Momentum twistors, special functions and symbols

Lecture 2

Claude Duhr

School of analytic computing
Atrani, 06/10-11/10 2011

- 1st lecture: Kinematics
\Rightarrow What are the arguments of the special functions?
- Today's lecture:
\Rightarrow What are the kind of functions that can appear in loop computations?
\Rightarrow Properties of some of these functions.
\Rightarrow General theorems.
\Rightarrow Numerical evaluation of some of these functions.

The two-mass easy box function

$$
=\int \frac{\mathrm{d}^{D} k}{i \pi^{D / 2}} \frac{1}{k^{2}\left(k+p_{1}\right)^{2}\left(k+p_{1}+p_{2}\right)^{2}\left(k-p_{4}\right)^{2}}
$$

- Computation can be done via various methods.
- Analytic result (textbook):
[See Smirnov's lecture]

$$
\begin{aligned}
& \frac{1}{\epsilon} \ln \left(\frac{s t}{P^{2} Q^{2}}\right)+\frac{1}{2}\left[\ln ^{2}\left(\frac{-P^{2}}{\mu^{2}}\right)+\ln ^{2}\left(\frac{-Q^{2}}{\mu^{2}}\right)-\ln ^{2}\left(\frac{-s}{\mu^{2}}\right)-\ln ^{2}\left(\frac{-t}{\mu^{2}}\right)\right] \\
& +\operatorname{Li}_{2}\left(1-\frac{P^{2}}{s}\right)+\operatorname{Li}_{2}\left(1-\frac{Q^{2}}{s}\right)+\operatorname{Li}_{2}\left(1-\frac{P^{2}}{t}\right)+\operatorname{Li}_{2}\left(1-\frac{Q^{2}}{t}\right) \\
& -\operatorname{Li}_{2}\left(1-\frac{P^{2} Q^{2}}{s t}\right)+\frac{1}{2} \ln ^{2}\left(\frac{s}{t}\right)+\mathcal{O}(\epsilon)
\end{aligned}
$$

- Not an elementary function. Needs the dilogarithm:

$$
\mathrm{Li}_{2}(z)=-\int_{0}^{z} \frac{\mathrm{~d} t}{t} \ln (1-t)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}
$$

The four-mass box function

$$
\begin{aligned}
& =\operatorname{Li}_{2}\left(1-\alpha^{+}\right)-\operatorname{Li}_{2}\left(1-\alpha^{-}\right)+1 / 2 \ln v \ln \frac{\alpha^{+}}{\alpha^{-}} \\
\alpha_{ \pm} & \equiv \frac{2 u}{1+u-v \pm \sqrt{(1-u-v)^{2}-4 u v}} \\
u & =\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}} \quad v=\frac{x_{23}^{2} x_{14}^{2}}{x_{13}^{2} x_{24}^{2}}
\end{aligned}
$$

- Again a dilogarithm, but this time with algebraic rather than rational argument (square root!)

One-loop Hexagon in 6 dimensions

$$
\begin{gathered}
\frac{1}{\sqrt{\Delta}}\left[-2 \sum_{i=1}^{3} L_{3}\left(x_{i}^{+}, x_{i}^{-}\right)+\frac{1}{3}\left(\sum_{i=1}^{3} \ell_{1}\left(x_{i}^{+}\right)-\ell_{1}\left(x_{i}^{-}\right)\right)^{3}+\frac{\pi^{2}}{3} x \sum_{i=1}^{3}\left(\ell_{1}\left(x_{i}^{+}\right)-\ell_{1}\left(x_{i}^{-}\right)\right)\right], \\
x_{i}^{ \pm}=u_{i} x^{ \pm}, \quad x^{ \pm}=\frac{u_{1}+u_{2}+u_{3}-1 \pm \sqrt{\Delta}}{2 u_{1} u_{2} u_{3}}, \\
L_{3}\left(x^{+}, x^{-}\right)=\sum_{k=0}^{2} \frac{(-1)^{k}}{(2 k)!!} \ln ^{k}\left(x^{+} x^{-}\right)\left(\ell_{3-k}\left(x^{+}\right)-\ell_{3-k}\left(x^{-}\right)\right), \\
\ell_{n}(x)=\frac{1}{2}\left(\operatorname{Li}_{n}(x)-(-1)^{n} \operatorname{Li}_{n}(1 / x)\right),
\end{gathered}
$$

- Dilogarithm no longer enough. Need trilogarithm!
$\operatorname{Li}_{3}(z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t} \operatorname{Li}_{2}(t)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{3}} \quad \operatorname{Li}_{2}(z)=-\int_{0}^{z} \frac{\mathrm{~d} t}{t} \ln (1-t)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}$

Three-loop form factor the. Smimos. smimom

$$
\begin{align*}
= & \frac{e^{-3 \gamma \epsilon}}{(1-4 \epsilon)(2-3 \epsilon)(1-2 \epsilon)^{2}}\left\{-\frac{1}{12 \epsilon^{2}}-\frac{\pi^{2}}{16}+\frac{23 \epsilon \zeta_{3}}{12}-\frac{7 \pi^{4} \epsilon^{2}}{1152}\right. \\
& +\epsilon^{3}\left(\frac{23 \pi^{2} \zeta_{3}}{16}+\frac{351 \zeta_{5}}{20}\right)+\epsilon^{4}\left(\frac{65243 \pi^{6}}{1451520}-\frac{529 \zeta_{3}^{2}}{24}\right)+\epsilon^{5}\left(\frac{161 \pi^{4} \zeta_{3}}{1152}\right. \\
& \left.+\frac{1053 \pi^{2} \zeta_{5}}{80}+\frac{5503 \zeta_{7}}{28}\right)+\epsilon^{6}\left(-\frac{529}{32} \pi^{2} \zeta_{3}^{2}-\frac{8073 \zeta_{5} \zeta_{3}}{20}+\frac{75527 \pi^{8}}{860160}\right) \\
& \left.+O\left(\epsilon^{7}\right)\right\} \tag{6}
\end{align*}
$$

- No dilogarithms or trilogarithms, only zeta values (up to an overall scale):

$$
\zeta_{m}=\sum_{n=1}^{\infty} \frac{1}{n^{m}}
$$

\Rightarrow Link to dilogarithms and trilogarithms?

Massive double box

 Gehrmann, Studerus]

$$
\begin{aligned}
A_{-4}= & \frac{1}{24(1+y)^{2}}, \\
A_{-3}= & \frac{1}{96(1+y)^{2}}[-10 G(-1 ; y)+3 G(0 ; x)-6 G(1 ; x)], \\
A_{-2}= & \frac{1}{192(1+y)^{2}}[-47 \zeta(2)-24 G(-1 ; y) G(0 ; x)+48 G(-1 ; y) G(1 ; x)+32 G(-1,-1 ; y) \\
& -6 G(0,-1 ; y)],
\end{aligned}
$$

- ???

Summary

- Loop integrals are in general not elementary functions (they are so-called transcendental functions, see next lecture)
- Functions we obtained form the previous examples:
\Rightarrow Logarithms
\Rightarrow Dilogarithms $\operatorname{Li}_{2}(z)=-\int_{0}^{z} \frac{\mathrm{~d} t}{t} \ln (1-t)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}$
\Rightarrow Trilogarithms $\operatorname{Li}_{3}(z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t} \operatorname{Li}_{2}(t)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{3}}$
\Rightarrow Zeta Values $\quad \zeta_{m}=\sum_{n=1}^{\infty} \frac{1}{n^{m}}$
\Rightarrow Even other functions...
- In all cases: arguments are rational or algebraic.

Aim

- Can we classify the kind of functions that can appear?
- What are the properties of these functions?
- Is there some a priori knowledge about which functions / numbers can appear in a given Feynman integral, and which cannot?
- How can we evaluate these functions numerically?

Special functions

Polylogarithms

The dilogarithm

- Definition:

$$
\mathrm{Li}_{2}(z)=-\int_{0}^{z} \frac{\mathrm{~d} t}{t} \ln (1-t)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}
$$

- The series is convergent for $|z| \leq 1$.
- The integral representation however allows to define the function outside the unit disc, but it then develops an imaginary part:

$$
\mathrm{Li}_{2}(x)=-\mathrm{Li}_{2}(1 / x)-\frac{1}{2} \ln ^{2}(-x)-\frac{\pi^{2}}{6}
$$

- The dilogarithm satisfies many other identities, e.g.,

$$
\mathrm{Li}_{2}(1-z)=-\mathrm{Li}_{2}(z)-\ln z \ln (1-z)+\frac{\pi^{2}}{6}
$$

- How to obtain such identities will be the subject of lecture $4 \& 5$.

Classical Polylogarithms

- Definition:

$$
\begin{gathered}
\operatorname{Li}_{m}(z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t} \operatorname{Li}_{m-1}(t)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{m}} \\
\operatorname{Li}_{1}(z)=-\ln (1-z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n}
\end{gathered}
$$

- m is called the weight.
- The series is convergent for $|z| \leq 1$.
- The integral representation however allows to define the function outside the unit disc, but it then develops an imaginary part.
- The trilogarithm also satisfies many other identities.
- These are all functions of only one scale... what if we have multiple scales?

Massive double box

 Gehrmann, Studerus]

$$
\begin{aligned}
A_{-4}= & \frac{1}{24(1+y)^{2}}, \\
A_{-3}= & \frac{1}{96(1+y)^{2}}[-10 G(-1 ; y)+3 G(0 ; x)-6 G(1 ; x)], \\
A_{-2}= & \frac{1}{192(1+y)^{2}}[-47 \zeta(2)-24 G(-1 ; y) G(0 ; x)+48 G(-1 ; y) G(1 ; x)+32 G(-1,-1 ; y) \\
& -6 G(0,-1 ; y)],
\end{aligned}
$$

- Need to generalize the previous functions to more than one variable!

Multiple Polylogarithms

- Classical polylogarithm:

$$
\operatorname{Li}_{m}(z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t} \operatorname{Li}_{m-1}(t) \quad \operatorname{Li}_{1}(z)=-\ln (1-z)
$$

Multiple Polylogarithms

- Classical polylogarithm:

$$
\operatorname{Li}_{m}(z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t} \operatorname{Li}_{m-1}(t) \quad \operatorname{Li}_{1}(z)=-\ln (1-z)
$$

- Mutliple polylogarithms

$$
\begin{aligned}
& G\left(a_{1}, \ldots, a_{m} ; z\right)=\int_{0}^{z} \frac{\mathrm{~d} t}{t-a_{1}} G\left(a_{2}, \ldots, a_{m} ; t\right) \\
& G(a ; z)=\ln \left(1-\frac{z}{a}\right) \quad G\left(\overrightarrow{0}_{m} ; z\right)=\frac{1}{m!} \ln ^{m} z
\end{aligned}
$$

- m is called the weight.

Multiple Polylogarithms

- Classical polylogarithm:

$$
\operatorname{Li}_{m}(z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t} \operatorname{Li}_{m-1}(t) \quad \operatorname{Li}_{1}(z)=-\ln (1-z)
$$

- Mutliple polylogarithms

$$
\begin{aligned}
& G\left(a_{1}, \ldots, a_{m} ; z\right)=\int_{0}^{z} \frac{\mathrm{~d} t}{t-a_{1}} G\left(a_{2}, \ldots, a_{m} ; t\right) \\
& G(a ; z)=\ln \left(1-\frac{z}{a}\right) \quad G\left(\overrightarrow{0}_{m} ; z\right)=\frac{1}{m!} \ln ^{m} z
\end{aligned}
$$

- m is called the weight.
- Multiple polylogarithms are a multivariable extension of classical ones, which they contain as special cases:

$$
G\left(\overrightarrow{0}_{n-1}, a ; z\right)=-\operatorname{Li}_{n}\left(\frac{z}{a}\right)
$$

Multiple Polylogarithms

- Some properties (this is only a small selection!)

Multiple Polylogarithms

- Some properties (this is only a small selection!)
\Rightarrow Scaling: If $a_{m} \neq 0$

$$
G\left(k a_{1}, \ldots, k a_{m} ; k z\right)=G\left(a_{1}, \ldots, a_{m} ; z\right)
$$

Multiple Polylogarithms

- Some properties (this is only a small selection!)
\Rightarrow Scaling: If $a_{m} \neq 0$

$$
G\left(k a_{1}, \ldots, k a_{m} ; k z\right)=G\left(a_{1}, \ldots, a_{m} ; z\right) \quad[\text { Prove it! }]
$$

Multiple Polylogarithms

- Some properties (this is only a small selection!)
\Rightarrow Scaling: If $a_{m} \neq 0$

$$
G\left(k a_{1}, \ldots, k a_{m} ; k z\right)=G\left(a_{1}, \ldots, a_{m} ; z\right) \quad[\text { Prove it! }]
$$

\Rightarrow Hölder convolution:

$$
G\left(w_{1}, \ldots, w_{n} ; 1\right)=\sum_{k=0}^{n}(-1)^{k} G\left(1-w_{k}, \ldots, 1-w_{1} ; 1-\frac{1}{p}\right) G\left(w_{k+1}, \ldots, w_{n} ; \frac{1}{p}\right)
$$

Multiple Polylogarithms

- Some properties (this is only a small selection!)
\Rightarrow Scaling: If $a_{m} \neq 0$

$$
G\left(k a_{1}, \ldots, k a_{m} ; k z\right)=G\left(a_{1}, \ldots, a_{m} ; z\right) \quad[\text { Prove it! }]
$$

\Rightarrow Hölder convolution:

$$
G\left(w_{1}, \ldots, w_{n} ; 1\right)=\sum_{k=0}^{n}(-1)^{k} G\left(1-w_{k}, \ldots, 1-w_{1} ; 1-\frac{1}{p}\right) G\left(w_{k+1}, \ldots, w_{n} ; \frac{1}{p}\right)
$$

\Rightarrow Reduces to classical polylogarithms in special cases, e.g.,

$$
G(a, b ; z)=\operatorname{Li}_{2}\left(\frac{b-z}{b-a}\right)-\operatorname{Li}_{2}\left(\frac{b}{b-a}\right)+\log \left(1-\frac{z}{b}\right) \log \left(\frac{z-a}{b-a}\right)
$$

Multiple Polylogarithms

- Some properties (this is only a small selection!)
\Rightarrow Scaling: If $a_{m} \neq 0$

$$
G\left(k a_{1}, \ldots, k a_{m} ; k z\right)=G\left(a_{1}, \ldots, a_{m} ; z\right) \quad[\text { Prove it! }]
$$

\Rightarrow Hölder convolution:

$$
G\left(w_{1}, \ldots, w_{n} ; 1\right)=\sum_{k=0}^{n}(-1)^{k} G\left(1-w_{k}, \ldots, 1-w_{1} ; 1-\frac{1}{p}\right) G\left(w_{k+1}, \ldots, w_{n} ; \frac{1}{p}\right)
$$

\Rightarrow Reduces to classical polylogarithms in special cases, e.g.,

$$
G(a, b ; z)=\operatorname{Li}_{2}\left(\frac{b-z}{b-a}\right)-\operatorname{Li}_{2}\left(\frac{b}{b-a}\right)+\log \left(1-\frac{z}{b}\right) \log \left(\frac{z-a}{b-a}\right)
$$

\Rightarrow etc.

- Many properties, and we need to be able to deal with them...
\Rightarrow Look at math/0103059.

The shuffle algebra

- Let's multiply two mutliple polylogarithms of weight 1:

$$
G(a ; z) \quad G(b ; z)=?
$$

The shuffle algebra

- Let's multiply two mutliple polylogarithms of weight 1:

$$
\begin{aligned}
G(a ; z) & G(b ; z)=? \\
G(a ; z) G(b ; z) & =\int_{0}^{z} \int_{0}^{z} \frac{\mathrm{~d} t}{\overline{t-a}} \frac{\mathrm{~d} t^{\prime}}{t^{\prime}-b}
\end{aligned}
$$

The shuffle algebra

- Let's multiply two mutliple polylogarithms of weight 1:

$$
\begin{aligned}
G(a ; z) & G(b ; z)=? \\
G(a ; z) G(b ; z) & =\int_{0}^{z} \int_{0}^{z} \frac{\mathrm{~d} t}{t-a} \frac{\mathrm{~d} t^{\prime}}{t^{\prime}-b}
\end{aligned}
$$

The shuffle algebra

- Let's multiply two mutliple polylogarithms of weight 1:

$$
\begin{aligned}
G(a ; z) & G(b ; z)=? \\
G(a ; z) G(b ; z) & =\int_{0}^{z} \int_{0}^{z} \frac{\mathrm{~d} t}{\overline{t-a}} \frac{\mathrm{~d} t^{\prime}}{t^{\prime}-b}
\end{aligned}
$$

The shuffle algebra

- Let's multiply two mutliple polylogarithms of weight 1:

$$
\begin{aligned}
G(a ; z) & G(b ; z)=? \\
G(a ; z) G(b ; z) & =\int_{0}^{z} \int_{0}^{z} \frac{\mathrm{~d} t}{\overline{t-a}} \frac{\mathrm{~d} t^{\prime}}{t^{\prime}-b}
\end{aligned}
$$

The shuffle algebra

- Let's multiply two mutliple polylogarithms of weight 1:

$$
\begin{aligned}
G(a ; z) & G(b ; z)=? \\
G(a ; z) G(b ; z) & =\int_{0}^{z} \int_{0}^{z} \frac{\mathrm{~d} t}{\overline{t-a}} \frac{\mathrm{~d} t^{\prime}}{t^{\prime}-b}
\end{aligned}
$$

The shuffle algebra

- Let's multiply two mutliple polylogarithms of weight 1:

$$
\begin{aligned}
G(a ; z) & G(b ; z)=? \\
G(a ; z) G(b ; z) & =\int_{0}^{z} \int_{0}^{z} \frac{\mathrm{~d} t}{\overline{t-a}} \frac{\mathrm{~d} t^{\prime}}{t^{\prime}-b}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{z} \frac{\mathrm{~d} t}{t-a} \int_{0}^{t} \frac{\mathrm{~d} t^{\prime}}{t^{\prime}-b} \\
+ & \int_{0}^{z} \frac{\mathrm{~d} t^{\prime}}{t^{\prime}-b} \int_{0}^{t^{\prime}} \frac{\mathrm{d} t}{t-a}
\end{aligned}
$$

The shuffle algebra

- Let's multiply two mutliple polylogarithms of weight 1:

$$
\begin{aligned}
G(a ; z) & G(b ; z)=? \\
G(a ; z) G(b ; z) & =\int_{0}^{z} \int_{0}^{z} \frac{\mathrm{~d} t}{\overline{t-a}} \frac{\mathrm{~d} t^{\prime}}{t^{\prime}-b}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{z} \frac{\mathrm{~d} t}{t-a} \int_{0}^{t} \frac{\mathrm{~d} t^{\prime}}{\overline{t^{\prime}-b}} \\
+ & \int_{0}^{z} \frac{\mathrm{~d} t^{\prime}}{t^{\prime}-b} \int_{0}^{t^{\prime}} \frac{\mathrm{d} t}{t-a} \\
= & G(a, b ; z)+G(b, a ; z)
\end{aligned}
$$

The shuffle algebra

- This is not a coincidence!
- Multiple polylogarithms form a so-called shuffle algebra:

$$
G\left(a_{1}, \ldots, a_{n_{1}} ; x\right) G\left(a_{n_{1}+1}, \ldots, a_{n_{1}+n_{2}} ; x\right)=\sum_{\sigma \in \Sigma\left(n_{1}, n_{2}\right)} G\left(a_{\sigma(1)}, \ldots, a_{\sigma\left(n_{1}+n_{2}\right)} ; x\right)
$$

$$
\Sigma\left(n_{1}, n_{2}\right)=\left\{\sigma \in S_{n_{1}+n_{2}} \mid \sigma^{-1}(1)<\ldots<\sigma^{-1}\left(n_{1}\right) \text { and } \sigma^{-1}\left(n_{1}+1\right)<\ldots<\sigma^{-1}\left(n_{1}+n_{2}\right)\right\}
$$

The shuffle algebra

- This is not a coincidence!
- Multiple polylogarithms form a so-called shuffle algebra:

$$
G\left(a_{1}, \ldots, a_{n_{1}} ; x\right) G\left(a_{n_{1}+1}, \ldots, a_{n_{1}+n_{2}} ; x\right)=\sum_{\sigma \in \Sigma\left(n_{1}, n_{2}\right)} G\left(a_{\sigma(1)}, \ldots, a_{\sigma\left(n_{1}+n_{2}\right)} ; x\right)
$$

$$
\Sigma\left(n_{1}, n_{2}\right)=\left\{\sigma \in S_{n_{1}+n_{2}} \mid \sigma^{-1}(1)<\ldots<\sigma^{-1}\left(n_{1}\right) \text { and } \sigma^{-1}\left(n_{1}+1\right)<\ldots<\sigma^{-1}\left(n_{1}+n_{2}\right)\right\}
$$

- Shuffles are best understood via examples:

The shuffle algebra

- This is not a coincidence!
- Multiple polylogarithms form a so-called shuffle algebra:

$$
G\left(a_{1}, \ldots, a_{n_{1}} ; x\right) G\left(a_{n_{1}+1}, \ldots, a_{n_{1}+n_{2}} ; x\right)=\sum_{\sigma \in \Sigma\left(n_{1}, n_{2}\right)} G\left(a_{\sigma(1)}, \ldots, a_{\sigma\left(n_{1}+n_{2}\right)} ; x\right)
$$

$$
\Sigma\left(n_{1}, n_{2}\right)=\left\{\sigma \in S_{n_{1}+n_{2}} \mid \sigma^{-1}(1)<\ldots<\sigma^{-1}\left(n_{1}\right) \text { and } \sigma^{-1}\left(n_{1}+1\right)<\ldots<\sigma^{-1}\left(n_{1}+n_{2}\right)\right\}
$$

- Shuffles are best understood via examples:

$$
G(a ; z) G(b ; z)=G(a, b ; z)+G(b, a ; z)
$$

The shuffle algebra

- This is not a coincidence!
- Multiple polylogarithms form a so-called shuffle algebra:

$$
G\left(a_{1}, \ldots, a_{n_{1}} ; x\right) G\left(a_{n_{1}+1}, \ldots, a_{n_{1}+n_{2}} ; x\right)=\sum_{\sigma \in \Sigma\left(n_{1}, n_{2}\right)} G\left(a_{\sigma(1)}, \ldots, a_{\sigma\left(n_{1}+n_{2}\right)} ; x\right)
$$

$\Sigma\left(n_{1}, n_{2}\right)=\left\{\sigma \in S_{n_{1}+n_{2}} \mid \sigma^{-1}(1)<\ldots<\sigma^{-1}\left(n_{1}\right)\right.$ and $\left.\sigma^{-1}\left(n_{1}+1\right)<\ldots<\sigma^{-1}\left(n_{1}+n_{2}\right)\right\}$

- Shuffles are best understood via examples:

$$
\mathrm{G}(\mathrm{a} ; \mathrm{z}) \mathrm{G}(\mathrm{~b} ; \mathrm{z})=\mathrm{G}(\mathrm{a}, \mathrm{~b} ; \mathrm{z})+\mathrm{G}(\mathrm{~b}, \mathrm{a} ; \mathrm{z})
$$

$\mathrm{G}(\mathrm{a} ; \mathrm{z}) \mathrm{G}(\mathrm{b}, \mathrm{c} ; \mathrm{z})=\mathrm{G}(\mathrm{a}, \mathrm{b}, \mathrm{c} ; \mathrm{z})+\mathrm{G}(\mathrm{b}, \mathrm{a}, \mathrm{c} ; \mathrm{z})+\mathrm{G}(\mathrm{b}, \mathrm{c}, \mathrm{a} ; \mathrm{z})$

The shuffle algebra

- This is not a coincidence!
- Multiple polylogarithms form a so-called shuffle algebra:

$$
G\left(a_{1}, \ldots, a_{n_{1}} ; x\right) G\left(a_{n_{1}+1}, \ldots, a_{n_{1}+n_{2}} ; x\right)=\sum_{\sigma \in \Sigma\left(n_{1}, n_{2}\right)} G\left(a_{\sigma(1)}, \ldots, a_{\sigma\left(n_{1}+n_{2}\right)} ; x\right)
$$

$$
\Sigma\left(n_{1}, n_{2}\right)=\left\{\sigma \in S_{n_{1}+n_{2}} \mid \sigma^{-1}(1)<\ldots<\sigma^{-1}\left(n_{1}\right) \text { and } \sigma^{-1}\left(n_{1}+1\right)<\ldots<\sigma^{-1}\left(n_{1}+n_{2}\right)\right\}
$$

- Shuffles are best understood via examples:

$$
\begin{aligned}
G(a ; z) G(b ; z) & =G(a, b ; z)+G(b, a ; z) \\
G(a ; z) G(b, c ; z) & =G(a, b, c ; z)+G(b, a, c ; z)+G(b, c, a ; z) \\
G(a ; z) G(b, c, d ; z) & =G(a, b, c, d ; z)+G(b, a, c, d ; z)+G(b, c, a, d ; z)+G(b, c, d, a ; z)
\end{aligned}
$$

The shuffle algebra

- This is not a coincidence!
- Multiple polylogarithms form a so-called shuffle algebra:

$$
G\left(a_{1}, \ldots, a_{n_{1}} ; x\right) G\left(a_{n_{1}+1}, \ldots, a_{n_{1}+n_{2}} ; x\right)=\sum_{\sigma \in \Sigma\left(n_{1}, n_{2}\right)} G\left(a_{\sigma(1)}, \ldots, a_{\sigma\left(n_{1}+n_{2}\right)} ; x\right)
$$

$$
\Sigma\left(n_{1}, n_{2}\right)=\left\{\sigma \in S_{n_{1}+n_{2}} \mid \sigma^{-1}(1)<\ldots<\sigma^{-1}\left(n_{1}\right) \text { and } \sigma^{-1}\left(n_{1}+1\right)<\ldots<\sigma^{-1}\left(n_{1}+n_{2}\right)\right\}
$$

- Shuffles are best understood via examples:

$$
\begin{aligned}
G(a ; z) G(b ; z) & =G(a, b ; z)+G(b, a ; z) \\
G(a ; z) G(b, c ; z) & =G(a, b, c ; z)+G(b, a, c ; z)+G(b, c, a ; z) \\
G(a ; z) G(b, c, d ; z) & =G(a, b, c, d ; z)+G(b, a, c, d ; z)+G(b, c, a, d ; z)+G(b, c, d, a ; z) \\
G(a, b ; z) G(c, d ; z) & =G(a, b, c, d ; z)+G(a, c, b, d ; z)+G(a, c, d, b ; z) \\
& +G(c, a, b, d ; z)+G(c, a, d, b ; z)+G(c, d, a, b ; z)
\end{aligned}
$$

The shuffle algebra

- This is not a coincidence!
- Multiple polylogarithms form a so-called shuffle algebra:

$$
G\left(a_{1}, \ldots, a_{n_{1}} ; x\right) G\left(a_{n_{1}+1}, \ldots, a_{n_{1}+n_{2}} ; x\right)=\sum_{\sigma \in \Sigma\left(n_{1}, n_{2}\right)} G\left(a_{\sigma(1)}, \ldots, a_{\sigma\left(n_{1}+n_{2}\right)} ; x\right)
$$

$$
\Sigma\left(n_{1}, n_{2}\right)=\left\{\sigma \in S_{n_{1}+n_{2}} \mid \sigma^{-1}(1)<\ldots<\sigma^{-1}\left(n_{1}\right) \text { and } \sigma^{-1}\left(n_{1}+1\right)<\ldots<\sigma^{-1}\left(n_{1}+n_{2}\right)\right\}
$$

- Shuffles are best understood via examples:

$$
\begin{aligned}
G(a ; z) G(b ; z) & =G(a, b ; z)+G(b, a ; z) \\
G(a ; z) G(b, c ; z) & =G(a, b, c ; z)+G(b, a, c ; z)+G(b, c, a ; z) \\
G(a ; z) G(b, c, d ; z) & =G(a, b, c, d ; z)+G(b, a, c, d ; z)+G(b, c, a, d ; z)+G(b, c, d, a ; z) \\
G(a, b ; z) G(c, d ; z) & =G(a, b, c, d ; z)+G(a, c, b, d ; z)+G(a, c, d, b ; z) \\
& +G(c, a, b, d ; z)+G(c, a, d, b ; z)+G(c, d, a, b ; z)
\end{aligned}
$$

- N.B.: Shuffles preserve the weight!

Harmonic polylogarithms

- Some special classes were (re)discovered independently by physicists, and go under the name barmonic polylogarithms.
- They are multiple polylogarithms with $a_{i} \in\{0, \pm 1\}$, but with a different sign convention:

$$
H(\vec{w} ; x)=(-1)^{p} G(\vec{w} ; x)
$$

where p is the number of indices equal to $(+1)$.

- There are other special classes in two variables (re)discovered by physicists, called two-dimensional harmonic polylogarithms [Gehrmann, Remiddi].

$$
\begin{aligned}
A_{-4}= & \frac{1}{24(1+y)^{2}}, \\
A_{-3}= & \frac{1}{96(1+y)^{2}}[-10 G(-1 ; y)+3 G(0 ; x)-6 G(1 ; x)], \\
A_{-2}= & \frac{1}{192(1+y)^{2}}[-47 \zeta(2)-24 G(-1 ; y) G(0 ; x)+48 G(-1 ; y) G(1 ; x)+32 G(-1,-1 ; y) \\
& -6 G(0,-1 ; y)],
\end{aligned}
$$

Series representation

- So far we have only looked at the integral representation.
- What about series representations?

$$
\operatorname{Li}_{m}(z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t} \operatorname{Li}_{m-1}(t)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{m}}
$$

- The series representation is nice, because it is closer to Mellin-Barnes methods.
- The multi-dimensional generalization of the series representation is

$$
\operatorname{Li}_{m_{k}, \ldots, m_{1}}\left(x_{k}, \ldots, x_{1}\right)=\sum_{n_{1}=1}^{\infty} \frac{x_{1}^{n_{1}}}{n_{1}^{m_{1}}} \sum_{n_{2}=1}^{n_{1}-1} \ldots \sum_{n_{k}=1}^{n_{k-1}-1} \frac{x_{k}^{n_{k}}}{n_{k}^{m_{k}}}
$$

Series representation

- The multi-dimensional generalization of the series representation is

$$
\operatorname{Li}_{m_{k}, \ldots, m_{1}}\left(x_{k}, \ldots, x_{1}\right)=\sum_{n_{1}=1}^{\infty} \frac{x_{1}^{n_{1}}}{n_{1}^{m_{1}}} \sum_{n_{2}=1}^{n_{1}-1} \ldots \sum_{n_{k}=1}^{n_{k-1}-1} \frac{x_{k}^{n_{k}}}{n_{k}^{m_{k}}}
$$

- k is called the depth. The weight is $m_{1}+\ldots+m_{k}$.

Series representation

- The multi-dimensional generalization of the series representation is

$$
\operatorname{Li}_{m_{k}, \ldots, m_{1}}\left(x_{k}, \ldots, x_{1}\right)=\sum_{n_{1}=1}^{\infty} \frac{x_{1}^{n_{1}}}{n_{1}^{m_{1}}} \sum_{n_{2}=1}^{n_{1}-1} \ldots \sum_{n_{k}=1}^{n_{k-1}-1} \frac{x_{k}^{n_{k}}}{n_{k}^{m_{k}}}
$$

- k is called the depth. The weight is $m_{1}+\ldots+m_{k}$.
- These functions contain the classical polylogarithms in an obvious way.

Series representation

- The multi-dimensional generalization of the series representation is

$$
\operatorname{Li}_{m_{k}, \ldots, m_{1}}\left(x_{k}, \ldots, x_{1}\right)=\sum_{n_{1}=1}^{\infty} \frac{x_{1}^{n_{1}}}{n_{1}^{m_{1}}} \sum_{n_{2}=1}^{n_{1}-1} \ldots \sum_{n_{k}=1}^{n_{k-1}-1} \frac{x_{k}^{n_{k}}}{n_{k}^{m_{k}}}
$$

- k is called the depth. The weight is $m_{1}+\ldots+m_{k}$.
- These functions contain the classical polylogarithms in an obvious way.
- They also contain the iterated integrals we defined before:

$$
L i_{m_{k}, \ldots, m_{1}}\left(x_{k}, \ldots, x_{1}\right)=(-1)^{k} G(\underbrace{0, \ldots, 0}_{m_{1}-1}, \frac{1}{x_{1}}, \ldots, \underbrace{0, \ldots, 0}_{m_{k}-1}, \frac{1}{x_{1} \ldots x_{k}} ; 1)
$$

Series representation

- The multi-dimensional generalization of the series representation is

$$
\operatorname{Li}_{m_{k}, \ldots, m_{1}}^{\text {esentation 1s }}\left(x_{k}, \ldots, x_{1}\right)=\sum_{n_{1}=1}^{\infty} \frac{x_{1}^{n_{1}}}{n_{1}^{m_{1}}} \sum_{n_{2}=1}^{n_{1}-1} \cdots \sum_{n_{k}=1}^{n_{k-1}-1} \frac{x_{k}^{n_{k}}}{n_{k}^{m_{k}}}
$$

- k is called the depth. The weight is $m_{1}+\ldots+m_{k}$.
- These functions contain the classical polylogarithms in an obvious way.
- They also contain the iterated integrals we defined before:

$$
L i_{m_{k}, \ldots, m_{1}}\left(x_{k}, \ldots, x_{1}\right)=(-1)^{k} G(\underbrace{0, \ldots, 0}_{m_{1}-1}, \frac{1}{x_{1}}, \ldots, \underbrace{0, \ldots, 0}_{m_{k}-1}, \frac{1}{x_{1} \ldots x_{k}} ; 1)
$$

- Again, these functions satisfy various relations, e.g.,

$$
L i_{m_{1}, \ldots, m_{k}}\left(x_{1}, \ldots, x_{k}\right)=d^{m_{1}+\ldots+m_{k}-k} \sum_{y_{j}^{d}=x_{j}, 1 \leq j \leq k} L i_{m_{1}, \ldots, m_{k}}\left(y_{1}, \ldots, y_{k}\right)
$$

The Stuffle algebra

- Let us now multiply two of these functions
$\operatorname{Li}_{m}(x) \operatorname{Li}_{n}(y)=?$

The Stuffle algebra

- Let us now multiply two of these functions

$$
\operatorname{Li}_{m}(x) \mathrm{Li}_{n}(y)=?
$$

- We proceed in the same way as for the iterated integrals:

The Stuffle algebra

- Let us now multiply two of these functions

$$
\operatorname{Li}_{m}(x) \operatorname{Li}_{n}(y)=?
$$

- We proceed in the same way as for the iterated integrals:

The Stuffle algebra

- Let us now multiply two of these functions

$$
\operatorname{Li}_{m}(x) \mathrm{Li}_{n}(y)=?
$$

- We proceed in the same way as for the iterated integrals:

The Stuffle algebra

- Let us now multiply two of these functions

$$
\operatorname{Li}_{m}(x) \mathrm{Li}_{n}(y)=?
$$

- We proceed in the same way as for the iterated integrals:

The Stuffle algebra

- Let us now multiply two of these functions

$$
\operatorname{Li}_{m}(x) \mathrm{Li}_{n}(y)=?
$$

- We proceed in the same way as for the iterated integrals:

The Stuffle algebra

- Let us now multiply two of these functions

$$
\operatorname{Li}_{m}(x) \mathrm{Li}_{n}(y)=?
$$

- We proceed in the same way as for the iterated integrals:

$$
\operatorname{Li}_{m_{k}, \ldots, m_{1}}\left(x_{k}, \ldots, x_{1}\right)=\sum_{n_{1}=1}^{\infty} \frac{x_{1}^{n_{1}}}{n_{1}^{m_{1}}} \sum_{n_{2}=1}^{n_{1}-1} \ldots \sum_{n_{k}=1}^{n_{k-1}-1} \frac{x_{k}^{n_{k}}}{n_{k}^{m_{k}}}
$$

The Stuffle algebra

- Let us now multiply two of these functions

$$
\operatorname{Li}_{m}(x) \mathrm{Li}_{n}(y)=?
$$

- We proceed in the same way as for the iterated integrals:

$$
\operatorname{Li}_{m_{k}, \ldots, m_{1}}\left(x_{k}, \ldots, x_{1}\right)=\sum_{n_{1}=1}^{\infty} \frac{x_{1}^{n_{1}}}{n_{1}^{m_{1}}} \sum_{n_{2}=1}^{n_{1}-1} \ldots \sum_{n_{k}=1}^{n_{k-1}-1} \frac{x_{k}^{n_{k}}}{n_{k}^{m_{k}}}
$$

The Stuffle algebra

- Let us now multiply two of these functions

$$
\operatorname{Li}_{m}(x) \mathrm{Li}_{n}(y)=?
$$

- We proceed in the same way as for the iterated integrals:

$$
\operatorname{Li}_{m, n}(x, y)+\operatorname{Li}_{n, m}(y, x)
$$

$$
\operatorname{Li}_{m_{k}, \ldots, m_{1}}\left(x_{k}, \ldots, x_{1}\right)=\sum_{n_{1}=1}^{\infty} \frac{x_{1}^{n_{1}}}{n_{1}^{m_{1}}} \sum_{n_{2}=1}^{n_{1}-1} \ldots \sum_{n_{k}=1}^{n_{k-1}-1} \frac{x_{k}^{n_{k}}}{n_{k}^{m_{k}}}
$$

The Stuffle algebra

- Let us now multiply two of these functions

$$
\operatorname{Li}_{m}(x) \mathrm{Li}_{n}(y)=?
$$

- We proceed in the same way as for the iterated integrals:

$$
\operatorname{Li}_{m, n}(x, y)+\operatorname{Li}_{n, m}(y, x)+\operatorname{Li}_{m+n}(x y)
$$

$$
\operatorname{Li}_{m_{k}, \ldots, m_{1}}\left(x_{k}, \ldots, x_{1}\right)=\sum_{n_{1}=1}^{\infty} \frac{x_{1}^{n_{1}}}{n_{1}^{m_{1}}} \sum_{n_{2}=1}^{n_{1}-1} \ldots \sum_{n_{k}=1}^{n_{k-1}-1} \frac{x_{k}^{n_{k}}}{n_{k}^{m_{k}}}
$$

The Stuffle algebra

- This is again a generic feature.
- In general, the stuffle algebra relations are independent from the shuffle algebra relations!
- Stuffle algebra relations preserve the weight (but not the depth!)

The Stuffle algebra

- This is again a generic feature.
- In general, the stuffle algebra relations are independent from the shuffle algebra relations!
- Stuffle algebra relations preserve the weight (but not the depth!)
- In conclusion:

The Stuffle algebra

- This is again a generic feature.
- In general, the stuffle algebra relations are independent from the shuffle algebra relations!
- Stuffle algebra relations preserve the weight (but not the depth!)
- In conclusion:
- Multiple polylogarithms form both a shuffle and a stuffle algebra, and the two algebra structures are independent!

The Stuffle algebra

- This is again a generic feature.
- In general, the stuffle algebra relations are independent from the shuffle algebra relations!
- Stuffle algebra relations preserve the weight (but not the depth!)
- In conclusion:
- Multiple polylogarithms form both a shuffle and a stuffle algebra, and the two algebra structures are independent!
\Rightarrow They satisfy many complicated functional equations:

The Stuffle algebra

- This is again a generic feature.
- In general, the stuffle algebra relations are independent from the shuffle algebra relations!
- Stuffle algebra relations preserve the weight (but not the depth!)
- In conclusion:
- Multiple polylogarithms form both a shuffle and a stuffle algebra, and the two algebra structures are independent!
\Rightarrow They satisfy many complicated functional equations:
$\%$ What is a minimal set?
\% Cancellations?

The Stuffle algebra

- This is again a generic feature.
- In general, the stuffle algebra relations are independent from the shuffle algebra relations!
- Stuffle algebra relations preserve the weight (but not the depth!)
- In conclusion:
- Multiple polylogarithms form both a shuffle and a stuffle algebra, and the two algebra structures are independent!
\Rightarrow They satisfy many complicated functional equations:
* What is a minimal set?
* Cancellations?
\Rightarrow ALL these relations preserve the weight!

Special functions

Zeta Values

Three-loop form factor the. Sminom smimoon

$$
\begin{align*}
= & \frac{e^{-3 \gamma \epsilon}}{(1-4 \epsilon)(2-3 \epsilon)(1-2 \epsilon)^{2}}\left\{-\frac{1}{12 \epsilon^{2}}-\frac{\pi^{2}}{16}+\frac{23 \epsilon \zeta_{3}}{12}-\frac{7 \pi^{4} \epsilon^{2}}{1152}\right. \\
& +\epsilon^{3}\left(\frac{23 \pi^{2} \zeta_{3}}{16}+\frac{351 \zeta_{5}}{20}\right)+\epsilon^{4}\left(\frac{65243 \pi^{6}}{1451520}-\frac{529 \zeta_{3}^{2}}{24}\right)+\epsilon^{5}\left(\frac{161 \pi^{4} \zeta_{3}}{1152}\right. \\
& \left.+\frac{1053 \pi^{2} \zeta_{5}}{80}+\frac{5503 \zeta_{7}}{28}\right)+\epsilon^{6}\left(-\frac{529}{32} \pi^{2} \zeta_{3}^{2}-\frac{8073 \zeta_{5} \zeta_{3}}{20}+\frac{75527 \pi^{8}}{860160}\right) \\
& \left.+O\left(\epsilon^{7}\right)\right\} \tag{6}
\end{align*}
$$

- No dilogarithms or trilogarithms, only zeta values (up to an overall scale):

$$
\zeta_{m}=\sum_{n=1}^{\infty} \frac{1}{n^{m}}
$$

Zeta values

- Zeta values are special values of classical polylogarithms

$$
\zeta_{m}=\sum_{n=1}^{\infty} \frac{1}{n^{m}}=\operatorname{Li}_{m}(1)
$$

Zeta values

- Zeta values are special values of classical polylogarithms

$$
\zeta_{m}=\sum_{n=1}^{\infty} \frac{1}{n^{m}}=\operatorname{Li}_{m}(1)
$$

- Some zeta values are known...

$$
\zeta_{2 n}=(-1)^{n+1} \frac{B_{2 n}}{2(2 n)!}(2 \pi)^{2 n}
$$

Zeta values

- Zeta values are special values of classical polylogarithms

$$
\zeta_{m}=\sum_{n=1}^{\infty} \frac{1}{n^{m}}=\operatorname{Li}_{m}(1)
$$

- Some zeta values are known...

$$
\zeta_{2 n}=(-1)^{n+1} \frac{B_{2 n}}{2(2 n)!}(2 \pi)^{2 n}
$$

- ...but most are not! Almost only result is that ζ_{3} is irrational.

Zeta values

- Zeta values are special values of classical polylogarithms

$$
\zeta_{m}=\sum_{n=1}^{\infty} \frac{1}{n^{m}}=\operatorname{Li}_{m}(1)
$$

- Some zeta values are known...

$$
\zeta_{2 n}=(-1)^{n+1} \frac{B_{2 n}}{2(2 n)!}(2 \pi)^{2 n}
$$

- ...but most are not! Almost only result is that ζ_{3} is irrational.
- Most famous example:

$$
\zeta_{2}=\frac{\pi^{2}}{6}
$$

Zeta values

- Zeta values are special values of classical polylogarithms

$$
\zeta_{m}=\sum_{n=1}^{\infty} \frac{1}{n^{m}}=\operatorname{Li}_{m}(1)
$$

- Some zeta values are known...

$$
\zeta_{2 n}=(-1)^{n+1} \frac{B_{2 n}}{2(2 n)!}(2 \pi)^{2 n}
$$

- ...but most are not! Almost only result is that ζ_{3} is irrational.
- Most famous example:

$$
\zeta_{2}=\frac{\pi^{2}}{6}
$$

- As zeta values are closely related to polylogarithms, can we generalize..?

Multiple zeta values

- Multiple zeta values are special values of multiple polylogarithms

$$
\zeta_{m_{1}, \ldots, m_{k}}=\sum_{n_{1}>\ldots>n_{k} \geq 1} \frac{1}{n_{1}^{m_{1}}} \cdots \frac{1}{n_{k}^{m_{k}}}
$$

- MZV's also form a shuffle and stuffle algebra.

Multiple zeta values

- Multiple zeta values are special values of multiple polylogarithms

$$
\zeta_{m_{1}, \ldots, m_{k}}=\sum_{n_{1}>\ldots>n_{k} \geq 1} \frac{1}{n_{1}^{m_{1}}} \cdots \frac{1}{n_{k}^{m_{k}}}
$$

- MZV's also form a shuffle and stuffle algebra.
- Number theory aside:

Find all the relations among MZV's.

- This is a very difficult and unsolved problem!

Multiple zeta values

- Multiple zeta values are special values of multiple polylogarithms

$$
\zeta_{m_{1}, \ldots, m_{k}}=\sum_{n_{1}>\ldots>n_{k} \geq 1} \frac{1}{n_{1}^{m_{1}}} \ldots \frac{1}{n_{k}^{m_{k}}}
$$

- MZV's also form a shuffle and stuffle algebra.
- Number theory aside:

Find all the relations among MZV's.

- This is a very difficult and unsolved problem!
- Conjecture:

All the relations among MZV's are generated by the shuffle and stuffle relations.

Caveat!!!

- We have analyzed polylogarithms and MZV's as functions/ numbers that appear in loop integrals.
- This does NOT mean that this is ALWAYS the case!
- In general for example a Mellin-Barnes integral will give rise to sums that are not easily doable, and where it is not clear whether it will be multiple polylogarithms.
- More general theorems about which functions/numbers can appear in the next lectures.
- There are however theories in which it is expected that only multiple polylogarithms and MZV's appear (e.g., N=4 SYM).

Special functions

Transcentality and periods

Example:

- Can the following be Feynman integrals?
$A=2365$
$B=\pi^{2}+\zeta_{3}$
$C=e^{3} \pi^{2}-\ln 2$
$D=\ln ^{4} 2+\operatorname{Li}_{4}\left(\frac{1}{2}\right)$
$E=\frac{\ln ^{2} 2}{\pi^{2}}$
$F=\zeta_{2}-24 \operatorname{Li}_{2,2}\left(e^{i \pi / 3}, e^{-2 i \pi / 3}\right)$

Example:

- Can the following be Feynman integrals?
$A=2365$

$$
B=\pi^{2}+\zeta_{3}
$$

$$
\begin{aligned}
D & =\ln ^{4} 2+\operatorname{Li}_{4}\left(\frac{1}{2}\right) \\
E & =\frac{\ln ^{2} 2}{\pi^{2}}
\end{aligned}
$$

$$
F=\zeta_{2}-24 \operatorname{Li}_{2,2}\left(e^{i \pi / 3}, e^{-2 i \pi / 3}\right)
$$

Example:

- Can the following be Feynman integrals?
$A=2365$

$$
B=\pi^{2}+\zeta_{3}
$$

$D=\ln ^{4} 2+\operatorname{Li}_{4}\left(\frac{1}{2}\right)$
$\ln ^{2} 2$
$F=\frac{\pi^{2}}{}$
$F=\zeta_{2}-24 \operatorname{Li}_{2,2}\left(e^{i \pi / 3}, e^{-2 i \pi / 3}\right)$

Example:

- Can the following be Feynman integrals?
$A=2365$

$$
B=\pi^{2}+\zeta_{3}
$$

$$
D=\ln ^{4} 2+\operatorname{Li}_{4}\left(\frac{1}{2}\right)
$$

$$
E=\frac{\ln ^{2}}{\pi^{2}}
$$

$$
F=\zeta_{2}-24 \operatorname{Li}_{2,2}\left(e^{i \pi / 3}, e^{-2 i \pi / 3}\right)
$$

- What drives this..?

Example:

- Why is this knowledge useful?
\Rightarrow For checking your computations!
- Make educated guesses for loop integrals.
\Rightarrow This can for example be useful when using the PSLQ algorithm.

Transcendentality

- Definition: A complex number is said to be algebraic eff it is the root of a polynomial with rational coefficients.
Otherwise the number is called transcendental.
- Examples:
$2 / 3$

$$
2+i \sqrt[3]{5}
$$

$\ln 2$
$\sqrt{2}$
$\pi^{2} / 6$

$$
e^{\pi} \quad e^{2}+1
$$

Transcendentality

- Definition: A complex number is said to be algebraic iff it is the root of a polynomial with rational coefficients.
Otherwise the number is called transcendental.
- Examples:

2/3
$2+i \sqrt[3]{5}$
$\sqrt{2}$

ζ_{3}

Transcendentality

- Definition: A complex number is said to be algebraic iff it is the root of a polynomial with rational coefficients.
Otherwise the number is called transcendental.
- Examples:

ζ_{3} ?

Transcendentality

- Definition: A complex number is said to be algebraic iff it is the root of a polynomial with rational coefficients.
Otherwise the number is called transcendental.
- Examples:

- Algebraic numbers form a field, i.e., we can add, multiply, invert, etc.

Example:

$$
\begin{aligned}
A & =2365 \\
B & =\pi^{2}+\zeta_{3} \\
C & =e^{3} \pi^{2}=\ln 2 \\
D & =\ln ^{4} 2+\operatorname{Li}_{4}\left(\frac{1}{2}\right) \\
E & =\frac{\ln ^{2} 2}{\pi^{2}} \\
F & =\zeta_{2}-24 \mathrm{Li}_{2,2}\left(e^{i \pi / 3}, e^{-2 i \pi / 3}\right)
\end{aligned}
$$

Example:

$A=2365$

$$
B=\pi^{2}+\zeta_{3}
$$

$$
D=\ln ^{4} 2+\mathrm{Li}_{4}\left(\frac{1}{2}\right)
$$

$$
E-\frac{\ln ^{2} 2}{\pi^{2}}
$$

$$
F=\zeta_{2}-24 \operatorname{Li}_{2,2}\left(e^{i \pi / 3}, e^{-2 i \pi / 3}\right)
$$

Example:

$A=2365$

$$
B=\pi^{2}+\zeta_{3}
$$

$D=\ln ^{4} 2+\operatorname{Li}_{4}\left(\frac{1}{2}\right)$
$\ln ^{2} 2$
$E-\frac{\ln ^{2} 2}{\pi^{2}}$

$$
F=\zeta_{2}-24 \operatorname{Li}_{2,2}\left(e^{i \pi / 3}, e^{-2 i \pi / 3}\right)
$$

Periods

- Definition: A complex number is said to be a period if its real and imaginary parts can be written as the integral of a rational function over a domain given by polynomial inequalities.
- Examples:
$2 / 3$

$$
2+i \sqrt[3]{5}
$$

$$
\pi^{2} / 6
$$

$$
e^{\pi} \quad e^{2}+1
$$

$\ln 2$
$1 / \pi$

Periods

- Definition: A complex number is said to be a period if its real and imaginary parts can be written as the integral of a rational function over a domain given by polynomial inequalities.
- Examples:

$2 / 3$	$\sqrt{2}$	$2+i \sqrt[3]{5}$		$\ln 2$
$\pi^{2} / 6$		e^{π}	$e^{2}+1$	π
		$1 / \pi$		π

- Periods do not form a field, but only a ring (i.e., the inverse of a period is not necessarily a period).

Periods

- Theorem [Bogner, Weinzierl]: If all kinematic invariants and masses are non-positive algebraic numbers, then the coefficients of the Laurent expansion of a Feynman integral are periods.

Periods

- Theorem [Bogner, Weinzierl]: If all kinematic invariants and masses are non-positive algebraic numbers, then the coefficients of the Laurent expansion of a Feynman integral are periods.

$$
\begin{aligned}
& A=2365 \\
& B=\pi^{2}+\zeta_{3}
\end{aligned}
$$

$$
\begin{aligned}
& D=\ln ^{4} 2+\mathrm{Li}_{4}\left(\frac{1}{2}\right) \\
& E=\frac{\ln ^{2} 2}{\pi^{2}}
\end{aligned}
$$

$C-e^{3} \pi^{2}-\ln 2$

$$
F=\zeta_{2}-24 \operatorname{Li}_{2,2}\left(e^{i \pi / 3}, e^{-2 i \pi / 3}\right)
$$

Special functions

Numerical evaluation of polylogarithms

Tools for multiple polylogarithms

- There is a variety of tools to compute multiple polylogarithms numerically:
\Rightarrow HPL (Mathematica) [Maitre]
\Rightarrow hplog (Fortran, HPL's up to weight 4, real arguments)
[Gehrmann, Remiddi]
\Rightarrow Chaplin(Fortran, HPL's up to weight 4, complex arguments)
[Buehler, CD]
\Rightarrow GiNaC (C++, generic multiple polylogarithms)
[Vollinga, Weinzierl]

Tools for multiple polylogarithms

- There is a variety of tools to compute multiple polylogarithms numerically:
\Rightarrow HPL (Mathematica)
\Rightarrow hplog (Fortran, HPL's up to weight 4, real arguments)
[Gehrmann, Remiddi]
\Rightarrow Chaplin(Fortran, HPL's up to weight 4, complex arguments)
[Buehler, CD]
\Rightarrow GiNaC (C++, generic multiple polylogarithms)
[Vollinga, Weinzierl]
- Why is it so difficult? Why not just use the series expansion?

$$
\operatorname{Li}_{m}(z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t} \mathrm{Li}_{m-1}(t)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{m}}
$$

Numerics from series expansion

$$
\operatorname{Li}_{m}(z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t} \operatorname{Li}_{m-1}(t)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{m}}
$$

- Series only convergent in the unit disc.
\Rightarrow Use inversion to map inside the disc.

Numerics from series expansion

$$
\operatorname{Li}_{m}(z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t} \operatorname{Li}_{m-1}(t)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{m}}
$$

- Series only convergent in the unit disc.
\Rightarrow Use inversion to map inside the disc.
- But the series is very slowly converging close to the unit circle...

Numerics from series expansion

$$
\operatorname{Li}_{m}(z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t} \operatorname{Li}_{m-1}(t)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{m}}
$$

- Series only convergent in the unit disc.
\Rightarrow Use inversion to map inside the disc.
- But the series is very slowly converging close to the unit circle...

$$
\mathrm{Li}_{2}(0.99999)=1.6448089369929272952
$$

Numerics from series expansion

$$
\operatorname{Li}_{m}(z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t} \operatorname{Li}_{m-1}(t)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{m}}
$$

- Series only convergent in the unit disc.
\Rightarrow Use inversion to map inside the disc.
- But the series is very slowly converging close to the unit circle...

$$
\mathrm{Li}_{2}(0.99999)=1.6448089369929272952
$$

- Truncated series:

Numerics from series expansion

$$
\operatorname{Li}_{m}(z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t} \operatorname{Li}_{m-1}(t)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{m}}
$$

- Series only convergent in the unit disc.
\Rightarrow Use inversion to map inside the disc.
- But the series is very slowly converging close to the unit circle...

$$
\operatorname{Li}_{2}(0.99999)=1.6448089369929272952
$$

- Truncated series:
- 100 terms: 1.6349320311495540992

Numerics from series expansion

$$
\operatorname{Li}_{m}(z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t} \operatorname{Li}_{m-1}(t)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{m}}
$$

- Series only convergent in the unit disc.
\Rightarrow Use inversion to map inside the disc.
- But the series is very slowly converging close to the unit circle...

$$
\operatorname{Li}_{2}(0.99999)=1.6448089369929272952
$$

- Truncated series:
- 100 terms: 1.6349320311495540992
- 1000 terms: 1.6438597615158994092

Numerics from series expansion

$$
\operatorname{Li}_{m}(z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t} \operatorname{Li}_{m-1}(t)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{m}}
$$

- Series only convergent in the unit disc.
\Rightarrow Use inversion to map inside the disc.
- But the series is very slowly converging close to the unit circle...

$$
\mathrm{Li}_{2}(0.99999)=1.6448089369929272952
$$

- Truncated series:
- 100 terms: 1.6349320311495540992
- 1000 terms: 1.6438597615158994092
$\Rightarrow 10.000$ terms: 1.6447366871058790583

Numerics from series expansion

$$
\operatorname{Li}_{m}(z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t} \operatorname{Li}_{m-1}(t)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{m}}
$$

- Series only convergent in the unit disc.
\Rightarrow Use inversion to map inside the disc.
- But the series is very slowly converging close to the unit circle...

$$
\operatorname{Li}_{2}(0.99999)=1.6448089369929272952
$$

- Truncated series:
- 100 terms: 1.6349320311495540992
$\Rightarrow 1000$ terms: 1.6438597615158994092
= 10.000 terms: 1.6447366871058790583
$\Rightarrow 100.000$ terms: 1.6448074520672384402

Numerical evaluation

- Different codes use different solutions
\Rightarrow Functional equations to map the region close to the circle to a more stable region.
\Rightarrow Better expansions than the Taylor expansion.
\Rightarrow Reduction to 'basis functions' that can be computed in a fact and accurate way.
\Rightarrow Mixtures thereof.

Numerical evaluation

- Different codes use different solutions
\Rightarrow Functional equations to map the region close to the circle to a more stable region.
\Rightarrow Better expansions than the Taylor expansion.
\Rightarrow Reduction to 'basis functions' that can be computed in a fact and accurate way.
\Rightarrow Mixtures thereof.
- Examples of expansions:

$$
\operatorname{Li}_{2}(z)=-\log z \log (-\log z)+\sum_{k=0}^{\infty} \frac{\zeta_{k}^{(2)}}{k!} \log ^{k} z
$$

Numerical evaluation

- Different codes use different solutions
\Rightarrow Functional equations to map the region close to the circle to a more stable region.
\Rightarrow Better expansions than the Taylor expansion.
\Rightarrow Reduction to 'basis functions' that can be computed in a fact and accurate way.
\Rightarrow Mixtures thereof.
- Examples of expansions:

$$
\begin{gathered}
\operatorname{Li}_{2}(z)=-\log z \log (-\log z)+\sum_{k=0}^{\infty} \frac{\zeta_{k}^{(2)}}{k!} \log ^{k} z \\
\operatorname{Li}_{2}(z)=\sum_{k=0}^{\infty} \frac{B_{k}}{(k+1)!}(-\log (1-z))^{k+1}
\end{gathered}
$$

Chaplin

I. Expansion in $\log (1-z)$.
II. Expansion in $\log (\mathrm{z})$.
III. Inversion back to the unit disc.
IV.Taylor expansion around $\mathrm{z}=-1$.
V.Taylor expansion around $z=+1$.
VI.Taylor expansion around $\mathrm{z}=0$.

Summary of lecture 2

- Loop integrals are often expressed in terms of (multiple) polylogarithms.
- Multiple polylogarithms satisfy many identities.
- They form both a shuffle and stuffle algebra.
\Rightarrow Need a way to deal with these relations!
- Next lecture:
\Rightarrow More general and formal considerations about the analytic structure of loop integrals.

