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® | et us discuss infrared divergences of
scattering amplitudes a bit longer

® Soft gluons effectively see Wilson lines
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® The integral is simple
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® By overall color conservation,
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Simple physical interpretation:
an amplitude for n particles is proportional to
the probability of not emitting additional ones

In a gauge theory this probability is very small

The reason for exponentiation is that quanta
emitted at different scales do not interfere

In a full computation, divergences will always
cancel against real emission:
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® Historical note: factorization theorems were
developed for QCD starting ~30 years ago

Collins, Soper & Sterman
Korchemsky& Marchesini
Dixon, Sterman & Magnea

® Spectacularly verified in planar N=4 SYM:
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tree
BDS Ansatz = A, ,n=4,5

(Bern, Dixon & Smirnov)

® Confirmed at strong coupling
(Alday & Maldacena)
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® At |-loop, infrared exponentiation together
with generalized unitarity had unexpected
implications

Generalized unitarity:

Box coefficients = ...... N

(See Johansson’s lectures)
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® |n N=4 SYM, only boxes

® But we have seen that soft-collinear region
between particles i and i+] comes only
from the 2mh or Im-type boxes:

N

B R N .. * degenerations

Tuesday, October 11, 2011



® |hereis aclash unless
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® Britto, Cachazo and Feng evaluated these
quad cuts, and found that these were
products of tree amplitudes
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® BCF(W) recursion relation

® Schematically, in many different allowed
representations,

n—2
tree 2 : tree tree
m=2 Britto, Cachazo, Feng,

o Britto,Cachazo,Feng&Witten,
® Everythlng is on-shell! Arkani-Hamed & Kaplan
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® Proof that the unphysical dilogarithms’
always cancel:
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Differential equations, |

® Throughout these lectures, | emphasized
leading singularities and the importance of
properly normalized integrals

® | et us call these, pure integrals

® Pure integrals are expected to produce
pure transcendental functions

® They obey nice differential equations

(many authors; see Henn’s lecture)
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® Why pure integrals? Consider the simplest one,

dx(a — b)
(x — a)(x — b)

® This can be verified to have unit residues

® |f we differentiate with respect to a, we get a
total derivative of something rational:

e B ol i

d 1
— _dr—
" dz (x—a)

Tuesday, October 11, 2011



® Principle: the differential of a pure integral is a
total derivative (of a rational function)

® We find that this property is true generally, in
particular for all Feynman parameter integrals

which appear in two-loop computations

(Arkani-Hamed& SCH,
to appear)

® This is a powerful statement, which can
become an engine for computations
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® | et us check this on our favorite integral:

2
v Det G

| =" = G = Det[X;-X,].

3 4 v XX XX, et| i)
74 N
® [urns out, 0
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X1°—[ffm — V- 6t &
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v  dX X-XoX - X3X- X, X K
1 d
where V' = Det G, and K is one of the LS’s.

2Det GG dX4
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® Any derivative produces a total derivative!

® Q:Why is
x4 am /K d X-VvDet G
dX4 vy  dX X-XoX - X3 X - Xy X-K
nonzero!
® |nh next lecture, we analyze similar

phenomena in a toy model for Feynman
parameter space, where the boundaries are
more obvious than here
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