Aspects of scattering

 amplitudesS. Caron-Huot,

Atrani School of Analytic Computing, October 201I
Lecture 3: More on infrared singularities;
Differential equations, I

- Let us discuss infrared divergences of scattering amplitudes a bit longer
- Soft gluons effectively see Wilson lines

- The integral is simple
$\frac{1}{2} \int^{\infty} d t_{1} \int^{\infty} d t_{2} \frac{i^{2} p_{i} \cdot p_{j}}{4 \pi^{2}\left(t p_{i}-t_{2} p_{j}\right)^{2(1-\epsilon)}} \sim \frac{1}{16 \pi^{2} \epsilon^{2}}+$ finite
- By overall color conservation,

$$
\sum_{i} T_{i}^{a}=0,
$$

$\sum_{i \neq j} T_{i}^{a} \otimes T_{j}^{a}=-\sum_{i} T_{i}^{a} \otimes T_{i}^{a}=-\sum_{i} C_{i}$

- Thus $A^{\text {div }} \sim-\frac{1}{\epsilon^{2}} A^{\text {tree }} \times \sum_{i} \frac{g_{\mathrm{YM}}^{2} C_{i}}{16 \pi^{2}}+\mathcal{O}\left(\frac{1}{\epsilon}\right)$
- Simple physical interpretation: an amplitude for n particles is proportional to the probability of not emitting additional ones
- In a gauge theory this probability is very small
- The reason for exponentiation is that quanta emitted at different scales do not interfere
- In a full computation, divergences will always cancel against real emission:

$$
\frac{1}{\epsilon^{2}} \rightarrow \frac{1}{2} \log \frac{Q^{2}}{\mu_{\mathrm{IR}}^{2}}
$$

- Historical note: factorization theorems were developed for QCD starting ~ 30 years ago

Collins, Soper \& Sterman Korchemsky\& Marchesini Dixon, Sterman \& Magnea

- Spectacularly verified in plänar $N=4$ SYM:

$$
\begin{array}{ll}
A_{n}=e^{\text {" } \Gamma_{\mathrm{cusp}}(\lambda) M_{n}^{\mathrm{MHV}, 1-\text { loop } "}} \times & {[\text { Finite }]} \\
\downarrow & \downarrow^{\text {BDS Ansatz }}
\end{array}
$$

(Bern, Dixon \& Smirnov)

- Confirmed at strong coupling
(Alday \& Maldacena)
- At I-loop, infrared exponentiation together with generalized unitarity had unexpected implications

Generalized unitarity:

(See Johansson's lectures)

- In N=4 SYM, only boxes
- But we have seen that soft-collinear region between particles i and $i+1$ comes only from the 2 mh or Im-type boxes:

+ degenerations
- There is a clash unless

- Britto, Cachazo and Feng evaluated these quad cuts, and found that these were products of tree amplitudes
- $B C F(W)$ recursion relation

- Schematically, in many different allowed representations,

$$
A_{n}^{\text {tree }}=\sum_{m=2}^{n-2} A_{m+1}^{\text {tree }} A_{n-m+1}^{\text {tree }}
$$

- Everything is on-shell!

Britto, Cachazo, Feng, Britto,Cachazo,Feng\&Witten, Arkani-Hamed \& Kaplan

- Proof that the `unphysical dilogarithms’ always cancel:

Differential equations, I

- Throughout these lectures, I emphasized leading singularities and the importance of properly normalized integrals
- Let us call these, pure integrals
- Pure integrals are expected to produce pure transcendental functions
- They obey nice differential equations
(many authors; see Henn's lecture)
- Why pure integrals? Consider the simplest one,

$$
\frac{d x(a-b)}{(x-a)(x-b)}
$$

- This can be verified to have unit residues
- If we differentiate with respect to a, we get a total derivative of something rational:

$$
\begin{aligned}
\frac{d}{d a} \frac{d x(a-b)}{(x-a)(x-b)} & =\frac{d}{d a}\left(\frac{d x}{x-a}-\frac{d x}{x-b}\right) \\
& =-d x \frac{d}{d x}\left(\frac{1}{x-a}\right)
\end{aligned}
$$

- Principle: the differential of a pure integral is a total derivative (of a rational function)
- We find that this property is true generally, in particular for all Feynman parameter integrals which appear in two-loop computations
(Arkani-Hamed\& SCH,
to appear)
- This is a powerful statement, which can become an engine for computations
- Let us check this on our favorite integral:

$$
\underbrace{2}_{4} \equiv I_{4}^{4 m}=\int_{X} \frac{\sqrt{\operatorname{Det} G}}{X \cdot X_{1} \cdots X \cdot X_{4}}, G=\operatorname{Det}\left[X_{i} \cdot X_{j}\right] .
$$

$$
\begin{aligned}
& \text { • Turns out, } \\
& \begin{aligned}
X_{1} \cdot \frac{d}{d X_{4}} I_{4}^{4 m}= & \int_{X} V \cdot \frac{d}{d X X \cdot X_{2} X \cdot X_{3} X \cdot X_{4}} \\
& +\int_{X} K \cdot \frac{d}{d X} \frac{X \cdot V \sqrt{\operatorname{Det} G}}{X \cdot X_{2} X \cdot X_{3} X \cdot X_{4} X \cdot K}
\end{aligned}
\end{aligned}
$$

where $V=\frac{1}{2 \operatorname{Det} G} \frac{d}{d X_{4}}$ Det G, and K is one of the LS's.

- Any derivative produces a total derivative!
- Q:Why is

$$
X_{1} \cdot \frac{d}{d X_{4}} I_{4}^{4 m}=\int_{X} K \cdot \frac{d}{d X} \frac{X \cdot V \sqrt{\operatorname{Det} G}}{X \cdot X_{2} X \cdot X_{3} X \cdot X_{4} X \cdot K}
$$

nonzero?

- In next lecture, we analyze similar phenomena in a toy model for Feynman parameter space, where the boundaries are more obvious than here

