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• Let us discuss infrared divergences of 
scattering amplitudes a bit longer

• Soft gluons effectively see Wilson lines
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• The integral is simple

• By overall color conservation,
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• Simple physical interpretation:
an amplitude for n particles is proportional to 
the probability of not emitting additional ones

• In a gauge theory this probability is very small

• The reason for exponentiation is that quanta 
emitted at different scales do not interfere

• In a full computation, divergences will always 
cancel against real emission:
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• Historical note: factorization theorems were 
developed for QCD starting ~30 years ago

• Spectacularly verified in planar N=4 SYM:

• Confirmed at strong coupling

Collins, Soper & Sterman
Korchemsky& Marchesini
Dixon, Sterman & Magnea
...

An = e“Γcusp(λ)MMHV,1-loop
n ” × [Finite]

BDS Ansatz
(Bern, Dixon & Smirnov)

(Alday & Maldacena)

= Atree
n , n = 4, 5
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• At 1-loop, infrared exponentiation together 
with generalized unitarity had unexpected 
implications

(See Johansson’s lectures)

Box coefficients =

Generalized unitarity:
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• In N=4 SYM, only boxes

• But we have seen that soft-collinear region 
between particles i and i+1 comes only 
from the 2mh or 1m-type boxes:
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• There is a clash unless

• Britto, Cachazo and Feng evaluated these 
quad cuts, and found that these were 
products of tree amplitudes
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• BCF(W) recursion relation

• Schematically, in many different allowed 
representations,

• Everything is on-shell!

where we have a sum over helicities for the usual reason, guaranteed by unitarity, that the

numerator of the propagator can be replaced by the polarization sum on shell.

So far everything has been kinematical and true for an arbitrary theory. What is re-

markable is that for certain amplitudes in some theories, M(z → ∞) vanishes. Now,

meromorphic functions that vanish at infinity are completely characterized by their poles; if

M(z → ∞) = 0, we have 0 =
∫

dz/zM(z) = M(0) + residues, and this gives us the BCFW

recursion relation
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where h indicates a possible internal helicity. The lower amplitudes are on-shell (in complex-

ified momentum space), because all the momenta are on shell though evaluated at a complex

z = zJ . These recursion relations produce a higher-point amplitude by sewing together

lower-point on shell amplitudes.
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Figure 1: The BCFW recursion relation computes an n-point amplitude by sewing together lower-
point amplitudes with (complex) on-shell momenta.

Of course the strategy of determining amplitudes directly from their singularities is a

familiar and central theme of the S-matrix program. However, the old ideas were largely

restricted to 2 → 2 scattering and the complexification of the Mandelstam s, t, u variables,

and the generalization to higher-point amplitudes was not clear. Over the past twenty years,

S-matrix ideas have had a resurgence, as it has become increasingly clear that they provide

powerful methods for computing field theory amplitudes, for instance as in the unitarity

methods of Bern, Dixon, Dunbar and Kosower [10]. The BCFW recursion relations are

another step in this direction. Indeed, the BCFW deformation of momenta can be viewed

as a correct general procedure for complexifying on-shell momenta and, at least at tree level,

the recursion relations beautifully fulfil the S-matrix dream of dealing directly with on-shell

amplitudes without reference to an off-shell Lagrangian.
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Britto,Cachazo,Feng&Witten,
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• Proof that the `unphysical dilogarithms’ 
always cancel:
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• Throughout these lectures, I emphasized 
leading singularities and the importance of 
properly normalized integrals

• Let us call these, pure integrals

• Pure integrals are expected to produce 
pure transcendental functions

• They obey nice differential equations

Differential equations, I

(many authors; see Henn’s lecture)
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• Why pure integrals? Consider the simplest one,

• This can be verified to have unit residues 

• If we differentiate with respect to a, we get a 
total derivative of something rational:
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• Principle: the differential of a pure integral is a 
total derivative (of a rational function)

• We find that this property is true generally, in 
particular for all Feynman parameter integrals 
which appear in two-loop computations

• This is a powerful statement, which can 
become an engine for computations

(Arkani-Hamed& SCH, 
to appear)
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• Let us check this on our favorite integral:

• Turns out,
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• Any derivative produces a total derivative!

• Q: Why is

  nonzero?

• In next lecture, we analyze similar 
phenomena in a toy model for Feynman 
parameter space, where the boundaries are 
more obvious than here
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