Aspects of scattering amplitudes

S. Caron-Huot,

Atrani School of Analytic Computing, October 201I

Lecture 2: leading singularities and two-loop integrands

- Last time we saw that the coefficients of special functions are the residues of integrals in Feynman parameter space
- Actually, they are residues also in the original momentum space
- These residues are computed by turning the integration region into a $\mathrm{T}^{\wedge} 4 \mathrm{~L}$
- These leading singularities are the simplest information about a loop integral
- With several complex variables, a residue is defined as follows:
- If in local coordinates the measure is

$$
\frac{d a_{1} d a_{2} \cdots d a_{n}}{a_{1} a_{2} \cdots a_{n}}
$$

- then $\operatorname{Res}\left(a_{1}, \ldots, a_{n}\right)=+1$.
- The residue is alternating in the a's:

$$
\operatorname{Res}\left(a_{2}, a_{1}, \ldots, a_{n}\right) \frac{d a_{1} d a_{2} \cdots d a_{n}}{a_{1} a_{2} \cdots a_{n}}=-1
$$

- Consider a general form

$$
\frac{d a_{1} d a_{2} \cdots d a_{n}}{f_{1} f_{2} \cdots f_{n}} g
$$

- A residue is defined for every discrete solution a' for setting the f_{i} to 0 :

$$
\operatorname{Res}_{a^{\prime}}\left(f_{1}, f_{2}, \ldots, f_{n}\right) \frac{d a_{1} d a_{2} \cdots d a_{n}}{f_{1} f_{2} \cdots f_{n}} g \equiv \frac{1}{\operatorname{Det}\left(\frac{\partial f_{i}}{\partial a_{i}}\left(a^{\prime}\right)\right)} g\left(a^{\prime}\right)
$$

- Note there is no absolute value
- This is called the "Poincaré residue"
(Griffiths \& Harris)
- Computing a leading singularity takes two steps:
I. Find the solution(s)

2. Evaluate the Jacobian

- Momentum twistors are useful for both
- In momentum twistor space, the loop variable is a line $A B$
- Schubert's problem: given four lines, find a fifth one, $A B$, which intersects all four
- Consider a "2-mass easy" box

$$
\int \frac{d^{4} Z_{A} d^{4} Z_{B}}{\pi^{2} \operatorname{vol}(\mathrm{GL}(2))} \frac{1}{\langle A B 12\rangle\langle A B 23\rangle\langle A B 45\rangle\langle A B 56\rangle}
$$

(the two 'wedges' define two different planes)

- The two solutions:

- To computing the residue at $\mathrm{AB}=25$, write:

$$
\begin{aligned}
& Z_{A}=Z_{2}+{ }_{1} Z_{1}+{ }_{2} Z_{3} \\
& Z_{B}=Z_{5}+{ }_{1} Z_{4}+{ }_{2} Z_{6}
\end{aligned}
$$

where alpha and beta are small.

- The measure:

$$
\begin{aligned}
\int \frac{d^{4} Z_{A} d^{4} Z_{B}}{\operatorname{vol}(\mathrm{GL}(2))} & \equiv \int\left\langle A B d^{2} Z_{A}\right\rangle\left\langle A B d^{2} Z_{B}\right\rangle \\
& \rightarrow\langle 1235\rangle\langle 4562\rangle \int d^{2} \alpha d^{2} \beta
\end{aligned}
$$

- The denominators:
$\langle A B 12\rangle\langle A B 23\rangle \rightarrow\langle 1235\rangle^{2} \alpha_{1} \alpha_{2}$,
$\langle A B 45\rangle\langle A B 56\rangle \rightarrow\langle 2456\rangle^{2} \beta_{1} \beta_{2}$
- Thus, near the leading singularity,

$$
\int_{A B} \frac{1}{\langle A B 12\rangle\langle A B 23\rangle\langle A B 45\rangle\langle A B 56\rangle} \approx \frac{1}{\langle 1235\rangle\langle 2456\rangle} \int \frac{d \alpha_{1} d \alpha_{2} d \beta_{1} d \beta_{2}}{\alpha_{1} \alpha_{2} \beta_{1} \beta_{2}}
$$

- The other residue is equal and opposite
- The unit-leading singularity integral is thus:
$\int_{A B} \frac{\langle 1235\rangle\langle 2456\rangle}{\langle A B 12\rangle\langle A B 23\rangle\langle A B 45\rangle\langle A B 56\rangle}$
- The 4-mass box revisited

- There are always two solutions. Why?
- Finding these solutions requires solving a quadratic equation. The residue turns out to be:

$$
\frac{ \pm 1}{x_{13}^{2} x_{24}^{2} \sqrt{(1-u-v)^{2}-4 u v}}
$$

(c.f. Britto, Cachazo \&Feng, 2005)

- Note: the arguments of the dilogarithms,

$$
I_{4 m}=2 \operatorname{Li}_{2}\left(1-\alpha_{+}\right)-2 \operatorname{Li}_{2}(1-\alpha)+\log v \log \frac{\alpha_{+}}{\alpha}
$$

have a nice interpretation in twistor space:

- A, B, C, D are four point on the same line, we can take cross-ratios: $\alpha_{ \pm}=\frac{\langle A B\rangle\langle C D\rangle}{\langle A C\rangle\langle B D\rangle}$
- This is the case for all I-loop dilogarithms
- Note: some integrals have no leading singularities

- Cutting all 7 propagators leaves

$$
\int \frac{d \tau}{\sqrt{\text { quartic in } \tau}}
$$

- Instead of poles, this integral has periods
- Note: some integrals have no leading singularities

- Note: any degeneration will remove the elliptic integral

$$
\int \frac{d \tau}{\left(\tau-\tau_{0}\right) \sqrt{\text { quadratic in } \tau}}
$$

- 4-point case analyzed by (K.Larsen \& D. Kosower)

Integral reduction at two-loops

- Consider some crazy, but conformal, doublehexagon integral (this looks academic, but in a second, we will learn something about 5- and 6-pt)

- By homogeneity, it will have a numerator quadratic in $A B$ and quadratic in CD Arkani-Hamed et al,"Local integrands for Planar Scattering Amplitudes"
- We can expand the $A B$ numerators into a basis of $X_{1}, \ldots, X_{5}, \tilde{X}$, where

$$
\tilde{X}=\epsilon^{i_{1} \cdots i_{5}} X_{1}^{i_{1}} \cdots X_{5}^{i_{5}},
$$

similar to what we used at I-loop.

- (Why can't we use CD?)
- Every AB numerator then removes some denominator, except $\langle A B \tilde{X}\rangle\langle A B \tilde{X}\rangle$
- To remove this one, there is a wonderful 2I-term identity
- 21-term identity:

$$
0=\langle A B A B\rangle=\sum_{i, j} c_{i, j}\left\langle A B X_{i}\right\rangle\left\langle A B X_{j}\right\rangle, \quad\left(i, j=1, \ldots, 5,,^{\sim}\right)
$$

- (Why does that exist?)
- Conclusion: hexagons are not needed at 2-loops in four dimensions

- Double pentagons require some choices for numerators. For instance:

- This picture is a shorthand for the numerator

$$
\left\langle C D X_{1}\right\rangle\left\langle A B X_{5}\right\rangle
$$

- Desirably, a basis of 'building blocks' should have unit leading singularities
- A successful strategy for constructing such a basis is the following:
try set as many leading singularities to zero as possible
- The idea is that nonzero leading singularities are related to each other by residue theorems
- Each pentagon has four external propagators; the 6 natural numerators for one pentagon are

$$
X_{1}, X_{2}, X_{3}, X_{4},(L S)_{1},(L S)_{2}
$$

$$
\begin{aligned}
& \text { Example; } \\
& \left\{\begin{array}{l}
\frac{\langle A B(i-1 i i i+1) \cap(j-1 j j+1)\rangle\langle i j k l\rangle}{\langle A B i-1 i\langle\langle A B i i+1\rangle\langle A B j-1 j\rangle\langle A B j j+1\rangle\langle A B C D\rangle} \\
\times \frac{\langle D(k-1 k k+1) \cap(l-1 l l+1)\rangle}{\langle C D k-1 k\rangle\langle C D k k+1\rangle\langle C D l-1 l\rangle\langle C D l l+1\rangle}
\end{array}\right\}
\end{aligned}
$$

- Even in the 6 particles case, this integral is finite

- Why?

- Example:

The 2-loop MHV amplitude, n-particles, in N=4 SYM

(60)
2. One massless leg attached

$\frac{1}{4}\left(x_{a-1, b+1}^{2} x_{a b}^{2}-x_{a-1, b}^{2} x_{a, b+1}^{2}\right)\left(x_{a+1, q}^{2} x_{a+2, b}^{2}-x_{a+1, b}^{2} x_{a+2, b}^{2}\right)(62)$
$\frac{1}{4} x_{a-1, b}^{2}\left(x_{a b}^{2} x_{a+1,9}^{2} x_{b-1, b+1}^{2}+x_{a, b+1}^{2} x_{a+1, b}^{2} x_{b-1, q}^{2}-x_{a b}^{2} x_{a+1, b+1}^{2} x_{b-1, q}^{2}\right)$

$$
\left.+2 x_{a-4, a}^{2} x_{a-3, a+1}^{2} x_{a-2, a}^{2} x_{a-1, q}^{2}-x_{a-4, a}^{2} x_{a-3, a}^{2} x_{a-2, a+1}^{2} x_{a-1, q}^{2}\right)
$$

(C.Vergu 0908.2394)

- Using the unit leading singularity basis, the same expression (actually, including also the parity-odd part) becomes:

Arkani-Hamed et al, IO08.2958

- The reason this looks simpler, is all due to the choice of basis
- Using the unit leading singularity basis, the same expression (actually, including also the parity-odd part) becomes:

Note: $\sim \frac{1}{\epsilon^{4}}$

$\sim \frac{1}{E}$

Finite

- These integrals beg to be integrated....
- So far, we haven't used symmetrical integration
- In the non-conformal cases, we can have high powers of the infinity point downstairs

$$
\int_{A B, C D} \frac{1}{\langle A B I\rangle^{2} \cdots}
$$

- To remove these, one has to remove terms which integrate to zero
- Integration by parts (IBP) identities:

$$
\int_{\ell_{1}, \ell_{2}}\left(v_{1}^{\mu} \frac{\partial}{\partial \ell_{1}^{\mu}}+v_{2}^{\mu} \frac{\partial}{\partial \ell_{2}^{\mu}}\right) \cdots=0
$$

- Important results on IBP identities at $\mathrm{n}=4,5,6$ points were obtained by

Gluza, Kajda\& Kosower (2010)

- For instance, all pentaboxes can be reduced to 3 masters $P_{3,2}^{* *}[1], P_{3,2}^{* *}\left[k_{1} \cdot \ell_{2}\right], P_{3,2}^{* *}\left[k_{5} \cdot \ell_{1}\right]$.

- The theory we have just described applies to these masters
- li is important and nontrivial, to correctly estimate the "complexity" of an integral (discuss the double-pentagon case)
- Discuss the pentabox with numerator example (divergent integral -> finite, unit LS integral)

