Bootstrapping the three-loop hexagon

Johannes M. Henn

Humboldt-Universitat zu Berlin

based on
L. J. Dixon, J. M. Drummond, J. M. H., arXiv:1108.4461 [hep-th]

Ustron 2011, September 13



Bootstrapping the three-loop hexagon

@ Cusped Wilson loops in ANV = 4 super Yang-Mills
o lterated integrals and symbols
@ ansatz and constraints for the three-loop hexagon

@ prediction for Regge limit
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Duality between Wilson loops and scattering amplitudes

[Alday, Maldacena, 2007; Drummond, Korchemsky, Sokatchev, 2007; Brandhuber, Heslop, Travaglini, 2007]

@ Checked by two-loop computations for n < 6 points
[Drummond, J.M.H. ,Korchemsky,Sokatchev, 2007,2008]

[Bern,Dixon, Kosower, Roiban,Spradlin,Vergu,Volovich, 2008]
@ conformal symmetry of Wilson loops — dual conformal symmetry of amplitudes

o a||—0rder (dual) COnfOrmaI Ward |dent|t|es [Drummond, J.M.H., Korchemsky, Sokatchev, 2007]

= kinematical dependence of four-and five-point Wilson loops/scattering
amplitudes fixed to all orders in the coupling!
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Conformal Ward identity and six-point Wilson loop

@ known structure of UV divergences [Korchemsky, Radyushkin (1987); Korchemskaya, Korchemsky (1992)]
log W, = [UV divergent], + F)'L.
@ solution to Ward identity at n =6 [Drummond, J.M.H., Korchemsky, Sokatchev, 2007]
Fo'" = k() Fg'1-100p + Ro(a; u, v, w).
with a = g2N./(872). ~yk(a) cusp anomalous dimension.

@ loop expansion of remainder function
[o¢]
Re(a; u,v,w) = Z at R((;L)(u, v, w),

Depends on three dual conformal cross ratios only,

2 .2 2 .2 2 .2
_ X13%16 _ X4X15 _ X35%%6
X2, x2 ] V_x2x2’ W_x2x2'
14%36 25X14 36%25

° RéL) expected to be expressible as sum of 2[-fold iterated integrals
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Iterated integrals, pure functions and symbols

@ we define a pure function of degree (or weight) k recursively,

d ¥ =5 Vdlogg, .

r

¢, are algebraic functions. Degree zero functions are constants.
The definition includes logarithms and classical polylogarithms, as well as other
iterated integrals, such as harmonic polylogarithms of one or more variables.

@ symbol S(f) of a pure function f is defined recursively

S(FR)Y=3"s(* N @ e, .

° S(f(k)) is an element of the k-fold tensor product of the space of algebraic

functions,
NGOE quaal o ® oy
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Iterated integrals, pure functions and symbols

Important properties of symbols:

@ property derived from log(ab) = log a + log b

LRGPP R ... = L QP1R... + R P2 ®

@ integrability condition d?f(%) = 0 for any function implies relations among the
different elements.

@ Branch cuts and discontinuities. Given

S(FH) = quaal o ® oy

the degree k function (%) will have a branch cut starting at ¢a, =0. The
discontinuity across this cut has the symbol

S(Dg,, FH) = Z Py @ -+ - @ Dy -
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Iterated integrals, pure functions and symbols

@ some examples:

S(log?(u)) =2u @ u
S(-Liz(u))=(1-uv)®u

S(log(u)log(v)) =u®@v+veu
@ Fine print:
@ Symbols do not know on which branch the functions are evaluated.

o Related: symbols are defined only up to constants times lower degree functions.

@ Nonetheless, the symbol is an extremely useful tool, especially in multi-variable
cases. E.g., symbols were crucial to find a simple form for the two-loop

remainder function R6(2).
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Symbol of the two-loop remainder function

° R((Sz) known analytically

[Del Duca, Duhr, Smirnov (2009)]
can be expressed in terms of classical polylogarithms [Goncharov, Spradiin, Vergu, Volovich (2010)]

It has the symbol

(2) . u w
S(Rg”7) = —g{[u®(1—u)®m+2(u®v+v®u)®1_v
w
2ve 7= 9]
* v®1_v®u ®1—u
+|:u®(1_u)®yUYVYW_2U®V®yW:|®YUYV}/W}
+ permutations,
Here
u—2zy 1 5
Yu = ) zy =3 —1—|—u—|—v—i—w:|:\/(1—u—v—w) —4duvw | .
u—z_

@ What is the symbol of Rg at higher loops?
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Ansatz for S(RéB))

@ Ansatz: symbol built from the following letters:

A={uv,v,w, 1 —u,1—v,1—w,yu,, v, Yw}-

3
S(Ré )) = ZCO_Z X aoq ®aa2®aa3 ®aa4®aa5 ®aa6,
a

with a5, € A and ¢z € R.

@ Motivation:
- eXpI|C|t form Of tWO-lOOp remainder fu nCtion [Goncharov, Spradlin, Vergu, Volovich (2010)]

- experience with loop integrals appearing in MHV scattering amplitudes
[Drummond, J. .M. .H., Trnka (2010); Dixon, Drummond, J. .M. .H. (2011)]

@ Is this ansatz consistent with all known constraints on S(R((;3))?

k) ¥
N 7
iy 7
7
AW
= VA =
EEETTTAN T ==
7\
A
’ 3
U 2
/ 2
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Constraints on S(Rés))

What constraints should the symbol of the remainder function obey?

@ should be integrable, i.e. symbol of a function

@ discontinuities of loop integrals at x,-J2- = 0 — first entry should be u, v or w
@ it should be completely symmetric in u, v, w

@ parity even — even number of y,, y,, y,, variables

o collinear limit: R(u,1—u,0) =0

o Constraints in mu|t|-Regge klnematICS [Lipatov, Prygarin (2010), Bartels, Lipatov, Prygarin (2010)]
v w
u—1, — X, —y.
1—u 1—u

» 4

N 73
3 4
4
VAR
2 5

/ Ay
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OPE constraints

@ OPE (operator product expansion) for cusped Wilson loops
[Alday, Gaiotto, Maldacena, Sever, Vieira (2010)]

[Gaiotto, Maldacena, Sever, Vieira (2011)]

predicts (multiple) discontinuity AL~1 at L loops from one-loop data

-1 (L) dp _ips  [Ym12(p)]- "t cos(mo)
ATS(Ry) S(/Qwe <mz_:1 g

— [Ym-2(p)]""* cos((m — 2)¢)
+ 3 JCnlP)Fnrz(r)).

7,0, ¢ related to u, v, w
@ we can test corollaries of this formula

D.D_AAS(RP) =0

and
w(l—u+v—w)

(- - w)

OA,ALA,A,S(RY))
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@ we find a solution consistent with OPE constraints, with 26 parameters «;
26
S(RSY) = S(X) + Y aiS(f)
i=1

highly nontrivial that ansatz is consistent with all constraints!
@ Regge limit imposes three more constraints

@ additional constraint: final entry drawn only from set

u v w

1_u71_v71_W7yU7yV7yW

can be motivated by supersymmetry [Caron-Huot (2011)]
leads to
S(R) = 8(X) + a1S(f) + 28(h)
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Prediction for multi-Regge limit

o multi-Regge limit
Analytically continue to physical branch u — =2 y and let

v w
— X
1—u ’ 1—u

u—1, —y.

Expect
2
R((;3) — (27i) z log"(1 — u) [gr(3)(x,y) + 27i h@(x,y)]
r=0
@ we find agreement with prediction for leading terms g2(3), hg‘? [Lipatov, Prygarin (2010)]

@ we have new predictions for g1(3), gé3) and h(()3)
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Explicit prediction for multi-Regge limit

@ explicit formula for g1(3)
y—1 v, 1 woo_ ww*
’ 1-u  (I+w)(l4+w)’ I1—u  (Q+w)(1+w*)’
We find

(3) * o 1 2 . w . w*
g (w,w*) = 8{Iog|w| [L13<—1+W>+L13<1+W*>]

+ (5 log |1 + w|? — 2 log |w/?) [Lig(—w) v Lig(—w*)]

3 1+ wl*
—5 log |w|? log | |;|‘g/| [Lig(—W) + Lig(—W*)]
1 1+ wl|?
-1 log? |1 + w|? [Iog |w|? (log |w|? + 2 log |1 + w|?) — 10 log? | ‘+ ’2/’ ]
%

1 1+ wf? .
+3 log |w/|? Iog‘ ’WP‘ log(1 + w) log(1+ w*) —2(3 Iog]l—l—w]2}

5 .
+ <§ +’yl> C2g£2)(wu w )7
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Summary and outlook

@ Summary

)

o starting from our ansatz we fix the symbol of R? up to two constants

S(Rs”) = S(X) + arS(f) + 02S(f)
without evaluating any loop integrals!

@ prediction for multi-Regge limit, where a; and a, drop out

@ new functions other than classical polylogarithms needed

@ Outlook
@ find functions X and £, (fi already determined)
@ constraints at function level are likely to fix a; and ap.

— analytical result for three-loop six-particle scattering process
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