Bootstrapping the three-loop hexagon

Johannes M. Henn

Humboldt-Universität zu Berlin

based on

L. J. Dixon, J. M. Drummond, J. M. H., arXiv:1108.4461 [hep-th]

Outline

Bootstrapping the three-loop hexagon

- Cusped Wilson loops in $\mathcal{N}=4$ super Yang-Mills
- Iterated integrals and symbols
- ansatz and constraints for the three-loop hexagon
- prediction for Regge limit

Duality between Wilson loops and scattering amplitudes

$$
x_{i+1}^{\mu}-x_{i}^{\mu}=p_{i}^{\mu}
$$

[Alday, Maldacena, 2007; Drummond, Korchemsky, Sokatchev, 2007; Brandhuber, Heslop, Travaglini, 2007]

- Checked by two-loop computations for $n \leq 6$ points
[Drummond, J.M.H. ,Korchemsky,Sokatchev, 2007,2008]
[Bern,Dixon,Kosower, Roiban,Spradlin, Vergu, Volovich, 2008]
- conformal symmetry of Wilson loops \rightarrow dual conformal symmetry of amplitudes
- all-order (dual) conformal Ward identities
[Drummond, J.M.H., Korchemsky, Sokatchev, 2007]
\Rightarrow kinematical dependence of four-and five-point Wilson loops/scattering amplitudes fixed to all orders in the coupling!

Conformal Ward identity and six-point Wilson loop

- known structure of UV divergences [Korchemsky, Radyuskkin (1987); Korchemskay, Korchemsky (1992)]

$$
\log W_{n}=[\mathrm{UV} \text { divergent }]_{n}+F_{n}^{\mathrm{WL}}
$$

- solution to Ward identity at $n=6$
[Drummond, J.M.H., Korchemsky, Sokatchev, 2007]

$$
F_{6}^{\mathrm{WL}}=\gamma_{K}(a) F_{6,1-\mathrm{loop}}^{\mathrm{WL}}+R_{6}(a ; u, v, w)
$$

with $a \equiv g^{2} N_{c} /\left(8 \pi^{2}\right) . \gamma_{K}(a)$ cusp anomalous dimension.

- loop expansion of remainder function

$$
R_{6}(a ; u, v, w)=\sum_{L=2}^{\infty} a^{L} R_{6}^{(L)}(u, v, w), .
$$

Depends on three dual conformal cross ratios only,

$$
u=\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}}, \quad v=\frac{x_{24}^{2} x_{15}^{2}}{x_{25}^{2} x_{14}^{2}}, \quad w=\frac{x_{35}^{2} x_{26}^{2}}{x_{36}^{2} x_{25}^{2}}
$$

- $R_{6}^{(L)}$ expected to be expressible as sum of $2 L$-fold iterated integrals

Iterated integrals, pure functions and symbols

- we define a pure function of degree (or weight) k recursively,

$$
d f^{(k)}=\sum_{r} f_{r}^{(k-1)} d \log \phi_{r}
$$

ϕ_{r} are algebraic functions. Degree zero functions are constants.
The definition includes logarithms and classical polylogarithms, as well as other iterated integrals, such as harmonic polylogarithms of one or more variables.

- symbol $\mathcal{S}(f)$ of a pure function f is defined recursively

$$
\mathcal{S}\left(f^{(k)}\right)=\sum_{r} \mathcal{S}\left(f_{r}^{(k-1)}\right) \otimes \phi_{r} .
$$

- $\mathcal{S}\left(f^{(k)}\right)$ is an element of the k-fold tensor product of the space of algebraic functions,

$$
\mathcal{S}\left(f^{(k)}\right)=\sum_{\vec{\alpha}} \phi_{\alpha_{1}} \otimes \ldots \otimes \phi_{\alpha_{k}},
$$

Iterated integrals, pure functions and symbols

Important properties of symbols:

- property derived from $\log (a b)=\log a+\log b$

$$
\ldots \otimes \phi_{1} \phi_{2} \otimes \ldots=\ldots \otimes \phi_{1} \otimes \ldots \quad+\ldots \otimes \phi_{2} \otimes \ldots
$$

- integrability condition $d^{2} f^{(k)}=0$ for any function implies relations among the different elements.
- Branch cuts and discontinuities. Given

$$
\mathcal{S}\left(f^{(k)}\right)=\sum_{\vec{\alpha}} \phi_{\alpha_{1}} \otimes \ldots \otimes \phi_{\alpha_{k}},
$$

the degree k function $f^{(k)}$ will have a branch cut starting at $\phi_{\alpha_{1}}=0$. The discontinuity across this cut has the symbol

$$
\mathcal{S}\left(\Delta_{\phi_{\alpha_{1}}} f^{(k)}\right)=\sum_{\vec{\alpha}} \phi_{\alpha_{2}} \otimes \ldots \otimes \phi_{\alpha_{k}} .
$$

Iterated integrals, pure functions and symbols

- some examples:

$$
\begin{gathered}
\mathcal{S}\left(\log ^{2}(u)\right)=2 u \otimes u \\
\mathcal{S}\left(-\operatorname{Li}_{2}(u)\right)=(1-u) \otimes u \\
\mathcal{S}(\log (u) \log (v))=u \otimes v+v \otimes u
\end{gathered}
$$

- Fine print:
- Symbols do not know on which branch the functions are evaluated.
- Related: symbols are defined only up to constants times lower degree functions.
- Nonetheless, the symbol is an extremely useful tool, especially in multi-variable cases. E.g., symbols were crucial to find a simple form for the two-loop remainder function $R_{6}^{(2)}$.

Symbol of the two-loop remainder function

- $R_{6}^{(2)}$ known analytically
can be expressed in terms of classical polylogarithms [Goncharov, Spradili, Vergu, Volovich (2010)] It has the symbol

$$
\begin{aligned}
\mathcal{S}\left(R_{6}^{(2)}\right)= & -\frac{1}{8}\left\{\left[u \otimes(1-u) \otimes \frac{u}{(1-u)^{2}}+2(u \otimes v+v \otimes u) \otimes \frac{w}{1-v}\right.\right. \\
& \left.+2 v \otimes \frac{w}{1-v} \otimes u\right] \otimes \frac{u}{1-u} \\
& \left.+\left[u \otimes(1-u) \otimes y_{u} y_{v} y_{w}-2 u \otimes v \otimes y_{w}\right] \otimes y_{u} y_{v} y_{w}\right\} \\
& + \text { permutations, }
\end{aligned}
$$

Here
$y_{u}=\frac{u-z_{+}}{u-z_{-}}, \quad z_{ \pm}=\frac{1}{2}\left(-1+u+v+w \pm \sqrt{(1-u-v-w)^{2}-4 u v w}\right)$.

- What is the symbol of R_{6} at higher loops?

Ansatz for $\mathcal{S}\left(R_{6}^{(3)}\right)$

- Ansatz: symbol built from the following letters:

$$
\mathcal{A}=\left\{u, v, w, 1-u, 1-v, 1-w, y_{u}, y_{v}, y_{w}\right\}
$$

i.e.

$$
\mathcal{S}\left(R_{6}^{(3)}\right)=\sum_{\vec{\alpha}} c_{\vec{\alpha}} \times a_{\alpha_{1}} \otimes a_{\alpha_{2}} \otimes a_{\alpha_{3}} \otimes a_{\alpha_{4}} \otimes a_{\alpha_{5}} \otimes a_{\alpha_{6}}
$$

with $a_{\alpha_{i}} \in \mathcal{A}$ and $c_{\vec{\alpha}} \in \mathbb{R}$.

- Motivation:
- explicit form of two-loop remainder function
- experience with loop integrals appearing in MHV scattering amplitudes
[Drummond, J. .M. .H., Trnka (2010); Dixon, Drummond, J. .M. .H. (2011)]
- Is this ansatz consistent with all known constraints on $\mathcal{S}\left(R_{6}^{(3)}\right)$?

Constraints on $\mathcal{S}\left(R_{6}^{(3)}\right)$

What constraints should the symbol of the remainder function obey?

- should be integrable, i.e. symbol of a function
- discontinuities of loop integrals at $x_{i j}^{2}=0 \longrightarrow$ first entry should be u, v or w
- it should be completely symmetric in u, v, w
- parity even \longrightarrow even number of y_{u}, y_{v}, y_{w} variables
- collinear limit: $R(u, 1-u, 0)=0$
- constraints in multi-Regge kinematics
[Lipatov, Prygarin (2010), Bartels, Lipatov, Prygarin (2010)]

$$
u \rightarrow 1, \quad \frac{v}{1-u} \rightarrow x, \quad \frac{w}{1-u} \rightarrow y
$$

OPE constraints

- OPE (operator product expansion) for cusped Wilson loops
[Alday, Gaiotto, Maldacena, Sever, Vieira (2010)]
[Gaiotto, Maldacena, Sever, Vieira (2011)]
predicts (multiple) discontinuity Δ_{V}^{L-1} at L loops from one-loop data

$$
\begin{aligned}
\Delta_{v}^{L-1} \mathcal{S}\left(R_{6}^{(L)}\right) \propto & \mathcal{S}\left(\int \frac { d p } { 2 \pi } e ^ { - i p \sigma } \left(\sum_{m=1}^{\infty} \frac{\left[\gamma_{m+2}(p)\right]^{L-1} \cos (m \phi)}{p^{2}+m^{2}}\right.\right. \\
& \left.\left.+\sum_{m=2}^{\infty} \frac{\left[\gamma_{m-2}(p)\right]^{L-1} \cos ((m-2) \phi)}{p^{2}+(m-2)^{2}}\right) \mathcal{C}_{m}(p) \mathcal{F}_{m / 2, p}(\tau)\right)
\end{aligned}
$$

τ, σ, ϕ related to u, v, w

- we can test corollaries of this formula

$$
\mathcal{D}_{+} \mathcal{D}_{-} \Delta_{v} \Delta_{v} \mathcal{S}\left(R_{6}^{(3)}\right)=0
$$

and

$$
\square \Delta_{w} \Delta_{w} \Delta_{v} \Delta_{v} \mathcal{S}\left(R_{6}^{(3)}\right) \propto \frac{w(1-u+v-w)}{(1-v)(1-w)}
$$

Result

- we find a solution consistent with OPE constraints, with 26 parameters α_{i}

$$
\mathcal{S}\left(R_{6}^{(3)}\right)=\mathcal{S}(X)+\sum_{i=1}^{26} \alpha_{i} \mathcal{S}\left(f_{i}\right)
$$

highly nontrivial that ansatz is consistent with all constraints!

- Regge limit imposes three more constraints
- additional constraint: final entry drawn only from set

$$
\frac{u}{1-u}, \frac{v}{1-v}, \frac{w}{1-w}, y_{u}, y_{v}, y_{w}
$$

can be motivated by supersymmetry leads to

$$
\mathcal{S}\left(R_{6}^{(3)}\right)=\mathcal{S}(X)+\alpha_{1} \mathcal{S}\left(f_{1}\right)+\alpha_{2} \mathcal{S}\left(f_{2}\right)
$$

Prediction for multi-Regge limit

- multi-Regge limit

Analytically continue to physical branch $u \rightarrow e^{-2 \pi i} u$ and let

$$
u \rightarrow 1, \quad \frac{v}{1-u} \rightarrow x, \quad \frac{w}{1-u} \rightarrow y .
$$

Expect

$$
R_{6}^{(3)} \rightarrow(2 \pi i) \sum_{r=0}^{2} \log ^{r}(1-u)\left[g_{r}^{(3)}(x, y)+2 \pi i h_{r}^{(3)}(x, y)\right]
$$

- we find agreement with prediction for leading terms $g_{2}^{(3)}, h_{2,1}^{(3)} \quad[$ Lipatov, Prygarin (2010)]
- we have new predictions for $g_{1}^{(3)}, g_{0}^{(3)}$ and $h_{0}^{(3)}$

Explicit prediction for multi-Regge limit

- explicit formula for $g_{1}^{(3)}$

$$
u \rightarrow 1, \quad \frac{v}{1-u} \rightarrow \frac{1}{(1+w)\left(1+w^{*}\right)}, \quad \frac{w}{1-u} \rightarrow \frac{w w^{*}}{(1+w)\left(1+w^{*}\right)} .
$$

We find

$$
\begin{aligned}
& g_{1}^{(3)}\left(w, w^{*}\right)=\frac{1}{8}\left\{\log |w|^{2}\left[\operatorname{Li}_{3}\left(\frac{w}{1+w}\right)+\operatorname{Li}_{3}\left(\frac{w^{*}}{1+w^{*}}\right)\right]\right. \\
& \quad+\left(5 \log |1+w|^{2}-2 \log |w|^{2}\right)\left[\operatorname{Li}_{3}(-w)+\operatorname{Li}_{3}\left(-w^{*}\right)\right] \\
& \quad-\frac{3}{2} \log |w|^{2} \log \frac{|1+w|^{4}}{|w|^{2}}\left[\operatorname{Li}_{2}(-w)+\operatorname{Li}_{2}\left(-w^{*}\right)\right] \\
& \quad-\frac{1}{12} \log ^{2}|1+w|^{2}\left[\log |w|^{2}\left(\log |w|^{2}+2 \log |1+w|^{2}\right)-10 \log ^{2} \frac{|1+w|^{2}}{|w|^{2}}\right] \\
& \left.\quad+\frac{1}{2} \log |w|^{2} \log \frac{|1+w|^{2}}{|w|^{2}} \log (1+w) \log \left(1+w^{*}\right)-2 \zeta_{3} \log |1+w|^{2}\right\} \\
& \quad+\left(\frac{5}{2}+\gamma^{\prime}\right) \zeta_{2} g_{1}^{(2)}\left(w, w^{*}\right),
\end{aligned}
$$

Summary and outlook

- Summary
- starting from our ansatz we fix the symbol of $\mathcal{R}_{6}^{(3)}$ up to two constants

$$
\mathcal{S}\left(R_{6}^{(3)}\right)=\mathcal{S}(X)+\alpha_{1} \mathcal{S}\left(f_{1}\right)+\alpha_{2} \mathcal{S}\left(f_{2}\right)
$$

without evaluating any loop integrals!

- prediction for multi-Regge limit, where α_{1} and α_{2} drop out
- new functions other than classical polylogarithms needed
- Outlook
- find functions X and f_{2} (f_{1} already determined)
- constraints at function level are likely to fix α_{1} and α_{2}.
\rightarrow analytical result for three-loop six-particle scattering process

