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Duality between Wilson loops and scattering amplitudes

[Alday, Maldacena, 2007; Drummond, Korchemsky, Sokatchev, 2007; Brandhuber, Heslop, Travaglini, 2007]

Checked by two-loop computations for n ≤ 6 points
[Drummond, J.M.H. ,Korchemsky,Sokatchev, 2007,2008]

[Bern,Dixon,Kosower,Roiban,Spradlin,Vergu,Volovich, 2008]

conformal symmetry of Wilson loops → dual conformal symmetry of amplitudes

all-order (dual) conformal Ward identities [Drummond, J.M.H., Korchemsky, Sokatchev, 2007]

⇒ kinematical dependence of four-and five-point Wilson loops/scattering
amplitudes fixed to all orders in the coupling!
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Conformal Ward identity and six-point Wilson loop

known structure of UV divergences [Korchemsky, Radyushkin (1987); Korchemskaya, Korchemsky (1992)]

log Wn = [UV divergent]n + FWL
n .

solution to Ward identity at n = 6 [Drummond, J.M.H., Korchemsky, Sokatchev, 2007]

FWL
6 = γK (a)FWL

6 ,1−loop + R6(a; u, v ,w) .

with a ≡ g2Nc/(8π
2). γK (a) cusp anomalous dimension.

loop expansion of remainder function

R6(a; u, v ,w) =

∞
∑

L=2

aL R
(L)
6 (u, v ,w) , .

Depends on three dual conformal cross ratios only,
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R
(L)
6 expected to be expressible as sum of 2L-fold iterated integrals
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Iterated integrals, pure functions and symbols

we define a pure function of degree (or weight) k recursively,

d f (k) =
∑

r

f
(k−1)
r d log φr .

φr are algebraic functions. Degree zero functions are constants.
The definition includes logarithms and classical polylogarithms, as well as other
iterated integrals, such as harmonic polylogarithms of one or more variables.

symbol S(f ) of a pure function f is defined recursively

S(f (k)) =
∑

r

S(f
(k−1)
r ) ⊗ φr .

S(f (k)) is an element of the k-fold tensor product of the space of algebraic
functions,

S(f (k)) =
∑

~α

φα1 ⊗ . . . ⊗ φαk
,

[4/14]



Iterated integrals, pure functions and symbols

Important properties of symbols:

property derived from log(ab) = log a + log b

. . . ⊗ φ1φ2 ⊗ . . . = . . . ⊗ φ1 ⊗ . . . + . . . ⊗ φ2 ⊗ . . . .

integrability condition d2f (k) = 0 for any function implies relations among the
different elements.

Branch cuts and discontinuities. Given

S(f (k)) =
∑

~α

φα1 ⊗ . . . ⊗ φαk
,

the degree k function f (k) will have a branch cut starting at φα1 = 0. The
discontinuity across this cut has the symbol

S(∆φα1
f (k)) =

∑

~α

φα2 ⊗ . . . ⊗ φαk
.
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Iterated integrals, pure functions and symbols

some examples:

S(log2(u)) = 2u ⊗ u

S(−Li2(u)) = (1 − u) ⊗ u

S(log(u) log(v)) = u ⊗ v + v ⊗ u

Fine print:

Symbols do not know on which branch the functions are evaluated.

Related: symbols are defined only up to constants times lower degree functions.

Nonetheless, the symbol is an extremely useful tool, especially in multi-variable
cases. E.g., symbols were crucial to find a simple form for the two-loop

remainder function R
(2)
6 .
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Symbol of the two-loop remainder function

R
(2)
6 known analytically [Del Duca, Duhr, Smirnov (2009)]

can be expressed in terms of classical polylogarithms [Goncharov, Spradlin, Vergu, Volovich (2010)]

It has the symbol

S(R
(2)
6 ) = −

1

8

{[

u ⊗ (1 − u) ⊗
u

(1 − u)2
+ 2

(

u ⊗ v + v ⊗ u) ⊗
w

1 − v

+2 v ⊗
w

1 − v
⊗ u

]

⊗
u

1 − u

+
[

u ⊗ (1 − u) ⊗ yuyvyw − 2 u ⊗ v ⊗ yw

]

⊗ yuyvyw

}

+ permutations ,

Here

yu =
u − z+

u − z−
, z± =

1

2

(

−1 + u + v + w ±
√

(1 − u − v − w)2 − 4uvw

)

.

What is the symbol of R6 at higher loops?

[7/14]



Ansatz for S(R
(3)
6 )

Ansatz: symbol built from the following letters:

A = {u, v ,w , 1 − u, 1 − v , 1 − w , yu, yv , yw} .

i.e.
S(R

(3)
6 ) =

∑

~α

c~α × aα1 ⊗ aα2 ⊗ aα3 ⊗ aα4 ⊗ aα5 ⊗ aα6 ,

with aαi
∈ A and c~α ∈ R.

Motivation:

- explicit form of two-loop remainder function [Goncharov, Spradlin, Vergu, Volovich (2010)]

- experience with loop integrals appearing in MHV scattering amplitudes
[Drummond, J. .M. .H., Trnka (2010); Dixon, Drummond, J. .M. .H. (2011)]

Is this ansatz consistent with all known constraints on S(R
(3)
6 )?
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Constraints on S(R
(3)
6 )

What constraints should the symbol of the remainder function obey?

should be integrable, i.e. symbol of a function

discontinuities of loop integrals at x2
ij = 0 −→ first entry should be u, v or w

it should be completely symmetric in u, v ,w

parity even −→ even number of yu, yv , yw variables

collinear limit: R(u, 1 − u, 0) = 0

constraints in multi-Regge kinematics [Lipatov, Prygarin (2010), Bartels, Lipatov, Prygarin (2010)]

u → 1 ,
v

1 − u
→ x ,

w

1 − u
→ y .
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OPE constraints

OPE (operator product expansion) for cusped Wilson loops
[Alday, Gaiotto, Maldacena, Sever, Vieira (2010)]

[Gaiotto, Maldacena, Sever, Vieira (2011)]

predicts (multiple) discontinuity ∆L−1
v at L loops from one-loop data

∆L−1
v S(R

(L)
6 ) ∝ S

(

∫

dp

2π
e−ipσ

( ∞
∑

m=1

[γm+2(p)]L−1 cos(mφ)

p2 + m2

+

∞
∑

m=2

[γm−2(p)]L−1 cos((m − 2)φ)

p2 + (m − 2)2

)

Cm(p)Fm/2,p(τ)
)

.

τ, σ, φ related to u, v ,w

we can test corollaries of this formula

D+D−∆v∆vS(R
(3)
6 ) = 0

and

�∆w∆w∆v∆vS(R
(3)
6 ) ∝

w(1 − u + v − w)

(1 − v)(1 − w)
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Result

we find a solution consistent with OPE constraints, with 26 parameters αi

S(R
(3)
6 ) = S(X ) +

26
∑

i=1

αiS(fi )

highly nontrivial that ansatz is consistent with all constraints!

Regge limit imposes three more constraints

additional constraint: final entry drawn only from set

u

1 − u
,

v

1 − v
,

w

1 − w
, yu , yv , yw

can be motivated by supersymmetry [Caron-Huot (2011)]

leads to
S(R

(3)
6 ) = S(X ) + α1S(f1) + α2S(f2)
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Prediction for multi-Regge limit

multi-Regge limit

Analytically continue to physical branch u → e−2πi u and let

u → 1 ,
v

1 − u
→ x ,

w

1 − u
→ y .

Expect

R
(3)
6 → (2πi)

2
∑

r=0

logr (1 − u)
[

g
(3)
r (x , y) + 2πi h

(3)
r (x , y)

]

we find agreement with prediction for leading terms g
(3)
2 , h

(3)
2,1 [Lipatov, Prygarin (2010)]

we have new predictions for g
(3)
1 , g

(3)
0 and h

(3)
0
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Explicit prediction for multi-Regge limit

explicit formula for g
(3)
1

u → 1 ,
v

1 − u
→

1

(1 + w)(1 + w∗)
,

w

1 − u
→

ww∗

(1 + w)(1 + w∗)
.

We find

g
(3)
1 (w ,w∗) =

1

8

{

log |w |2
[

Li3

(

w

1 + w

)

+ Li3

(

w∗

1 + w∗

)]

+ (5 log |1 + w |2 − 2 log |w |2)
[

Li3(−w) + Li3(−w∗)
]

−
3

2
log |w |2 log

|1 + w |4

|w |2

[

Li2(−w) + Li2(−w∗)
]

−
1

12
log2 |1 + w |2

[

log |w |2 (log |w |2 + 2 log |1 + w |2) − 10 log2 |1 + w |2

|w |2

]

+
1

2
log |w |2 log

|1 + w |2

|w |2
log(1 + w) log(1 + w∗) − 2 ζ3 log |1 + w |2

}

+

(

5

2
+ γ′

)

ζ2 g
(2)
1 (w ,w∗) ,
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Summary and outlook

Summary

starting from our ansatz we fix the symbol of R
(3)
6 up to two constants

S(R
(3)
6 ) = S(X ) + α1S(f1) + α2S(f2)

without evaluating any loop integrals!

prediction for multi-Regge limit, where α1 and α2 drop out

new functions other than classical polylogarithms needed

Outlook

find functions X and f2 (f1 already determined)

constraints at function level are likely to fix α1 and α2.

→ analytical result for three-loop six-particle scattering process
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