebraic independence of MZV’s

Let z1, . . . , zk ∈MZV•. Recall that z1, . . . , zk are algebraically dependent iif ∃P ∈ Q[X1, . . . , Xk] such
that P (z1, . . . , zk) = 0. Otherwise we say that they are algebraically independent. The question of
algebraic independence of MZV’s is far from being settled in the generic case. For the case of depth one
however, we have the following result,

Theorem 22.

ζ2n = (−1)n+1 B2n

2 (2n)!
(2π)2n , (182)

where B2n denote the Bernoulli numbers.

Hence ζ2n is transcendental, and they are not algebraically independent for n > 1. For odd values,
only the following results are known

Theorem 23 (Apéry). ζ3 is irrational.

Theorem 24 (Rivoal). Infinitely many ζ2n+1 are irrational.

Beyond depth one, only a few special cases can be given in closed form,

Theorem 25.

ζ2, . . . , 2
︸ ︷︷ ︸

n

=
π2n

(2n + 1)!
, ζ3, 1, . . . , 3, 1

︸ ︷︷ ︸
2n

=
2π4n

(4n + 2)!
. (183)

There are a certain number of generic conjectures about the algebraic independence of MZV’s.

Conjecture 1. Two MZV’s with different weight are linearly independent, i.e., there are no linear
relations between MZV’s of different weight.

Let us now consider the dimension of the Q-vector space of MZV’s of weight k, dk = dimQ MZVn.
Then we have the following conjecture,

42
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where B2n denote the Bernoulli numbers.

Hence ζ2n is transcendental, and they are not algebraically independent for n > 1. For odd values,
only the following results are known
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. (183)

There are a certain number of generic conjectures about the algebraic independence of MZV’s.

Conjecture 1. Two MZV’s with different weight are linearly independent, i.e., there are no linear
relations between MZV’s of different weight.

Let us now consider the dimension of the Q-vector space of MZV’s of weight k, dk = dimQ MZVn.
Then we have the following conjecture,

42

• ...but most are not! Almost only result is that     is irrational. ⇣3
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ζ2n = (−1)n+1 B2n
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where B2n denote the Bernoulli numbers.

Hence ζ2n is transcendental, and they are not algebraically independent for n > 1. For odd values,
only the following results are known

Theorem 23 (Apéry). ζ3 is irrational.
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There are a certain number of generic conjectures about the algebraic independence of MZV’s.

Conjecture 1. Two MZV’s with different weight are linearly independent, i.e., there are no linear
relations between MZV’s of different weight.

Let us now consider the dimension of the Q-vector space of MZV’s of weight k, dk = dimQ MZVn.
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42

• ...but most are not! Almost only result is that     is irrational. ⇣3

• Most famous example:
⇣2 =

⇡2

6
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2 (2n)!
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where B2n denote the Bernoulli numbers.
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There are a certain number of generic conjectures about the algebraic independence of MZV’s.

Conjecture 1. Two MZV’s with different weight are linearly independent, i.e., there are no linear
relations between MZV’s of different weight.

Let us now consider the dimension of the Q-vector space of MZV’s of weight k, dk = dimQ MZVn.
Then we have the following conjecture,

42

• ...but most are not! Almost only result is that     is irrational. ⇣3

• Most famous example:
⇣2 =

⇡2

6

• As zeta values are closely related to polylogarithms, can we 
generalize..?
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Multiple zeta values
• Multiple zeta values are special values of multiple 

polylogarithms

• MZV’s also form a shuffle and stuffle algebra.

Let us now construct functions F (z), defined by an iterated integral with a variable endpoint z
for the path, but with fixed starting point. For such a function to be well defined, it can of course
only depend on the beginning and end points, but not on the path itself, i.e., it must be a homotopy
functional. We thus need a criterion to select those iterated integrals that are homotopy functionals. In
the case of a single 1-form, we have the following well-known result

Proposition 17. Let ω be a 1-form and γ a path on M . Then the integral of ω along γ is a homotopy
functional if and only if ω is exact, dω = 0.

This result can in some form be generalized to iterated integrals. In order to do this, we lift the
DGA Ω•(M) of differential forms on M to its bar construction B(M) with bar-differential

D([ω1| . . . |ωn]) =
n−1
∑

i=1

[ω1| . . . |ωi ∧ ωi+1| . . . |ωn] +
n
∑

i=1

[ω1| . . . |dωi| . . . |ωn] . (161)

An element ξ ∈ B(M) is said to be integrable if Dξ = 0. The set of all integrable words is defined by,

Intn(M) = {ξ =
n
∑

!=1

∑

i1,...,i!

[ωi1 | . . . |ωi!
] such that Dξ = 0} . (162)

Let now γ be a smooth path on M . We can define the integration map βγ : B(M)→ K defined on
generators by

[ω1| . . . |ωn] $→
∫

γ
ω1 . . .ωn . (163)

We are particularly interested in those objects that are homotopy functionals, and we have the following

Theorem 21 (Chen). The integration map βγ gives an isomorphism

Intn(M)→ {homotopy invariant iterated integrals of length n} . (164)

7 Multiple zeta values

7.1 Definition

Definition 64. Let m1, . . . , mk be positive integers.

ζm1,...,mk
=

∑

n1>...>nk≥1

1

nm1
1

. . .
1

nmk

k

. (165)

The series converges provided that m1 ≥ 2. It is easy to see that multiple zeta values correspond to
the values at infinity of Euler-Zagier sums,

ζm1,...,mk
= Zmk,...,m1(∞) = Zmk,...,m1(∞; 1, . . . , 1) . (166)

The weight and the depth of a multiple zeta value (MZV) are defined as the weight and the depth of
the corresponding Z sum. Furthermore, we immediately see that MZV’s form a quasi-shuffle algebra,

ζ#m1 ζ#m2 = ζ#m1∗#m2 , (167)

39

[Zagier]
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Multiple zeta values
• Multiple zeta values are special values of multiple 

polylogarithms

• Number theory aside:
Find all the relations among MZV’s.

• Conjecture:
All the relations among MZV’s are generated by the shuffle 
and stuffle relations.
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7 Multiple zeta values

7.1 Definition

Definition 64. Let m1, . . . , mk be positive integers.

ζm1,...,mk
=

∑

n1>...>nk≥1

1

nm1
1

. . .
1

nmk

k

. (165)

The series converges provided that m1 ≥ 2. It is easy to see that multiple zeta values correspond to
the values at infinity of Euler-Zagier sums,

ζm1,...,mk
= Zmk,...,m1(∞) = Zmk,...,m1(∞; 1, . . . , 1) . (166)

The weight and the depth of a multiple zeta value (MZV) are defined as the weight and the depth of
the corresponding Z sum. Furthermore, we immediately see that MZV’s form a quasi-shuffle algebra,

ζ#m1 ζ#m2 = ζ#m1∗#m2 , (167)

39

[Zagier]
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Caveat!!!
• We have analyzed polylogarithms and MZV’s as functions/

numbers that appear in loop integrals.

• In general for example a Mellin-Barnes integral will give rise 
to sums that are not easily doable, and where it is not clear 
whether it will be multiple polylogarithms.

• This does NOT mean that this is ALWAYS the case!

• More general theorems about which functions/numbers can 
appear in the next lectures.

• There are however theories in which it is expected that only 
multiple polylogarithms and MZV’s appear (e.g., N=4 SYM).
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Special functions

Transcentality 
and periods
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Example:
• Can the following be Feynman integrals?

A = 2365

B = ⇡2 + ⇣3

C = e3⇡2 � ln 2

D = ln4 2 + Li4
✓

1
2

◆

E =
ln2 2
⇡2

F = ⇣2 � 24Li2,2

⇣
ei⇡/3, e�2i⇡/3

⌘
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Example:
• Can the following be Feynman integrals?

A = 2365

B = ⇡2 + ⇣3

C = e3⇡2 � ln 2

D = ln4 2 + Li4
✓

1
2

◆

E =
ln2 2
⇡2

F = ⇣2 � 24Li2,2

⇣
ei⇡/3, e�2i⇡/3

⌘

• What drives this..?
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Example:

• Why is this knowledge useful?

➡ For checking your computations!

➡ Make educated guesses for loop integrals.

➡ This can for example be useful when using the PSLQ 
algorithm.
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Transcendentality

• Definition: A complex number is said to be algebraic iff it is 
the root of a polynomial with rational coefficients. 
Otherwise the number is called transcendental.

• Examples: 

2/3
p

2

2 + i 3
p

5

e2 + 1
⇡2/6

ln 2

e⇡ ⇣3
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Transcendentality

• Definition: A complex number is said to be algebraic iff it is 
the root of a polynomial with rational coefficients. 
Otherwise the number is called transcendental.

• Examples: 

2/3
p

2

2 + i 3
p

5

e2 + 1
⇡2/6

ln 2

e⇡ ⇣3? ?
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Transcendentality

• Definition: A complex number is said to be algebraic iff it is 
the root of a polynomial with rational coefficients. 
Otherwise the number is called transcendental.

• Examples: 

2/3
p

2

2 + i 3
p

5

e2 + 1
⇡2/6

ln 2

e⇡ ⇣3? ?

• Algebraic numbers form a field, i.e., we can add, multiply, 
invert, etc.
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Example:

A = 2365

B = ⇡2 + ⇣3

C = e3⇡2 � ln 2

D = ln4 2 + Li4
✓

1
2

◆

E =
ln2 2
⇡2

F = ⇣2 � 24Li2,2

⇣
ei⇡/3, e�2i⇡/3

⌘
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Example:

Feynman integrals
are not algebraic!

A = 2365

B = ⇡2 + ⇣3

C = e3⇡2 � ln 2

D = ln4 2 + Li4
✓

1
2

◆

E =
ln2 2
⇡2

F = ⇣2 � 24Li2,2

⇣
ei⇡/3, e�2i⇡/3

⌘

Samstag, 8. Oktober 11



Example:

Feynman integrals
are not algebraic!

A = 2365

B = ⇡2 + ⇣3

C = e3⇡2 � ln 2

D = ln4 2 + Li4
✓

1
2

◆

E =
ln2 2
⇡2

F = ⇣2 � 24Li2,2

⇣
ei⇡/3, e�2i⇡/3

⌘

➡ Can they be generic 
transcendental 
numbers?
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Periods

• Definition: A complex number is said to be a period if its 
real and imaginary parts can be written as the integral of a 
rational function over a domain given by polynomial 
inequalities.

• Examples: 

2/3 p
2

2 + i 3
p

5

e2 + 1
⇡2/6

ln 2

e⇡ ⇣3

⇡
1/⇡
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Periods

• Definition: A complex number is said to be a period if its 
real and imaginary parts can be written as the integral of a 
rational function over a domain given by polynomial 
inequalities.

• Examples: 

2/3 p
2

2 + i 3
p

5

e2 + 1
⇡2/6

ln 2

e⇡ ⇣3

• Periods do not form a field, but only a ring (i.e., the inverse 
of a period is not necessarily a period).

⇡
1/⇡

Samstag, 8. Oktober 11



Periods

• Theorem [Bogner, Weinzierl]: If all kinematic invariants and 
masses are non-positive algebraic numbers, then the 
coefficients of the Laurent expansion of a Feynman integral 
are periods.
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Periods

• Theorem [Bogner, Weinzierl]: If all kinematic invariants and 
masses are non-positive algebraic numbers, then the 
coefficients of the Laurent expansion of a Feynman integral 
are periods.

A = 2365

B = ⇡2 + ⇣3

C = e3⇡2 � ln 2

D = ln4 2 + Li4
✓

1
2

◆

E =
ln2 2
⇡2

F = ⇣2 � 24Li2,2

⇣
ei⇡/3, e�2i⇡/3

⌘
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Special functions

Numerical evaluation 
of polylogarithms
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Tools for multiple polylogarithms
• There is a variety of tools to compute multiple polylogarithms 

numerically:
➡ HPL (Mathematica)
➡ hplog (Fortran, HPL’s up to weight 4, real arguments)

➡ Chaplin(Fortran, HPL’s up to weight 4, complex 
arguments)

➡ GiNaC (C++, generic multiple polylogarithms)

[Maitre]

[Gehrmann, Remiddi]

[Buehler, CD]

[Vollinga, Weinzierl]
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Tools for multiple polylogarithms
• There is a variety of tools to compute multiple polylogarithms 

numerically:
➡ HPL (Mathematica)
➡ hplog (Fortran, HPL’s up to weight 4, real arguments)

➡ Chaplin(Fortran, HPL’s up to weight 4, complex 
arguments)

➡ GiNaC (C++, generic multiple polylogarithms)

[Maitre]

[Gehrmann, Remiddi]

[Buehler, CD]

[Vollinga, Weinzierl]

• Why is it so difficult? Why not just use the series expansion?

Lim(z) =
Z z

0

dt

t
Lim�1(t) =

1X

n=1

zn

nm
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Numerics from series expansion

• Series only convergent in the unit disc.

Lim(z) =
Z z

0

dt

t
Lim�1(t) =

1X

n=1

zn

nm

➡ Use inversion to map inside the disc.
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Numerics from series expansion

• Series only convergent in the unit disc.

Lim(z) =
Z z

0

dt

t
Lim�1(t) =

1X

n=1

zn

nm

➡ Use inversion to map inside the disc.

• But the series is very slowly converging close to the unit 
circle...
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Numerics from series expansion

• Series only convergent in the unit disc.

Lim(z) =
Z z

0

dt

t
Lim�1(t) =

1X

n=1

zn

nm

➡ Use inversion to map inside the disc.

• But the series is very slowly converging close to the unit 
circle...

Li2(0.99999) = 1.6448089369929272952
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Numerics from series expansion

• Series only convergent in the unit disc.

Lim(z) =
Z z

0

dt

t
Lim�1(t) =

1X

n=1

zn

nm

➡ Use inversion to map inside the disc.

• But the series is very slowly converging close to the unit 
circle...

Li2(0.99999) = 1.6448089369929272952

• Truncated series:
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Numerics from series expansion

• Series only convergent in the unit disc.

Lim(z) =
Z z

0

dt

t
Lim�1(t) =

1X

n=1

zn

nm

➡ Use inversion to map inside the disc.

• But the series is very slowly converging close to the unit 
circle...

Li2(0.99999) = 1.6448089369929272952

• Truncated series:
➡ 100 terms: 1.6349320311495540992
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Numerics from series expansion

• Series only convergent in the unit disc.

Lim(z) =
Z z

0

dt

t
Lim�1(t) =

1X

n=1

zn

nm

➡ Use inversion to map inside the disc.

• But the series is very slowly converging close to the unit 
circle...

Li2(0.99999) = 1.6448089369929272952

• Truncated series:
➡ 100 terms: 1.6349320311495540992
➡ 1000 terms: 1.6438597615158994092
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Numerics from series expansion

• Series only convergent in the unit disc.

Lim(z) =
Z z

0

dt

t
Lim�1(t) =

1X

n=1

zn

nm

➡ Use inversion to map inside the disc.

• But the series is very slowly converging close to the unit 
circle...

Li2(0.99999) = 1.6448089369929272952

• Truncated series:
➡ 100 terms: 1.6349320311495540992
➡ 1000 terms: 1.6438597615158994092
➡ 10.000 terms: 1.6447366871058790583
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Numerics from series expansion

• Series only convergent in the unit disc.

Lim(z) =
Z z

0

dt

t
Lim�1(t) =

1X

n=1

zn

nm

➡ Use inversion to map inside the disc.

• But the series is very slowly converging close to the unit 
circle...

Li2(0.99999) = 1.6448089369929272952

• Truncated series:
➡ 100 terms: 1.6349320311495540992
➡ 1000 terms: 1.6438597615158994092
➡ 10.000 terms: 1.6447366871058790583
➡ 100.000 terms: 1.6448074520672384402
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Numerical evaluation
• Different codes use different solutions

➡ Functional equations to map the region close to the 
circle to a more stable region.

➡ Better expansions than the Taylor expansion.
➡ Reduction to ‘basis functions’ that can be computed in a 

fact and accurate way.
➡ Mixtures thereof.
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Numerical evaluation
• Different codes use different solutions

➡ Functional equations to map the region close to the 
circle to a more stable region.

➡ Better expansions than the Taylor expansion.
➡ Reduction to ‘basis functions’ that can be computed in a 

fact and accurate way.
➡ Mixtures thereof.

• Examples of expansions:

The series expansion (4.20) converges rather quickly inside a disc around z = 0
of radius R < 1 (the precise value of R used by Chaplin will be given in the
next section). In the remaining annulus R < |z| < 1 the dilogarithm admits a
series expansion in log z [35],

Li2(z) = − log z log(− log z) +
∞
∑

k=0

ζ (2)k

k!
logk z . (4.21)

Let us sketch the derivation of Eq. (4.21). Letting x = log z, we start from the
integral representation of the dilogarithm and perform the change of variable
t = et

′

,

Li2(e
x) = ζ2 +

∫ ex

1

dt

t
Li1(t) = ζ2 +

∫ x

0
dt′ Li1(e

t′) . (4.22)

In order to proceed, we need the Taylor expansion of Li1(ex) = − log(1− ex).
Using the integral representation of Li1 as well as Eq. (4.11), we obtain,

Li1(e
x) =

∫ ex

0

dt

1− t
= lim

ε→0

[

− log(1− eε)−
∫ x

ε

dt′

t′
(−t′)

e−t′ − 1

]

= lim
ε→0

[

− log(1− eε)−
∫ x

ε

dt′

t′
−

∞
∑

n=1

Bn

n!

∫ x

ε
dt′ (−t′)n−1

]

.

(4.23)

The last term in Eq. (4.23) is finite, whereas the logarithmic divergences cancel
between the first two terms,

lim
ε→0

[

− log(1− eε)−
∫ x

ε

dt′

t′

]

= lim
ε→0

[

− log(−ε+O(ε2))− log(−x) + log(−ε)
]

= lim
ε→0

[− log(1 +O(ε))− log(−x)] = − log(−x) .

(4.24)

Hence, using Eq. (4.12) and the fact that ζ−n = 0 for even n, we get,

Li1(e
x) = − log(−x)−

∞
∑

n=1

Bn

n!

(−x)n

n
= − log(−x) + ζ0 x+

∞
∑

n=1

ζ−n

(n + 1)!
(−x)n+1

= − log(−x) +
∞
∑

n=0

ζ−n

(n+ 1)!
xn+1 .

(4.25)

Inserting Eq. (4.25) into Eq. (4.22) and integrating term by term immediately
reproduces Eq. (4.21) (after identification x = log z). Note the appearance of
the nested logarithm, log(− log z) in Eq. (4.21), which seems to be divergent
for z close to 1. It is however easy to check that

lim
z→1−

log z log(− log z) = 0 , (4.26)

and so the whole expression is well behaved.

13
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Numerical evaluation
• Different codes use different solutions

➡ Functional equations to map the region close to the 
circle to a more stable region.

➡ Better expansions than the Taylor expansion.
➡ Reduction to ‘basis functions’ that can be computed in a 

fact and accurate way.
➡ Mixtures thereof.

• Examples of expansions:

polylogarithms for arbitrary complex arguments, we divide the problem into
two regions: for complex numbers z with |z| ≤ 1 we use the series expansions
to evaluate the basis functions numerically, whereas points with |z| > 1 are
mapped back into the interior of the unit disc using the inversion formulæ for
the classical polylogarithms. Hence, from here on we will only concentrate on
complex number z with |z| ≤ 1.

Classical polylogarithms can be expanded into a power series around z = 0,

Lin(z) =
∞∑

k=1

zk

kn
. (4.17)

Even though this series is convergent for |z| < 1, the convergence is rather
slow. A faster convergence can be achieved by using the so-called Bernoulli
substitution [33], which consists in expanding Lin(z) into a series in log(1− z).
While this expansion converges much faster for |z| # 1 than the Taylor ex-
pansion (4.17), it fails to produce reliable results when z approaches 1. In
Ref. [35] an alternative expansion of the classical polylogarithms into a series
in log z was derived. In this case the convergence is fast inside an annulus
around z = 0, but fails to converge for |z| # 1. The strategy seems thus clear:
we can split the interior of the unit disc into two distinct regions, and in each
region one of the two series expansions converges quickly. Similar expansions
can also be derived for the two remaining basis functions, H(0, 1, 0,−1; z) and
H(0, 1, 1,−1; z) (and in principle for every HPL) and are discussed in the rest
of this section. We start by deriving in detail the expansions of the diloga-
rithm, because even though these results are well-known, the techniques used
in the derivation will be the starting point for the higher-weight cases.

Series expansions of Li2(z). Let us start by deriving the expansion of
Li2(z) into a series in log(1 − z). Letting x = − log(1 − z), this is equivalent
to finding the Taylor series expansion of the function Li2(1 − e−x). We start
from the integral representation (2.4) and we get,

Li2(1− e−x) =
∫ 1−e−x

0

dt

t
Li1(t) = −

∫ 1−e−x

0

dt

t
log(1− t) . (4.18)

Performing the change of variables t = 1−e−t′ and using Eq. (4.11), we obtain,

Li2(1− e−x) = −
∫ x

0

e−t′dt′

1− e−t′
(−t′) =

∫ x

0
dt′

t′

et′ − 1
=

∞
∑

k=0

Bk

(k + 1)!
xk+1 ,

(4.19)
or equivalently in terms of the original variable z,

Li2(z) =
∞
∑

k=0

Bk

(k + 1)!
(− log(1− z))k+1 . (4.20)
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The series expansion (4.20) converges rather quickly inside a disc around z = 0
of radius R < 1 (the precise value of R used by Chaplin will be given in the
next section). In the remaining annulus R < |z| < 1 the dilogarithm admits a
series expansion in log z [35],

Li2(z) = − log z log(− log z) +
∞
∑

k=0

ζ (2)k

k!
logk z . (4.21)

Let us sketch the derivation of Eq. (4.21). Letting x = log z, we start from the
integral representation of the dilogarithm and perform the change of variable
t = et

′

,

Li2(e
x) = ζ2 +

∫ ex

1

dt

t
Li1(t) = ζ2 +

∫ x

0
dt′ Li1(e

t′) . (4.22)

In order to proceed, we need the Taylor expansion of Li1(ex) = − log(1− ex).
Using the integral representation of Li1 as well as Eq. (4.11), we obtain,

Li1(e
x) =

∫ ex

0

dt

1− t
= lim

ε→0

[

− log(1− eε)−
∫ x

ε

dt′

t′
(−t′)

e−t′ − 1

]

= lim
ε→0

[

− log(1− eε)−
∫ x

ε

dt′

t′
−

∞
∑

n=1

Bn

n!

∫ x

ε
dt′ (−t′)n−1

]

.

(4.23)

The last term in Eq. (4.23) is finite, whereas the logarithmic divergences cancel
between the first two terms,

lim
ε→0

[

− log(1− eε)−
∫ x

ε

dt′

t′

]

= lim
ε→0

[

− log(−ε+O(ε2))− log(−x) + log(−ε)
]

= lim
ε→0

[− log(1 +O(ε))− log(−x)] = − log(−x) .

(4.24)

Hence, using Eq. (4.12) and the fact that ζ−n = 0 for even n, we get,

Li1(e
x) = − log(−x)−

∞
∑

n=1

Bn

n!

(−x)n

n
= − log(−x) + ζ0 x+

∞
∑

n=1

ζ−n

(n + 1)!
(−x)n+1

= − log(−x) +
∞
∑

n=0

ζ−n

(n+ 1)!
xn+1 .

(4.25)

Inserting Eq. (4.25) into Eq. (4.22) and integrating term by term immediately
reproduces Eq. (4.21) (after identification x = log z). Note the appearance of
the nested logarithm, log(− log z) in Eq. (4.21), which seems to be divergent
for z close to 1. It is however easy to check that

lim
z→1−

log z log(− log z) = 0 , (4.26)

and so the whole expression is well behaved.
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Chaplin

III

II

I

−i

+1−1 Re(x)

Im(x)

IV V

+i

VI

Fig. 1. The different regions of the complex plane used inside the Chaplin library.

value of the argument z of the HPL. More precisely, the complex plane is
divided into six regions (See Fig. 1),

• Region I: inside an annulus 0.025 < |z| ≤ 0.3, the basis functions are eval-
uated by using the expansions in log(1− z) presented in Section 4.

• Region II: inside an annulus 0.3 ≤ |z| ≤ 1, the basis functions are evaluated
by using the expansions in log z presented in Section 4.

• Region III: points outside the unit disc, |z| > 1, are mapped back to the
interior of the unit disc via inversion relations.

• Regions IV & V: The basis of Section 3 involves functions that are loga-
rithmically divergent at ±1, leading to spurious singularities in the basis
expansion. To avoid numerical instabilities caused by these spurious singu-
larities, we use Taylor expansions close to z = ±1 to evaluate the individual
HPL’s without proceeding to a decomposition into basis functions.

• Region VI: In order to achieve a good numerical precision close to the origin
of the complex plane, we use Taylor expansions in a disc |z| < 0.025 without
proceeding to a decomposition into basis functions.

At the end of this procedure, Chaplin returns the numerical value of the HPL
given as an input. In case the numerical evaluation of a divergent quantity
is attempted (e.g., H(!0n; 0) or H(±1,!a;±1)) an exception is thrown and the
evaluation is aborted. Note that for real values of the argument, Chaplin uses
the ‘+iε’ prescription, i.e., for z ∈ R, H(!a; z) is interpreted as H(!a; z + iε).

We conclude this section by giving an example of a sample program that prints
all nine HPL’s of weight two at the point z = 1.54 + 0.91i.

19

I. Expansion in log(1-z).
II. Expansion in log(z).
III. Inversion back to the unit disc.
IV.Taylor expansion around z=-1.
V.Taylor expansion around z=+1.
VI.Taylor expansion around z=0.
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Summary of lecture 2
• Loop integrals are often expressed in terms of (multiple) 

polylogarithms.

• Multiple polylogarithms satisfy many identities.

• They form both a shuffle and stuffle algebra.

• Next lecture:

➡ Need a way to deal with these relations!

➡ More general and formal considerations about the 
analytic structure of loop integrals.
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