Quark-Lepton Mass Relations from Modular Flavor Symmetry

Omar Medina

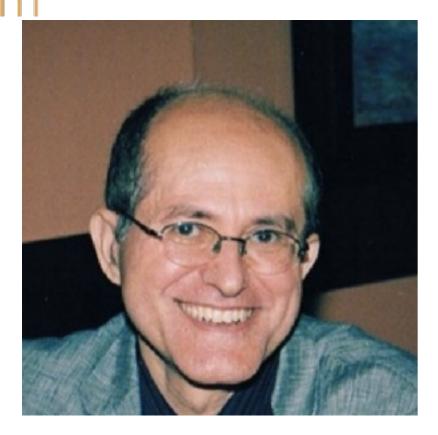
IFIC (University of Valencia)

JHEP 02 (2024) 160

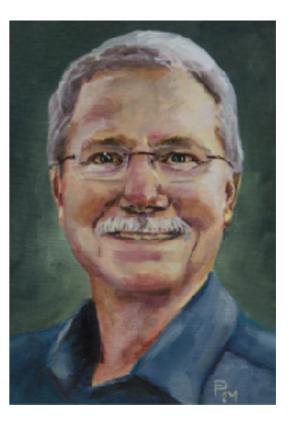
FLASY2024 - UCI

<u>Omar.Medina@ific.uv.es</u> <u>medinarhop@gmail.com</u>

In collaboration with...



José W.F. Valle IFIC - University of Valencia



Mu-Chun Chen University of California, Irvine

Stephen F. King University of Southampton

With much help from Xueqi, Xian-Gan, and Michael

Motivation (Flavor Puzzle)

Motivation (Flavor Puzzle)

Modular Flavor Symmetries 🗖

Quark-Lepton Mass Relations —(model independent derivation)

Modular Flavor Symmetries -

Quark-Lepton Mass Relations —(model independent derivation)

Modular Flavor Symmetries -

Quark-Lepton Mass Relations —(model independent derivation)

Modular Flavor Symmetries -

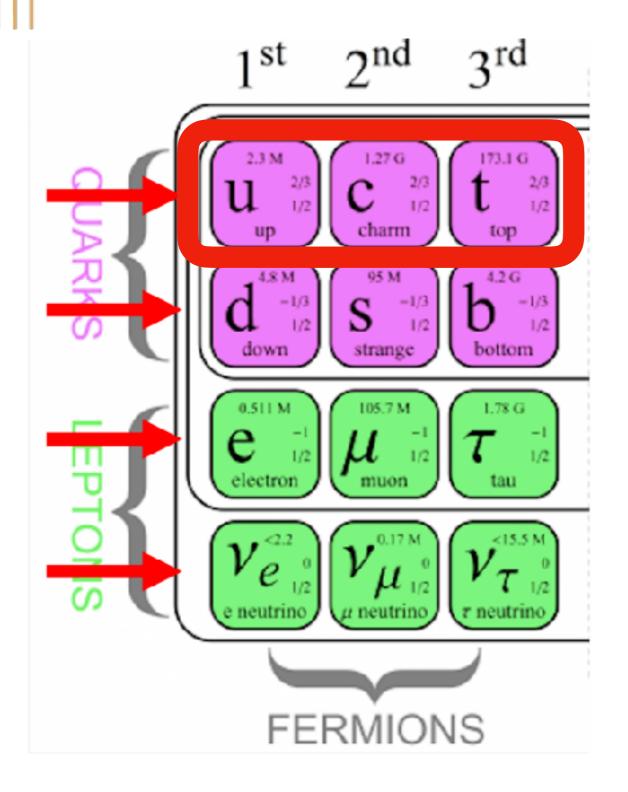
Quark-Lepton Mass Relations —(model independent derivation)

An example and a claim: Experimental hints of a quark-lepton mass relation

Motivation (The Flavor Puzzle)

1925-GelbRotBlau-Kandinsky

The Flavor Puzzle

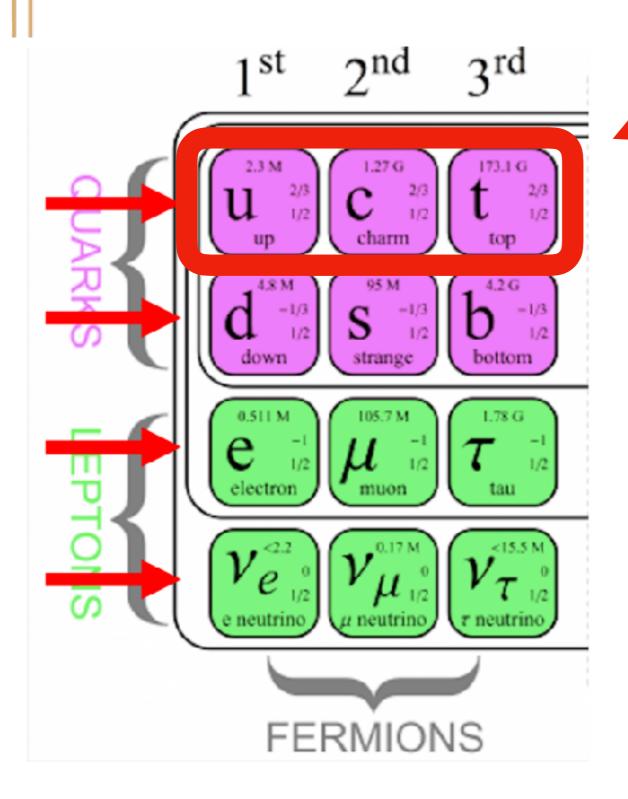


 $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y.$

Electroweak Sector

The SM gauge group is
generation blind, or in
other words
flavor universal

The Flavor Puzzle



They look like the same particle

 $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y.$

Electroweak Sector

The SM gauge group is
generation blind, or in
other words
flavor universal

Yukawa Interaction

Yukawa interaction

• Is **not** based on the gauge principle.

Yukawa Interaction

Yukawa interaction

- Is **not** based on the gauge principle.
- In the SM **breaks** the flavor symmetry

$$Y_{e}^{ij}\overline{L_{i}}\Phi e_{R_{j}} \qquad Y_{e} = \begin{pmatrix} y_{ee} & y_{e\mu} & y_{e\tau} \\ y_{\mu e} & y_{\mu\mu} & y_{\mu\tau} \\ y_{\tau e} & y_{\tau\mu} & y_{\tau\tau} \end{pmatrix}$$

Yukawa Interaction

Yukawa interaction

- Is **not** based on the gauge principle.
- In the SM **breaks** the flavor symmetry

$$Y_{e}^{ij}\overline{L}_{i}\Phi e_{R_{j}} \qquad Y_{e} = \begin{pmatrix} y_{ee} & y_{e\mu} & y_{e\tau} \\ y_{\mu e} & y_{\mu\mu} & y_{\mu\tau} \\ y_{\tau e} & y_{\tau\mu} & y_{\tau\tau} \end{pmatrix}$$

• The flavor symmetry breaking manifests in

$$m_{fermions}, U_{CKM}, V_{LMM}$$

Ist Piece of the Flavor Puzzle

• Large number of input parameters related to flavor

- Large number of input parameters related to flavor
- 5 of the SM come from gauge interactions

$$\{g_e, \, heta_W, \, g_s, \, v_h, \, m_h\}$$

Ist Piece of the Flavor Puzzle

- Large number of input parameters related to flavor
- 5 of the SM come from gauge interactions $\{g_e, \theta_W, g_s, v_h, m_h\}$
- 22 parameters come from the Yukawa sector

 $\{m_e, m_{\mu}, m_{\tau}, m_{\nu_1}, m_{\nu_2}, m_{\nu_3}, m_d, m_s, m_b, m_u, m_c, m_b\}$ $\{\theta_{12}^l, \theta_{13}^l, \theta_{23}^l, \delta^l, \phi_{12}, \phi_{13}, \theta_{12}^q, \theta_{13}^q, \theta_{23}^q, \delta^q\}$

Ist Piece of the Flavor Puzzle

- Large number of input parameters related to flavor
- 5 of the SM come from gauge interactions $\{g_e, \theta_W, g_s, v_h, m_h\}$
- 22 parameters come from the Yukawa sector

 $\{m_e, m_\mu, m_\tau, m_{\nu_1}, m_{\nu_2}, m_{\nu_3}, m_d, m_s, m_b, m_u, m_c, m_b\}$

 $\{\theta_{12}^l,\,\theta_{13}^l,\,\theta_{23}^l,\,\delta^l,\,\phi_{12},\,\phi_{13},\,\theta_{12}^q,\,\theta_{13}^q,\,\theta_{23}^q,\,\delta^q\}$

Huge hint for a more fundamental theory of flavor

2nd Piece of the Flavor Puzzle

• Large hierarchies among fermion masses

2nd Piece of the Flavor Puzzle

2nd Piece of the Flavor Puzzle

• Large hierarchies among fermion masses

$$M_e = v_{\Phi} \begin{pmatrix} y_{ee} & y_{e\mu} & y_{e\tau} \\ y_{\mu e} & y_{\mu\mu} & y_{\mu\tau} \\ y_{\tau e} & y_{\tau\mu} & y_{\tau\tau} \end{pmatrix}$$

Singular Values

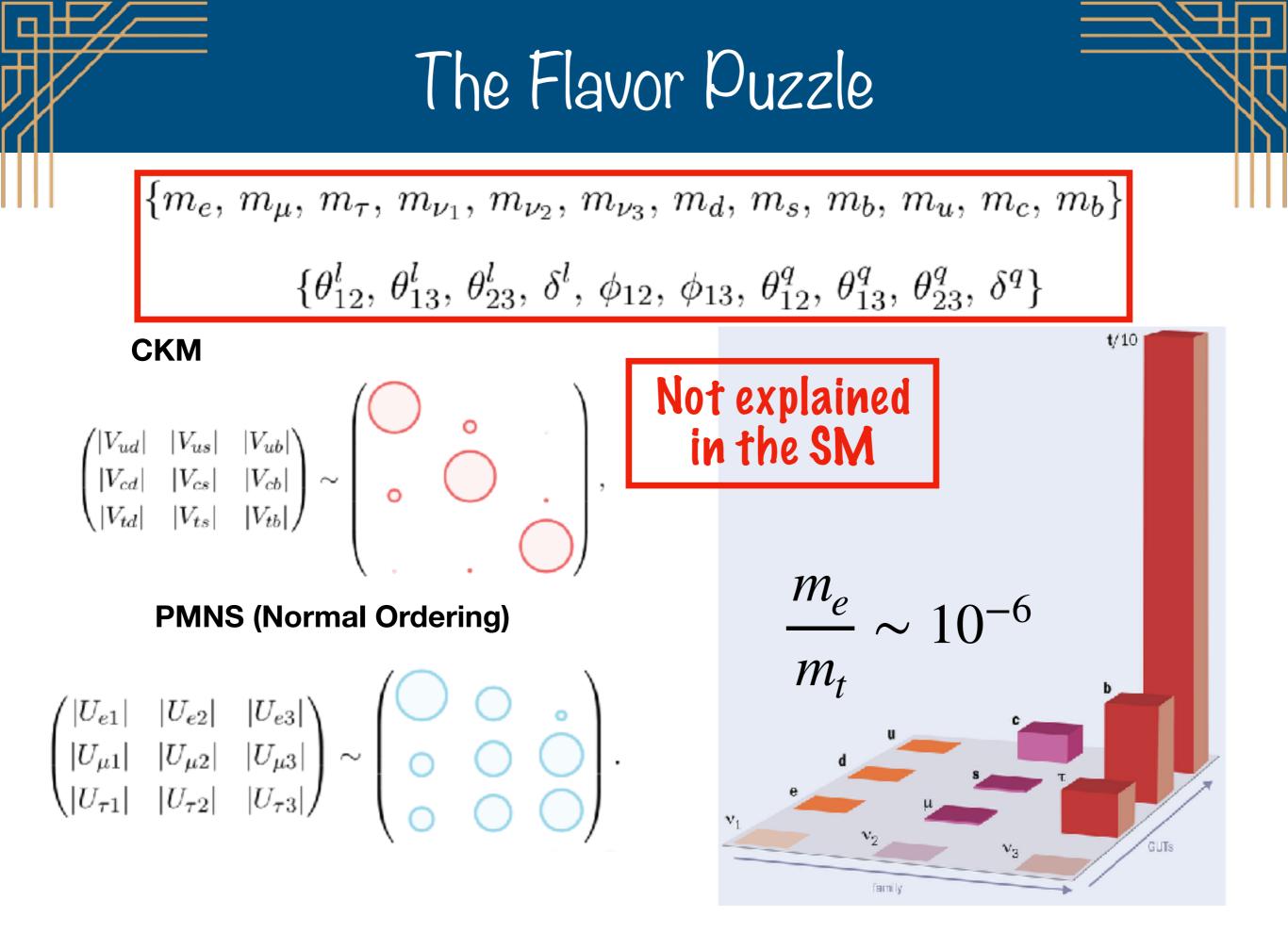
$$m_e, m_\mu, m_\eta$$

• Large hierarchies among fermion masses

$$M_{e} = v_{\Phi} \begin{pmatrix} y_{ee} & y_{e\mu} & y_{e\tau} \\ y_{\mu e} & y_{\mu\mu} & y_{\mu\tau} \\ y_{\tau e} & y_{\tau\mu} & y_{\tau\tau} \end{pmatrix} \xrightarrow{\text{Singular Values}} m_{e}, \quad m_{\mu}, \quad m_{\tau}$$

• Even among same class of fermions:

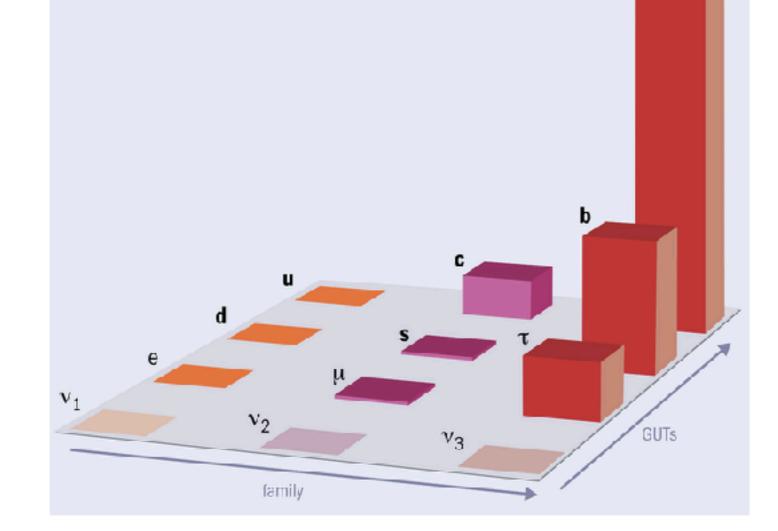
$$\frac{m_{\tau}}{m_{\tau}} = 1 \quad \frac{m_{\mu}}{m_{\tau}} \approx \frac{1}{17} \quad \frac{m_e}{m_{\tau}} \approx \frac{1}{3400}$$

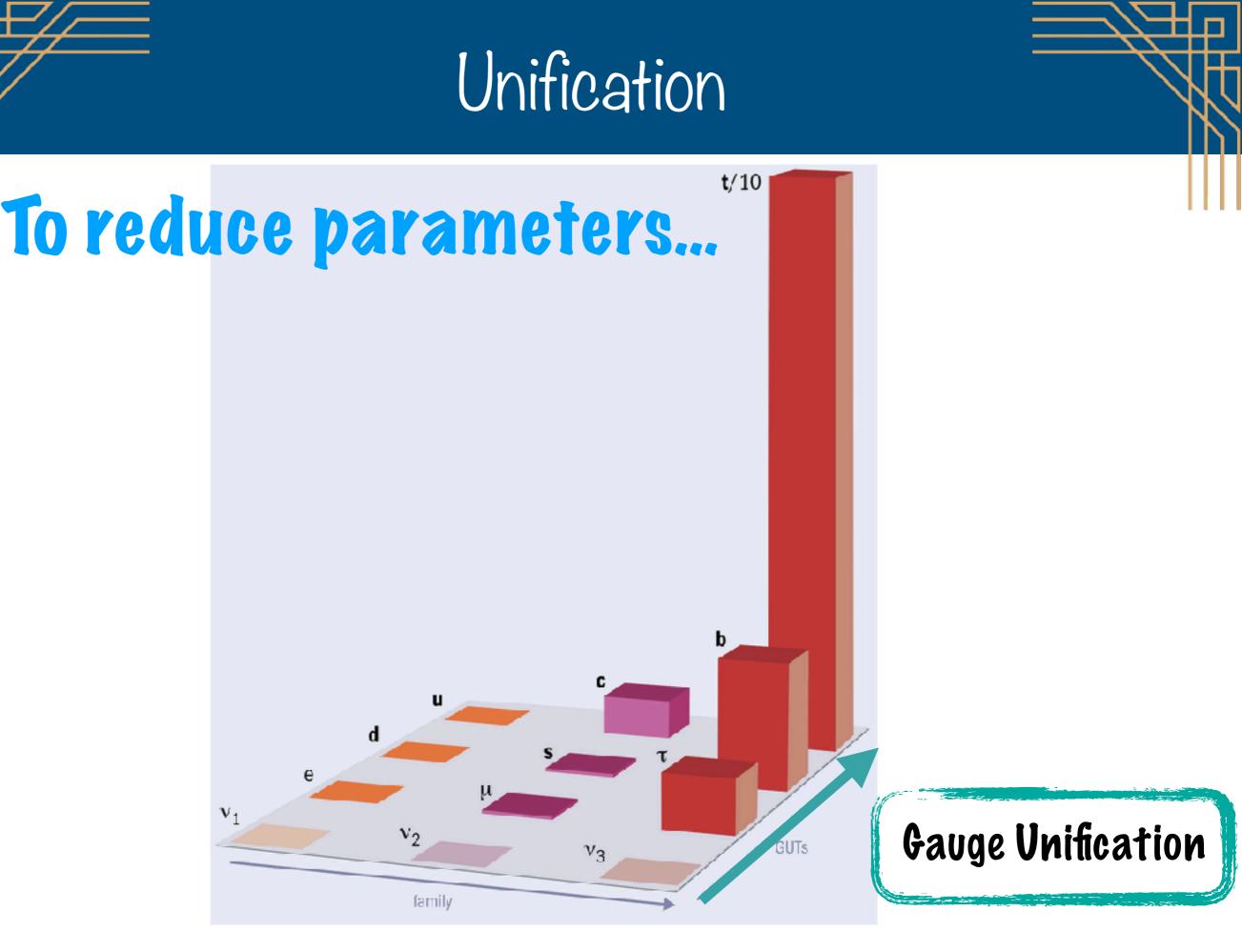


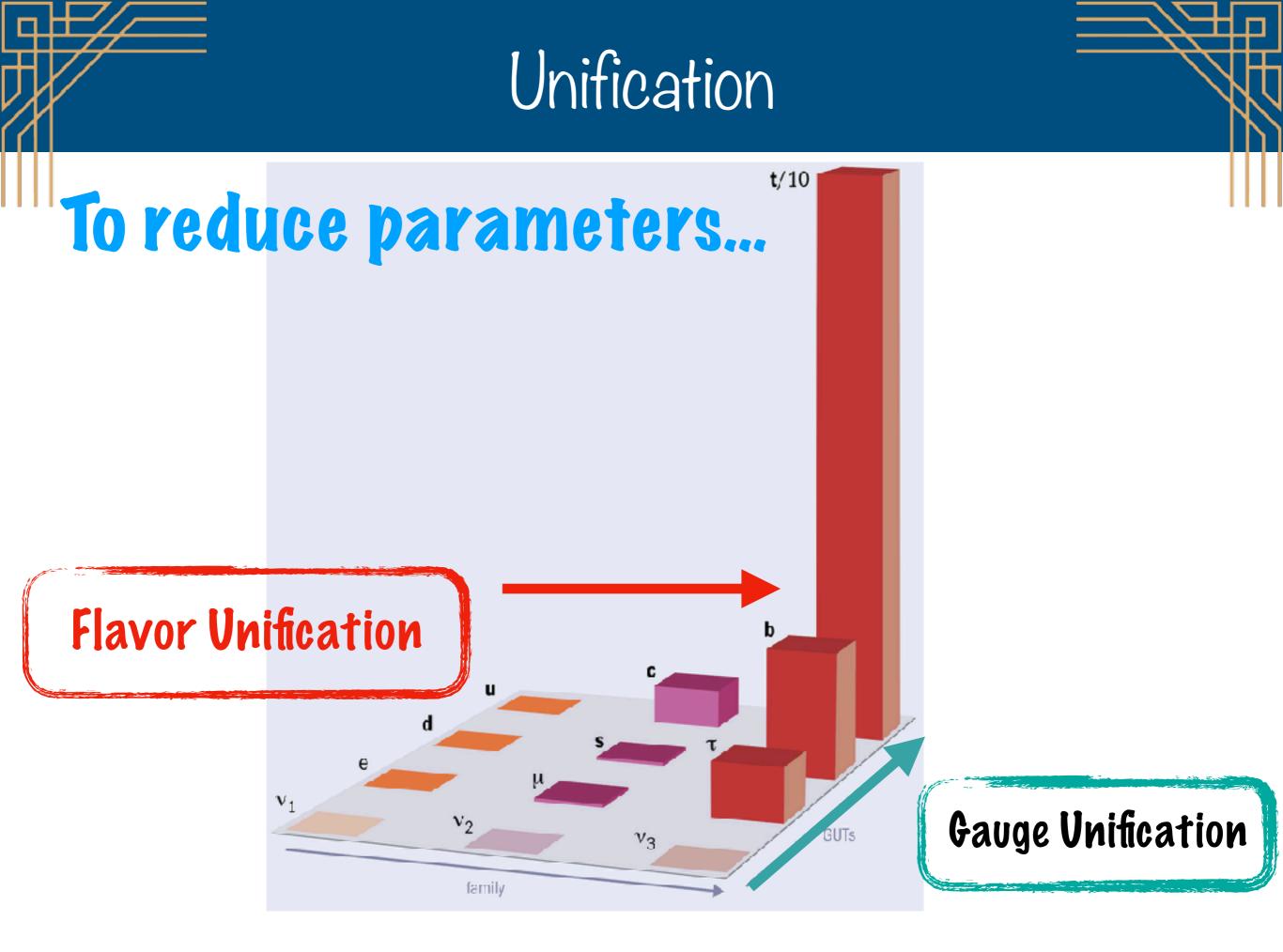


t/10

To reduce parameters...







A new symmetry at a higher energy scale

 $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \otimes G_{flavor}$ **Flavor Symmetry**

Flavor Symmetry

• A new symmetry at a higher energy scale

$$SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \otimes G_{flavor}$$

• This symmetry **must be broken** at lower energies

$$G_{Flavor} \implies m_{fermions}, V_{CKM}, U_{PMNS}$$

Flavor Symmetry

• A new symmetry at a higher energy scale

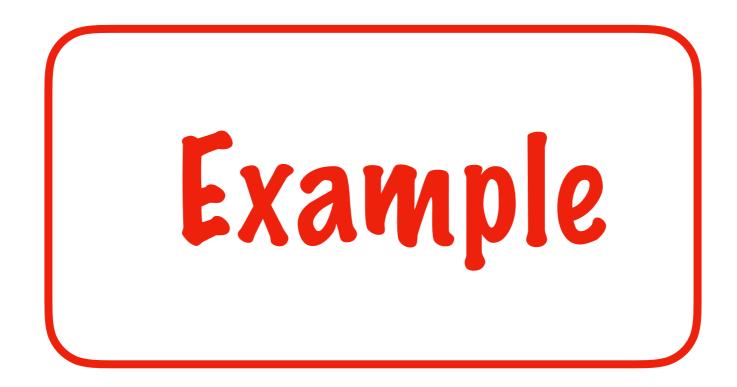
$$SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \otimes G_{flavor}$$

• This symmetry **must be broken** at lower energies

$$G_{Flavor} \implies m_{fermions}, V_{CKM}, U_{PMNS}$$

• Potentially explains the masses and mixings of quark and leptons by few parameters (through correlations)

 $\{m_e, m_{\mu}, m_{\tau}, m_{\nu_1}, m_{\nu_2}, m_{\nu_3}, m_d, m_s, m_b, m_u, m_c, m_b\}$ $\{\theta_{12}^l, \theta_{13}^l, \theta_{23}^l, \delta^l, \phi_{12}, \phi_{13}, \theta_{12}^q, \theta_{13}^q, \theta_{23}^q, \delta^q\}$



Discrete Flavor Symmetries

Example: The S_4 group has five irreps

1, 1', 2, 3, 3'

Putting different fields in packages!

Discrete Flavor Symmetries

Example: The S_{Δ} group has five irreps

1, 1', 2, 3, 3'

Putting different fields in packages!

$$L = \begin{pmatrix} L_e \\ L_\mu \\ L_\tau \end{pmatrix} \sim (1, 2, -1, 3)$$
$$\mathscr{L}_{S_4}' = \mathscr{L}_{S_4}$$

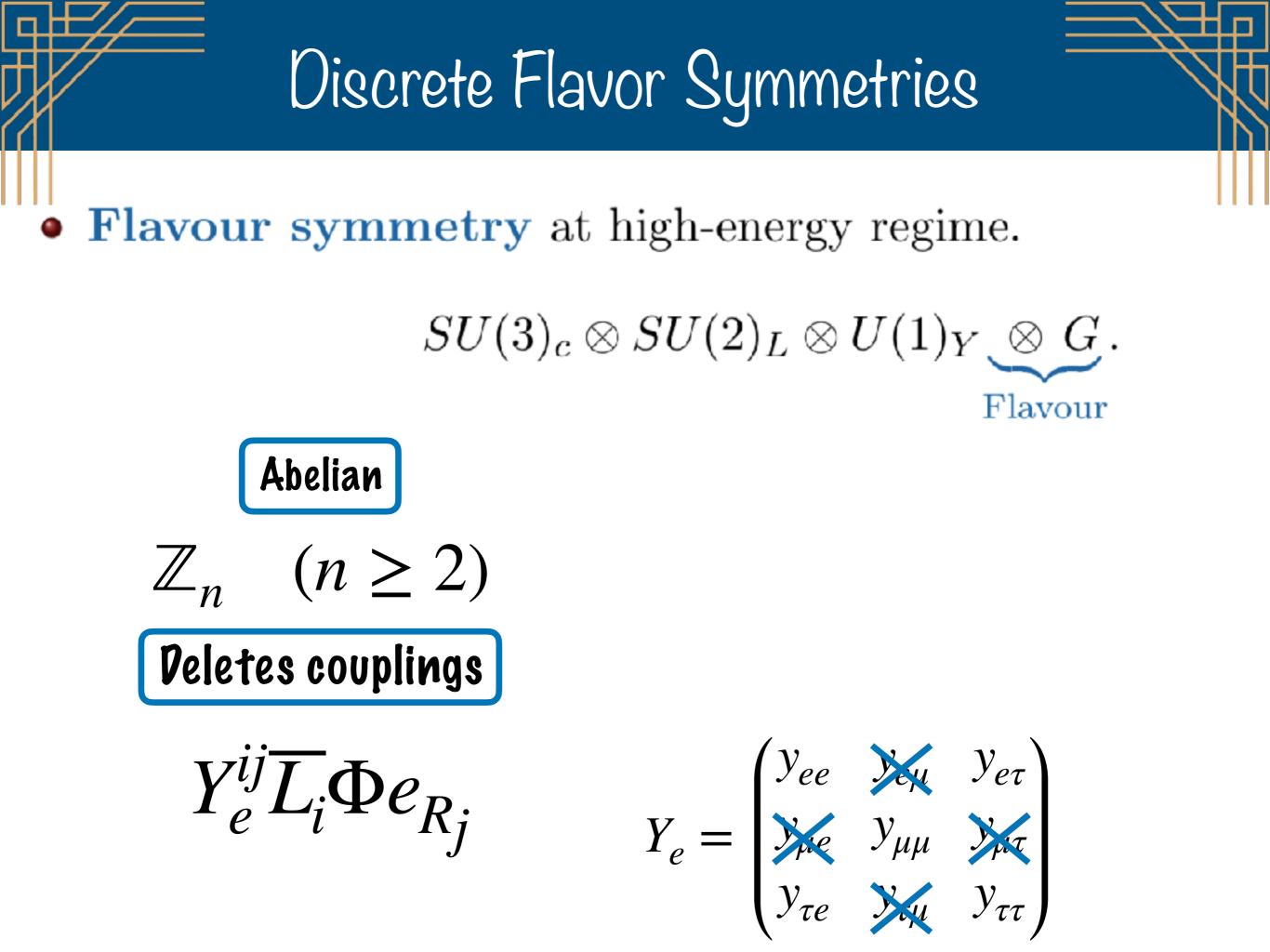
 \mathcal{N}_4

Discrete Flavor Symmetries

Example: The S_4 group has five irreps

1, 1', 2, 3, 3'

Putting different fields in packages!



• Flavour symmetry at high-energy regime.

$$SU(3)_c \otimes SU(2)_L \otimes U(1)_Y \bigotimes G.$$
Flavour
Abelian

$$Z_n \quad (n \ge 2)$$
Non-Abelian

$$A_4, S_3, T', \dots$$
Peletes couplings

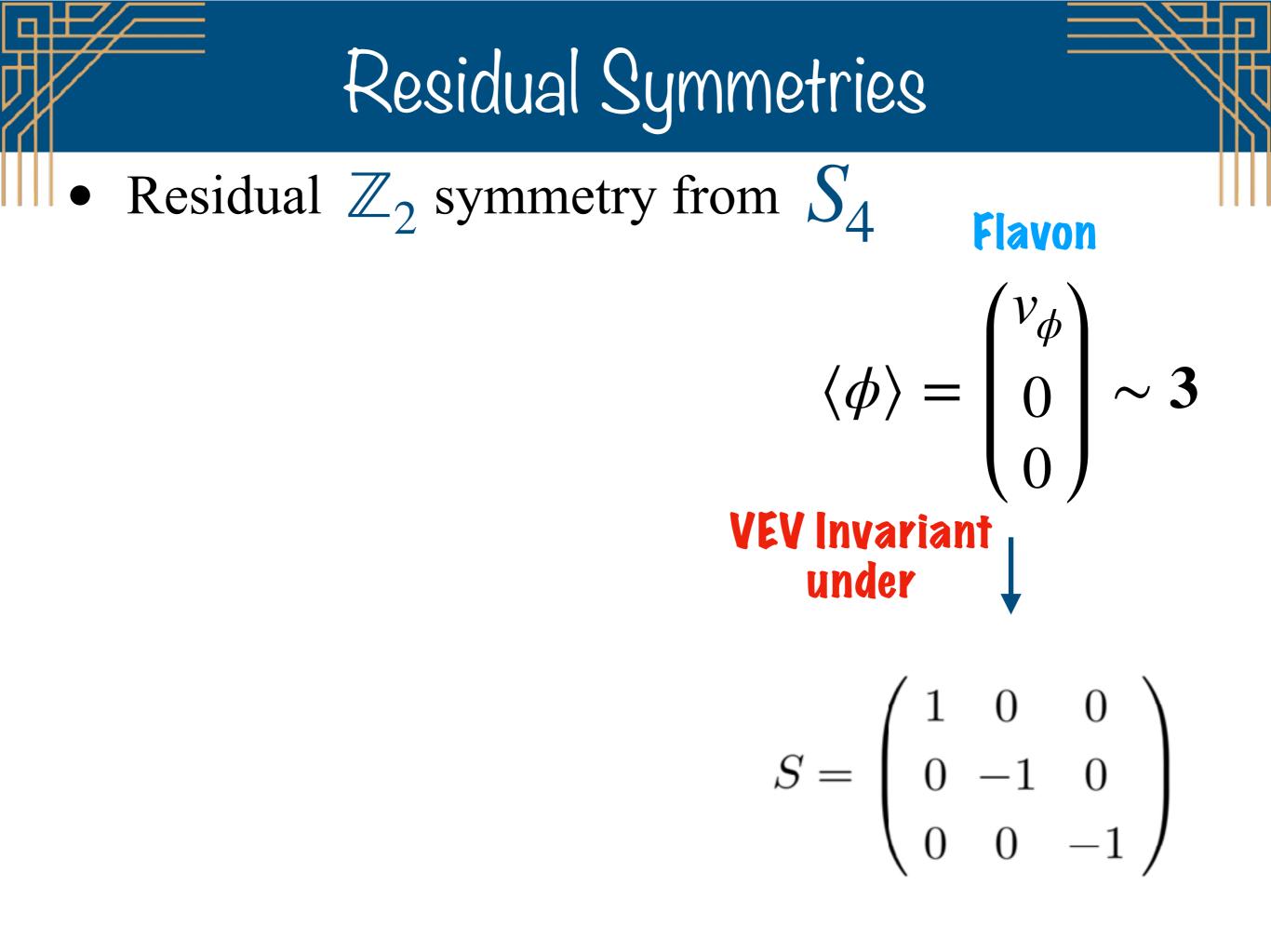
$$Y_e^{ij}\overline{L_i}\Phi e_{R_j}$$

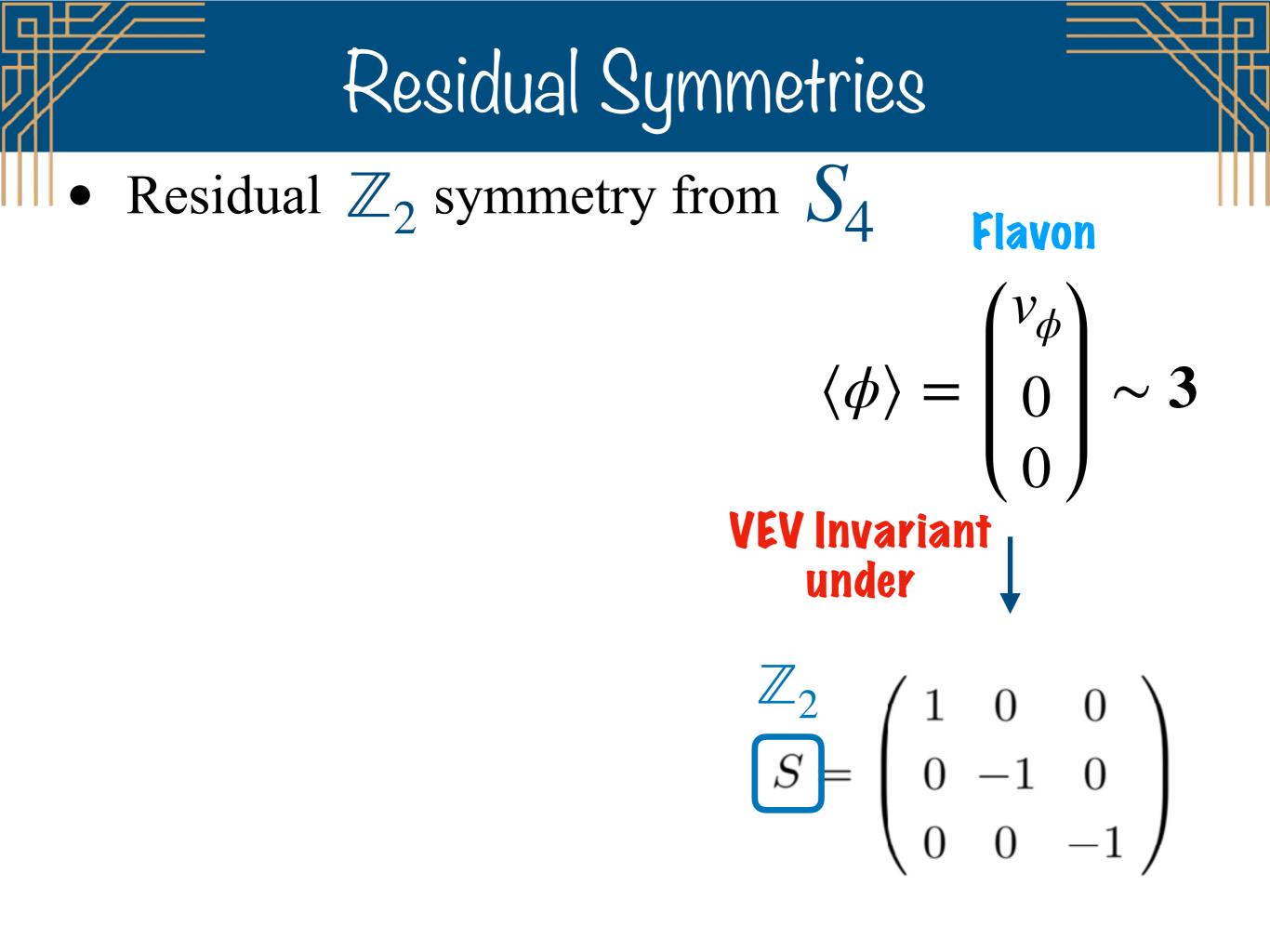
$$Y_e = \begin{pmatrix}y_e & y_{e\mu} & y_{e\tau} \\ y_{\mu e} & y_{\mu\mu} & y_{\mu\tau} \\ y_{\tau e} & y_{\tau\mu} & y_{\tau\tau} \end{pmatrix}$$

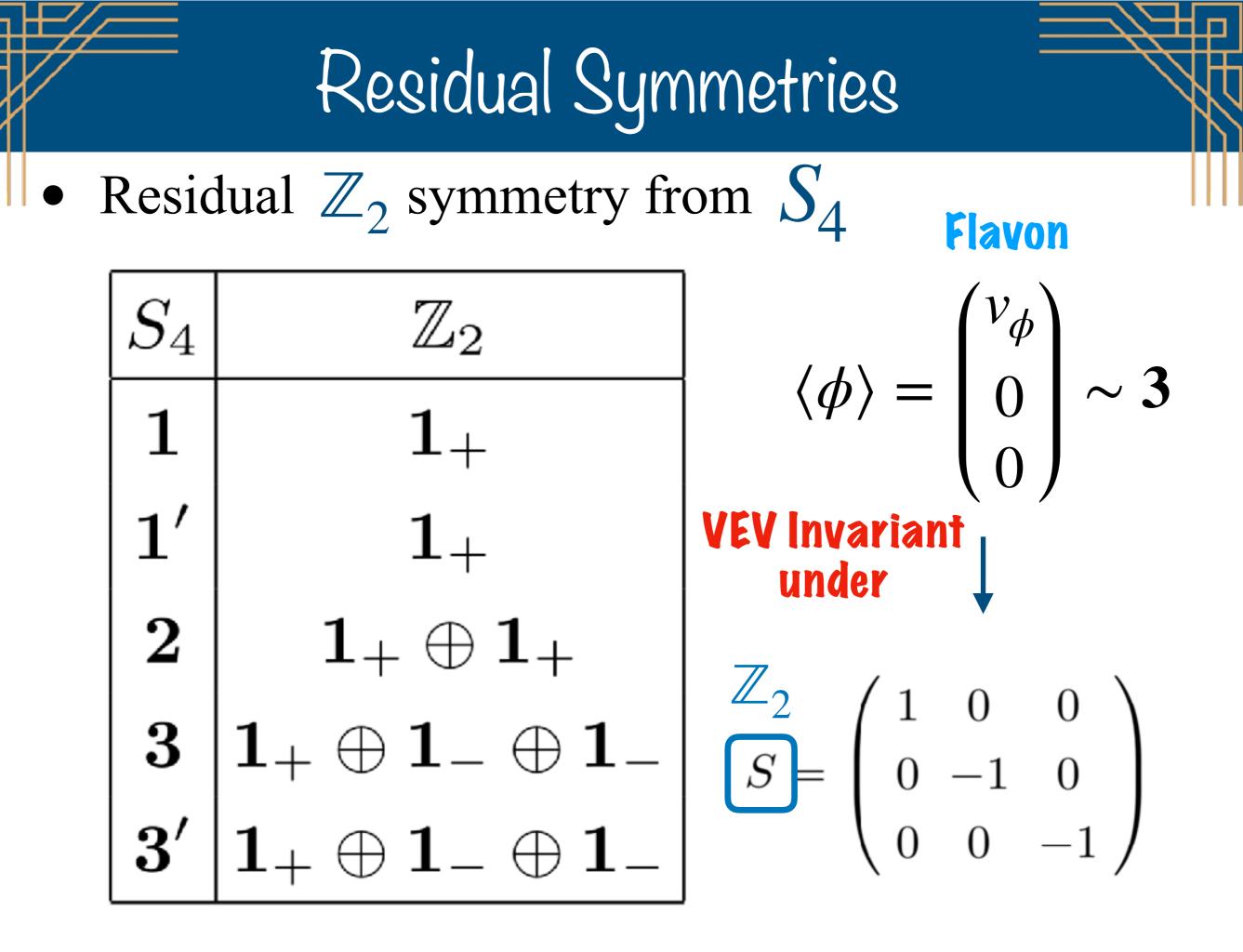
Residual Symmetries

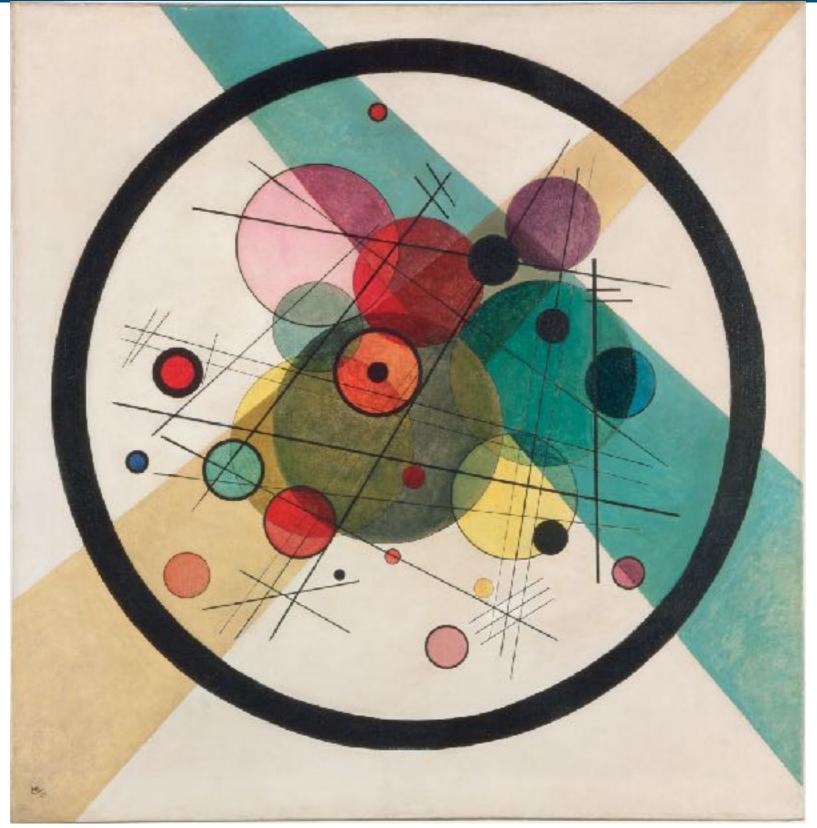
• Residual \mathbb{Z}_2 symmetry from S_4

Flavon $\langle \phi \rangle = \begin{pmatrix} v_{\phi} \\ 0 \\ 0 \\ 0 \end{pmatrix} \sim 3$









¹⁹²³⁻CirclesInACircle-Kandinsky

$SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \otimes SL(2,\mathbb{Z})$

• The modular group becomes the Flavor Symmetry

$SL(2,\mathbb{Z})\equiv\Gamma$

$$SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \otimes SL(2,\mathbb{Z})$$

• The modular group becomes the Flavor Symmetry

$SL(2,\mathbb{Z})\equiv\Gamma$

• It is the infinite discrete group

$$\gamma \in \Gamma$$
 $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $ad - cb = 1$

$$SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \otimes SL(2,\mathbb{Z})$$

• The modular group becomes the Flavor Symmetry

$SL(2,\mathbb{Z})\equiv\Gamma$

• It is the infinite discrete group

$$\gamma \in \Gamma \qquad \qquad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$ad - cb = 1$$

• With generators

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

[•]Modular symmetries have rich mathematical structure and fundamental origin:

Extra-Dimensional field theories

e.g. Almumin et al. (2021)

String Theory

e.g. Nilles and Ramos-Sanchez (2021)

^IModular symmetries have rich mathematical structure and fundamental origin:

> See Talks by Rukami, Xueqi, Xiang-Gan, and Saul

Modular symmetries have rich mathematical structure and fundamental origin:

See Talks by Rukami, Xueqi, Xiang-Gan, and Saul

• But the central idea is very simple

Yukawa Couplings are modular forms

 $Y(\tau)$

"Modular symmetries have rich mathematical structure" and fundamental origin:

> See Talks by Rukami, Xueqi, Xiang-Gan, and Saul

• But the central idea is very simple

Yukawa Couplings are modular forms

 $Y(\tau) \qquad \tau \in \mathbb{C} \quad \underset{\text{spurion}}{\text{Modulus}}$

"Modular symmetries have rich mathematical structure" and fundamental origin:

See Talks by Rukami, Xueqi, Xiang-Gan, and Saul

• But the central idea is very simple

Yukawa Couplings are modular forms $Y(\tau) \qquad \qquad \tau \in \mathbb{C} \quad \underset{\text{spurion}}{\text{Modulus}}$

• For example:

$$\begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \\ Y_3(\tau) \end{pmatrix} \longrightarrow m_{\nu} = \begin{pmatrix} 2Y_1(\tau) & -Y_3(\tau) & -Y_2(\tau) \\ -Y_3(\tau) & 2Y_2(\tau) & -Y_1(\tau) \\ -Y_2(\tau) & -Y_1(\tau) & 2Y_3(\tau) \end{pmatrix} \frac{v_u^2}{\Lambda}$$

Building a Modular Flavor Model

Effective (SUSY $\mathcal{N} = 1$) action

$$\mathcal{S} = \int d^4x d^2\theta d^2\bar{\theta} \,\mathscr{K}(\bar{\tau},\bar{\psi},\tau,\psi) + \int d^4x d^2\theta \,\mathscr{W}(\tau,\psi) + h \,.\, c \,,$$
Kähler Potential

Building a Modular Flavor Model

Effective (SUSY $\mathcal{N} = 1$) action

$$\mathcal{S} = \int d^4x d^2\theta d^2\bar{\theta} \,\mathcal{K}(\bar{\tau},\bar{\psi},\tau,\psi) + \int d^4x d^2\theta \,\mathcal{W}(\tau,\psi) + h \,.\, c \,,$$
Kähler Potential Superpotential

• The action is invariant under the modular group

 $\mathcal{S}L(2,\mathbb{Z}) \rightarrow \mathcal{S}$

Building a Modular Flavor Model

Effective (SUSY $\mathcal{N} = 1$) action

$$\mathcal{S} = \int d^4x d^2\theta d^2\bar{\theta} \,\mathscr{K}(\bar{\tau},\bar{\psi},\tau,\psi) + \int d^4x d^2\theta \,\mathscr{W}(\tau,\psi) + h \,.\,c\,,$$

The action is invariant under the modular group

$$\begin{array}{ccc} & SL(2,\mathbb{Z}) \\ & & & \mathcal{S} \\ \hline & & \text{Two kinds} \\ & & \text{of super fields} \end{array} & \begin{array}{c} & & Modulus \\ & & & \mathcal{T} \end{array} & \begin{array}{c} & Matter \\ & & & \mathcal{V} \end{array} \end{array}$$

Field Transformations

The transformation of the fields under $SL(2,\mathbb{Z})$

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

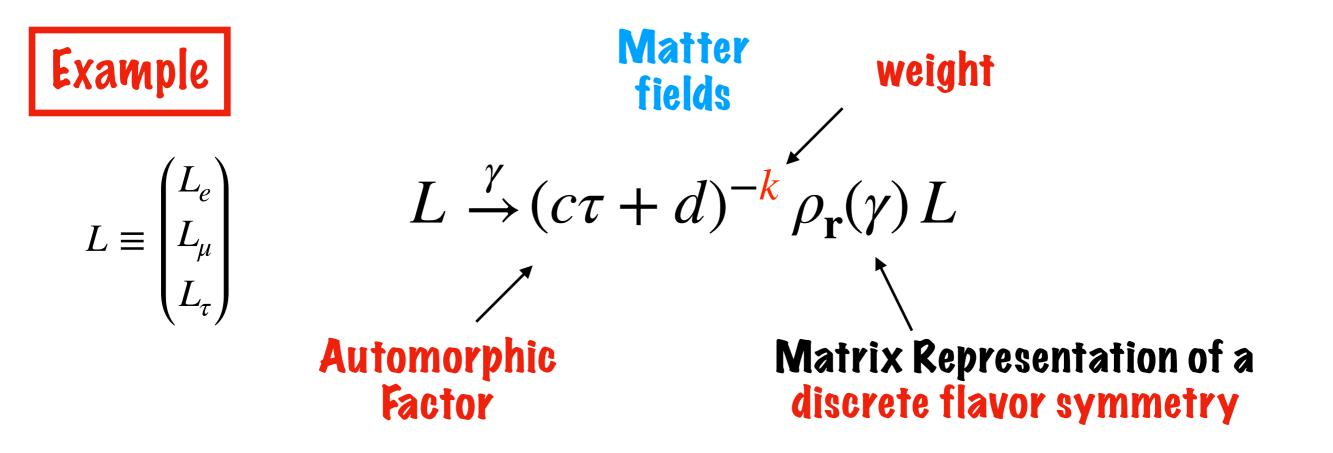
Modulus

$$\tau \xrightarrow{\gamma} \frac{a\tau + b}{c\tau + d}$$

Field Transformations

The transformation of the fields under $SL(2,\mathbb{Z})$

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$



Field Transformations

The transformation of the fields under $SL(2,\mathbb{Z})$

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Example

Matter fields

$$L \equiv \begin{pmatrix} L_e \\ L_\mu \\ L_\tau \end{pmatrix}$$

The

 $SL(2,\mathbb{Z})$

$$L \xrightarrow{\gamma} (c\tau + d)^{-k} \rho_{\mathbf{r}}(\gamma) L$$

So it contains a
fhe authomorphic
factor perceives
$$SL(2,\mathbb{Z})$$

$$SJ(2,\mathbb{Z})$$

$$SJ(2,\mathbb{Z})$$

Modular Invariance

Under these $SL(2,\mathbb{Z})$ transformations the superpotential must be invariant

$$\mathcal{W} \supset \sum_{i,k,\beta} \alpha_i \left(\psi \Phi_{u,d} \psi^c Y^{(k)}_{\mathbf{r}_{\beta}}(\tau) \right)_{\mathbf{1}}$$

Modular Invariance

Under these $SL(2,\mathbb{Z})$ transformations the superpotential must be invariant

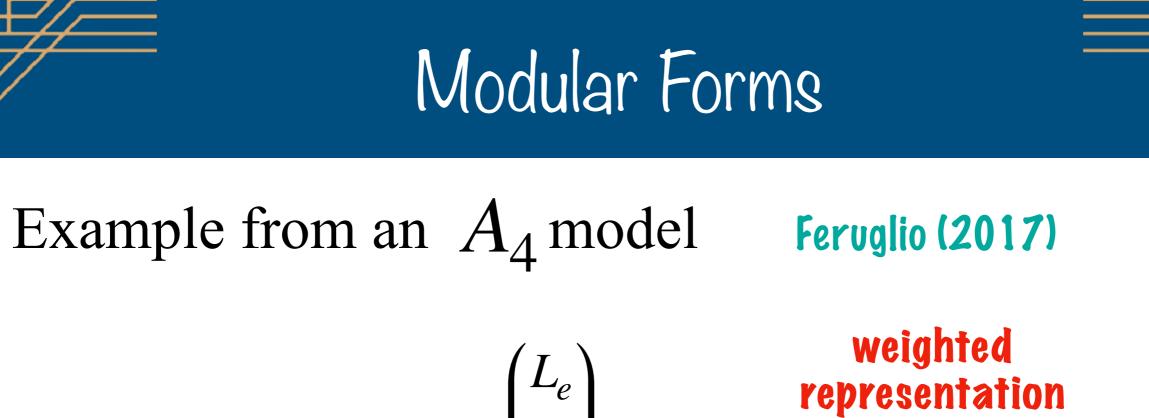
$$\mathcal{W} \supset \sum_{i,k,\beta} \alpha_i \left(\psi \Phi_{u,d} \psi^c Y^{(k)}_{\mathbf{r}_{\beta}}(\tau) \right)_{\mathbf{1}} ,$$

• Thus, Yukawa couplings are **modular form multiplets of the discrete flavor symmetry**

Yukawa Couplings

$$Y^{(\boldsymbol{k})}(\tau) \xrightarrow{\gamma} (c\tau + d)^{\boldsymbol{k}} \rho(\gamma) Y^{(\boldsymbol{k})}(\tau)$$

 $S_3, A_4, S_4, A_5,$

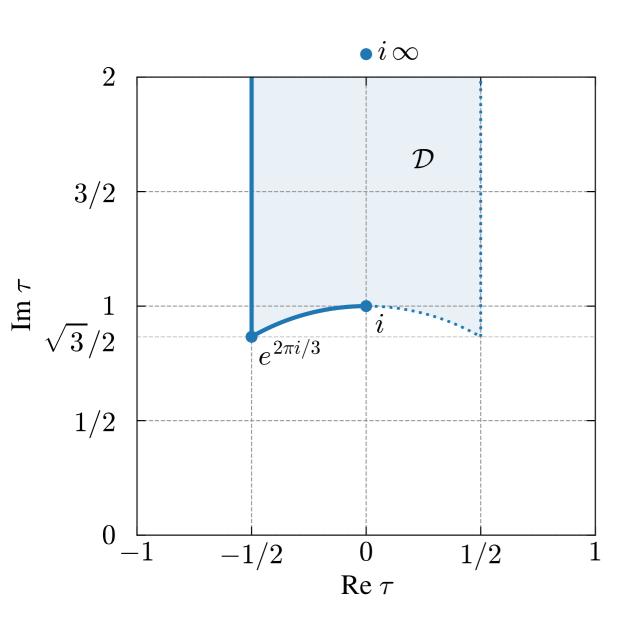


$$L \equiv \begin{pmatrix} L_e \\ L_e \\ L_\mu \\ L_\tau \end{pmatrix} \sim (\mathbf{3}, -1)$$

$$Y_{3}^{(2)}(\tau) = \begin{pmatrix} Y_{1}(\tau) \\ Y_{2}(\tau) \\ Y_{3}(\tau) \end{pmatrix} \longrightarrow m_{\nu} = \begin{pmatrix} 2Y_{1}(\tau) & -Y_{3}(\tau) & -Y_{2}(\tau) \\ -Y_{3}(\tau) & 2Y_{2}(\tau) & -Y_{1}(\tau) \\ -Y_{2}(\tau) & -Y_{1}(\tau) & 2Y_{3}(\tau) \end{pmatrix} \frac{v_{u}^{2}}{\Lambda}$$

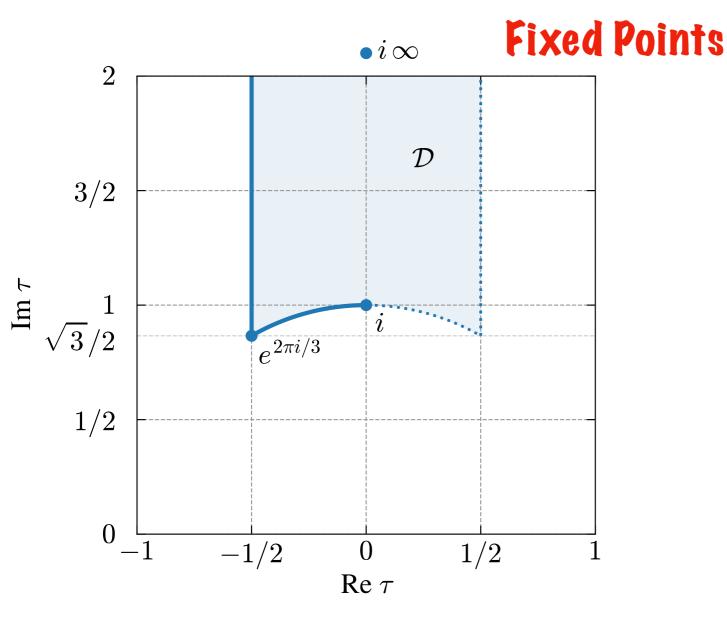
Symmetry points

 \mathcal{T}



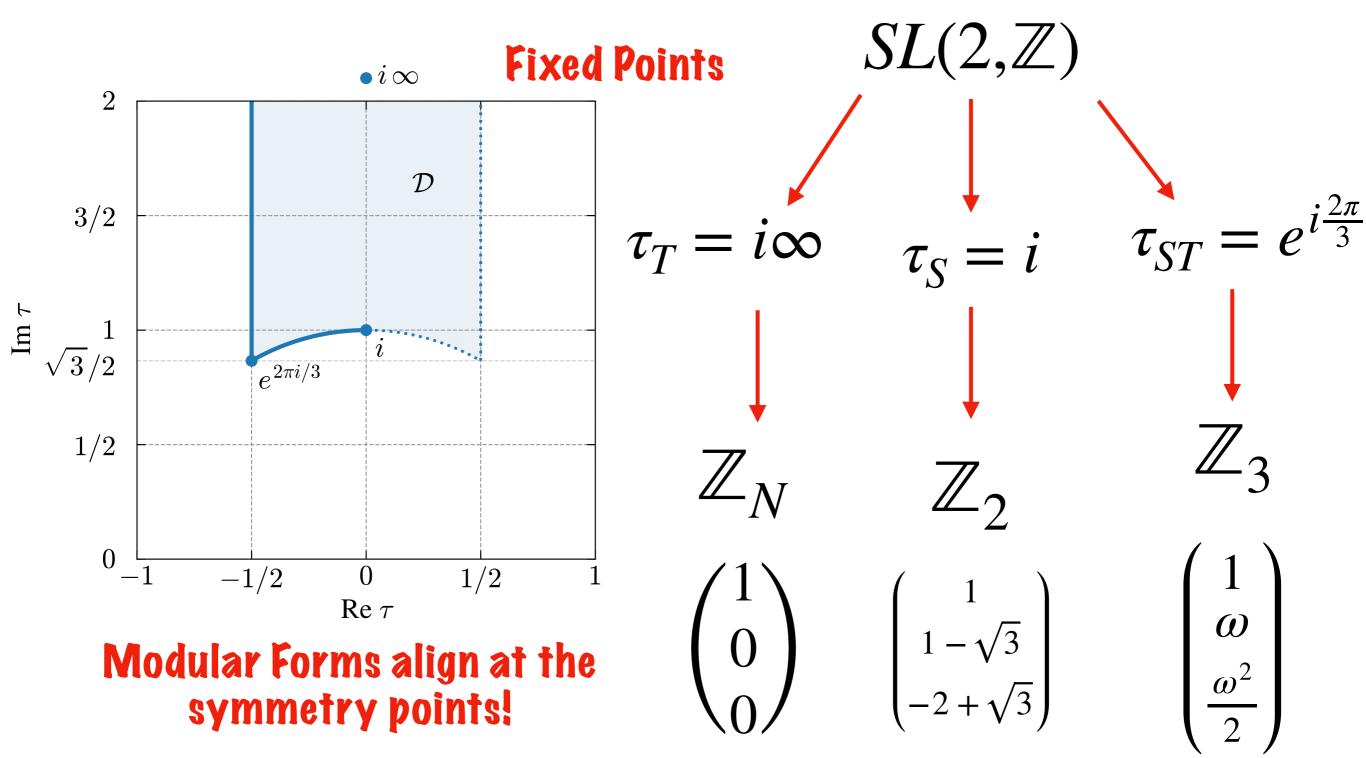
Symmetry points

Some values of $\, au \,$ lead to residual symmetries



Symmetry points

Some values of τ lead to residual symmetries



Vanishing Masses at the symmetry points

• At the symmetry points some masses can vanish

 $(m_{\tau}, m_{\mu}, m_{e}) \sim (m_{\tau}, 0, 0)$

Vanishing Masses at the symmetry points

• At the symmetry points some masses can vanish

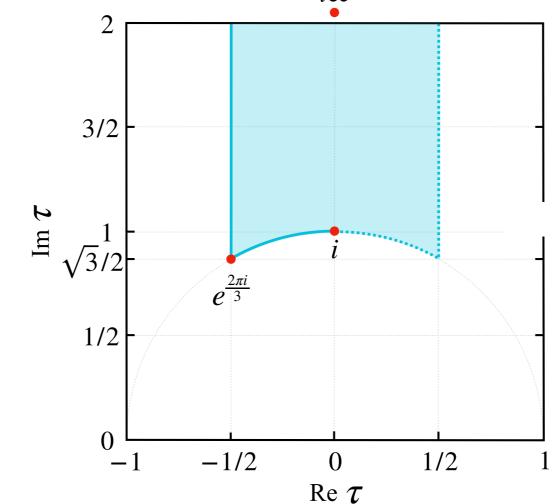
$$(m_{\tau}, m_{\mu}, m_{e}) \sim (m_{\tau}, 0, 0)$$

• Thus, masses can be generated from a deviation from a symmetry point $2^{i\infty}$

Deviation Parameter

 $\epsilon(\tau)$

Example



The so-called "Near critical behavior"

• Near the symmetry points we can obtain textures of **hierarchical masses**

$$m_{\nu} = \begin{pmatrix} 2Y_{1}(\tau) & -Y_{3}(\tau) & -Y_{2}(\tau) \\ -Y_{3}(\tau) & 2Y_{2}(\tau) & -Y_{1}(\tau) \\ -Y_{2}(\tau) & -Y_{1}(\tau) & 2Y_{3}(\tau) \end{pmatrix} \frac{v_{u}^{2}}{\Lambda}$$

The so-called "Near critical behavior"

• Near the symmetry points we can obtain textures of **hierarchical masses**

$$\epsilon(au)$$
 near $au \sim i\infty$

$$m_{\nu} \approx \begin{pmatrix} 2 & 18\epsilon^2 & 6\epsilon \\ 18\epsilon^2 & 12\epsilon & -1 \\ 6\epsilon & -1 & 36\epsilon^2 \end{pmatrix} \frac{v_u^2}{\Lambda}$$

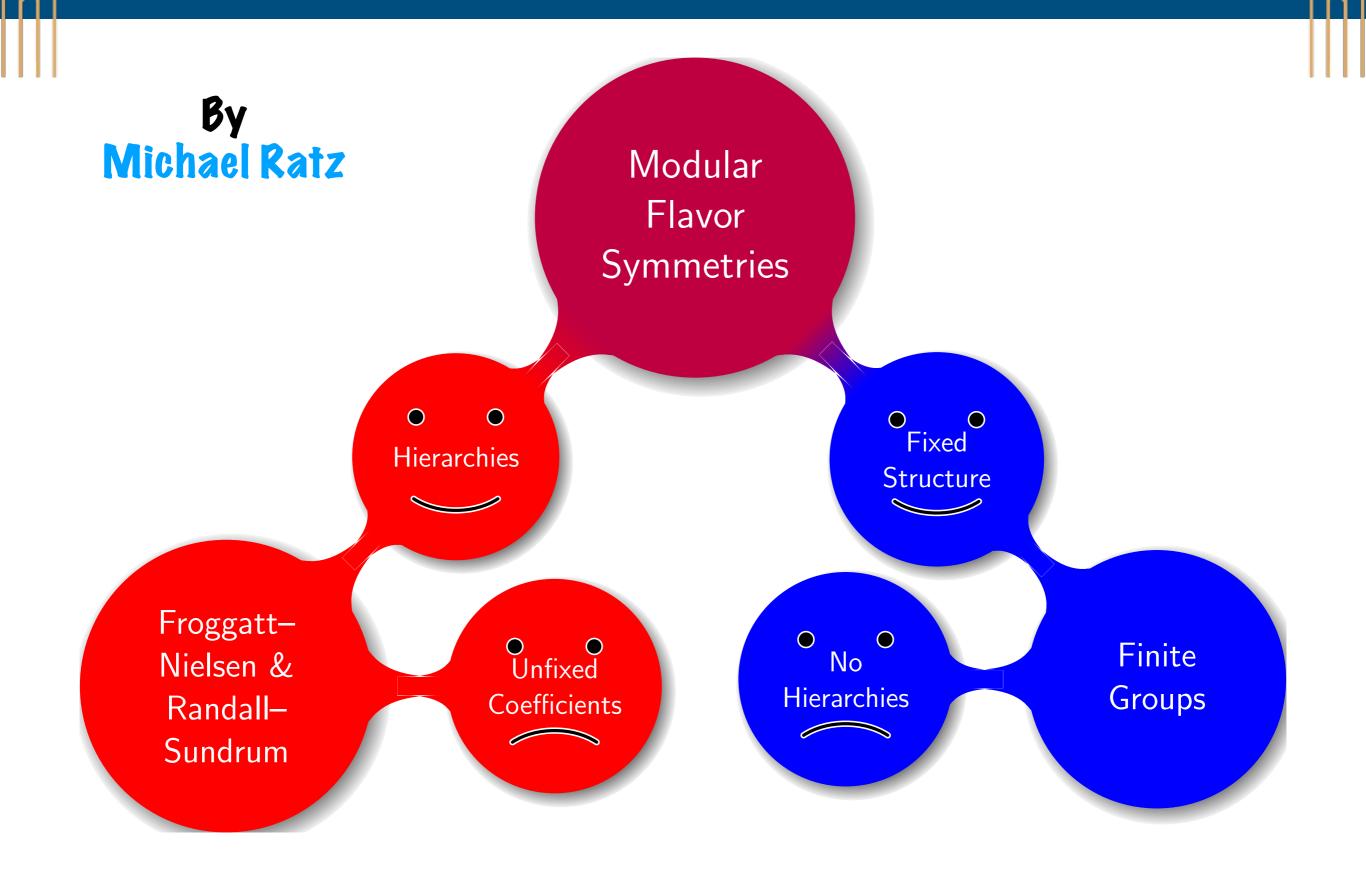
The so-called "Near critical behavior"

This might look like Froggatt-Nielsen but there is a crucial difference: Fixed coefficients (or reduced)

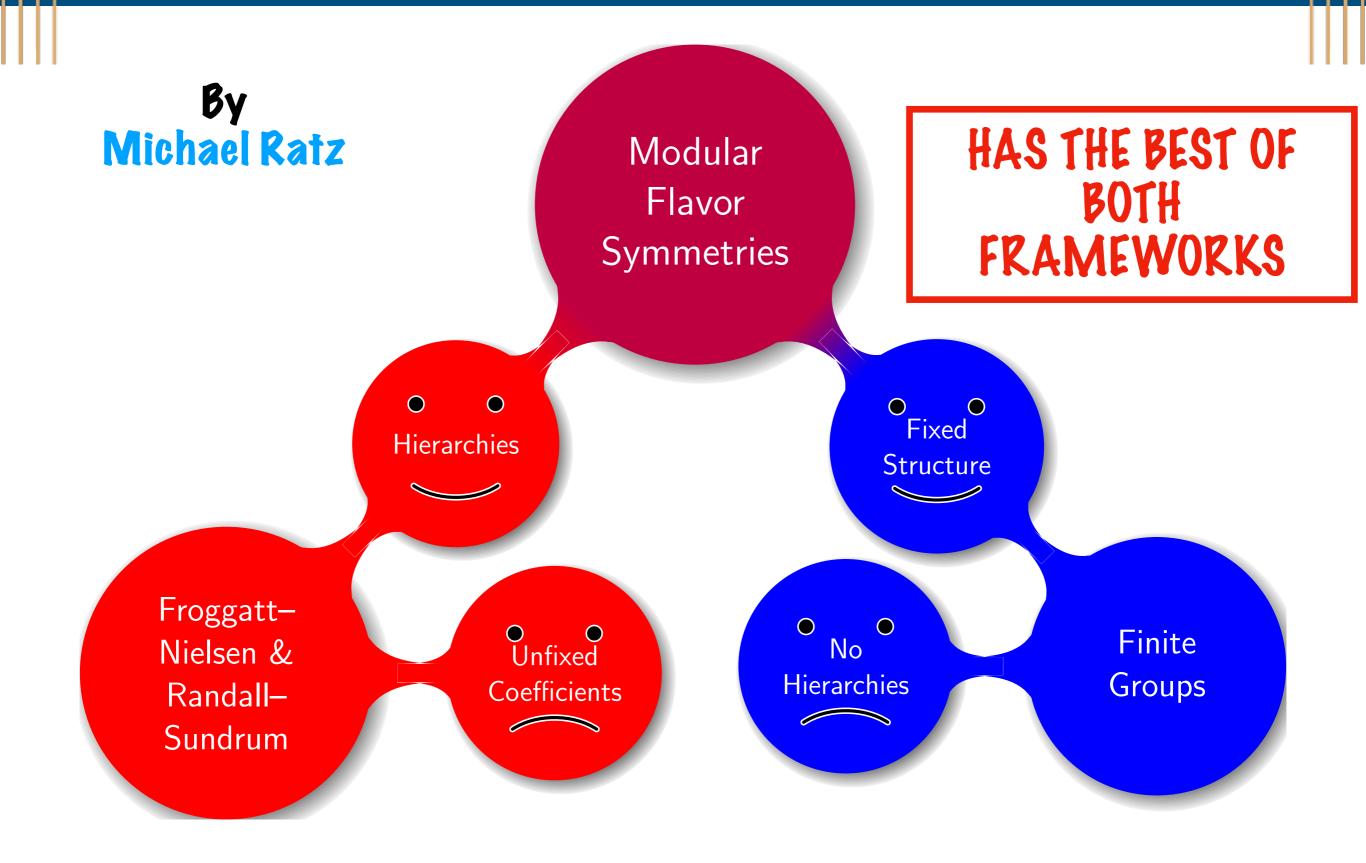
Can lead to actual predictions!

Example	2	$18\epsilon^2$	6 c	v 2
$m_{\nu} \approx$	$18\epsilon^2$	12 <i>€</i>	-1	$\frac{\nu_{\mathcal{U}}}{\Lambda}$
	6 6	-1	$36\epsilon^2$	1

What modular flavor symmetries?



What modular flavor symmetries?



Quark-Lepton mass relations

1926 - SeveralCircles-Kandinsky

Quark-Lepton mass relations

- This section follows: JHEP 02 (2024) 160
- Main result:

Viable and testable correlations among quark and lepton masses can emerge in modular symmetry models

Fixing notation

We will study the mass matrix of three generations of fermions:

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix}, \qquad \psi^c = \begin{pmatrix} \psi_1^c \\ \psi_2^c \\ \psi_3^c \end{pmatrix}$$

We will study the mass matrix of three generations of fermions:

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix}, \qquad \psi^c = \begin{pmatrix} \psi_1^c \\ \psi_2^c \\ \psi_3^c \end{pmatrix}$$

• In modular flavor models we have invariance under $SL(2,\mathbb{Z}) \longrightarrow \Gamma_N : S_3, A_4, \dots$

$$\mathcal{W} \supset \sum_{i,k,\beta} \alpha_i \left(\psi \Phi_{u,d} \psi^c Y^{(k)}_{\mathbf{r}_{\beta}}(\tau) \right)_1 ,$$

From the superpotential we obtain the mass matrix

$$\mathcal{W} \supset \sum_{i,k,\beta} \alpha_i \left(\psi \Phi_{u,d} \psi^c Y^{(k)}_{\mathbf{r}_{\beta}}(\tau) \right)_{\mathbf{1}} ,$$

From the superpotential we obtain the mass matrix

$$\mathcal{W} \supset \sum_{i,k,\beta} \alpha_i \left(\psi \Phi_{u,d} \psi^c Y^{(k)}_{\mathbf{r}_{\beta}}(\tau) \right)_{\mathbf{1}} ,$$

• We will define the dimensionful parameters

$$q_i \equiv \frac{\alpha_i}{\sqrt{a}} = \frac{1}{\sqrt{a}} \sqrt{\frac{1}{a}} \sqrt$$

The mass matrix will be a function of a_i and τ

 $\mathcal{W} \supset \psi M_{\psi}(a_i, \tau) \psi^c$

The mass matrix will be a function of a_i and τ

$$\mathcal{W} \supset \psi M_{\psi}(a_i, \tau) \psi^c$$

• From the mass matrix we can compute the masses as a function of the parameters

$$M_{\mu}(q_{1,\tau}) \longrightarrow M_{1} \leq M_{2} \leq M_{3}(a_{1,\tau})$$

$$By definition$$

It is more convenient to work with the Hermitian matrix

 $H_{\psi} = M_{\psi}M_{\psi}^{\dagger} = U_{\psi}D_{\psi}^{2}U_{\psi}^{\dagger}$ $D_{\mu}^{2} = D_{iag} \left(\frac{m_{1}^{2}}{m_{1}} \frac{m_{2}^{2}}{m_{3}^{2}} \right)$ Eigenvalues

Invariant Equations

Using H_{ψ} we can find three (basis invariant) equations for the masses in terms of the parameters

MASTER EQUATIONS

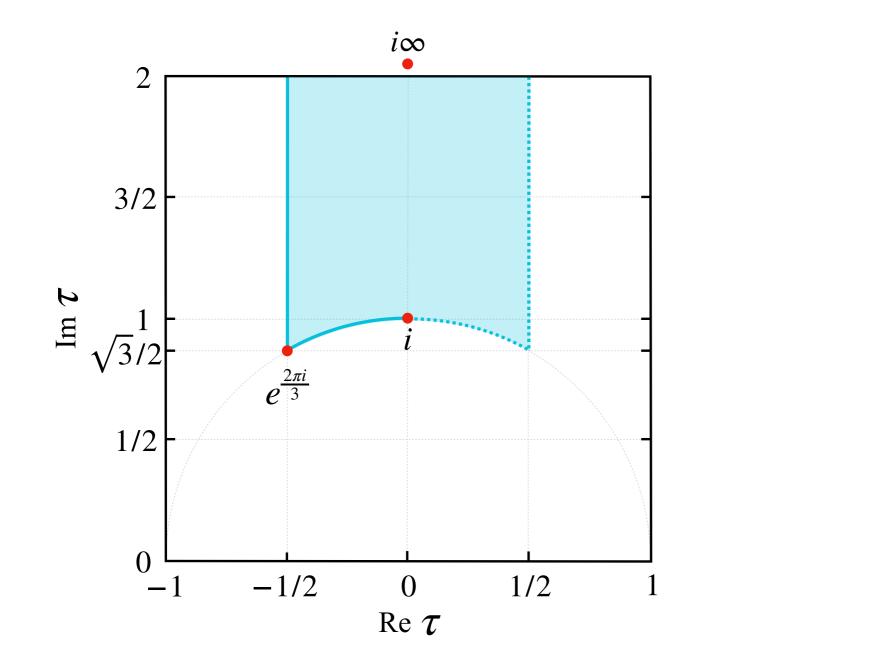
Three eqs. Thress masses

a)
$$Det[H_{\psi}] = f(a_{i}, \tau) = m_{1}^{2} m_{2}^{2} m_{3}^{2}$$

b) $\frac{1}{2} \left[Tr[H_{\psi}]^{2} - Tr[H_{\psi}^{2}]^{2} = g(a_{i}, \tau) = m_{1}^{2} m_{2}^{2} + m_{1}^{2} m_{3}^{2} + m_{2}^{2} + m_{3}^{2} + m_{3}^{2} + m_{2}^{2} + m_{3}^{2} + m_{2}^{2} + m_{3}^{2} + m_{2}^{2} + m_{3}^{2} + m_{2}^{2} + m_{3}^{2} + m_{3}^{2} + m_{2}^{2} + m_{3}^{2} + m_{3}^{$

Invariant Equations

We assume closeness to a symmetry point (near critical behavior)



Deviation Parameter

 $\epsilon(\tau)$

Instead of

In **some model** the following two conditions should satisfied **to obtain a mass relation**

- In **some model** the following two conditions should satisfied **to obtain a mass relation**
- C1: The mass matrix has at most two coefficients

$$a_1, a_2 \Longrightarrow M_{\psi}(a_1, a_2, \epsilon)$$

- In **some model** the following two conditions should satisfied **to obtain a mass relation**
- C1: The mass matrix has at most two coefficients

$$a_1, a_2 \Longrightarrow M_{\psi}(a_1, a_2, \epsilon)$$

• C2: At least one mass is generated as a deviation from a symmetry point

$$\lim_{\epsilon \to 0} Det[H_{\psi}] = 0$$

If in **some model** these two conditions are satisfied' for two species of fermions, **there will be a mass relation Example**

Charged Leptons

C1

 $M_{\rho}(a_1^e, a_2^e, \epsilon)$

Down-quarks $M_d(a_1^d, a_2^d, \epsilon)$

$\lim_{\epsilon \to 0} Det[H_e] = 0$

 $\lim_{\epsilon \to 0} Det[H_d] = 0$

We can compute the general form of the mass relations

MOPEL INDEPENDENT

• If C1 and C2 are satisfied, we have

Expanding
$$Det[H_{\psi}(a_{1},a_{2},6)] = \sum_{m=0}^{\infty} f_{m}(a_{1},a_{2})|\epsilon|$$

We can compute the general form of the mass relations

MOPEL INDEPENDENT

• If C1 and C2 are satisfied, we have

Expanding
$$Det[H_{\psi}[a_{1},a_{2},6)] = \sum_{m=0}^{\infty} f_{m}(a_{1},a_{2})|\epsilon|$$

No epsilon independent term

$$f_0(a_1, a_2) = 0$$

If C1 and C2 are satisfied, we can write

$$Det \left[H_{uv}(a_{1}, a_{2}, \epsilon) \right] = m_{1}^{2} m_{2}^{2} m_{3}^{2} = f_{n}(a_{1}, a_{2}) \left[\epsilon \right]^{n} + O(|\epsilon|^{n+1})$$

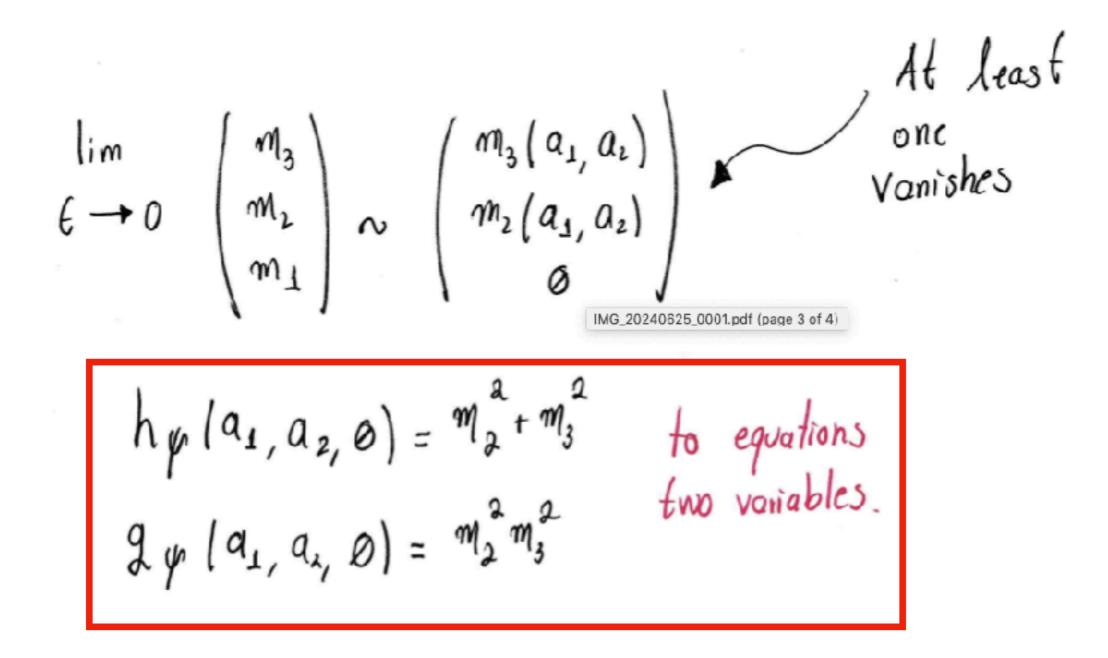
If C1 and C2 are satisfied, we can write

$$Det \left[H_{\varphi}(a_{1}, a_{2}, \epsilon) \right] = m_{1}^{2} m_{2}^{2} m_{3}^{2} \equiv f_{\eta}(a_{1}, a_{2}) \left| \epsilon \right|^{\eta} + \mathcal{O}(|\epsilon|^{\eta+1})$$

$$f_{\eta}(a_{1}, a_{2}) \text{ is the leading term polynomial}$$

$$m_1^2 m_2^2 m_3^2 = f_\eta(a_1, a_2) |\epsilon|^\eta$$

At the symmetry point... $\epsilon \to 0$



Solving this equation system

$$h_{\varphi}(a_{1}, a_{2}, \theta) = m_{2}^{a} + m_{3}^{2}$$
 to equations
 $g_{\varphi}(a_{1}, a_{2}, \theta) = m_{2}^{2} m_{3}^{2}$ two variables.

Solving this equation system

$$h_{\psi}(a_{1}, a_{2}, 0) = m_{2}^{a} + m_{3}^{2}$$
 to equations
 $g_{\psi}(a_{1}, a_{2}, 0) = m_{2}^{2} m_{3}^{2}$ two variables.

• We find solutions at the symmetry point $\epsilon \to 0$

$$\tilde{a}_1(m_2, m_3), \ \tilde{a}_2(m_2, m_3)$$

Solving this equation system

$$h_{\psi}(a_{1}, a_{2}, 0) = m_{2}^{a} + m_{3}^{2}$$
 to equations
 $g_{\psi}(a_{1}, a_{2}, 0) = m_{2}^{a} m_{3}^{2}$ two variables.

• We find solutions at the symmetry point $\epsilon \to 0$

$$\tilde{a}_1(m_2, m_3), \, \tilde{a}_2(m_2, m_3)$$

 $m_1^2 m_2^2 m_3^2 = f_{\eta}(\tilde{a}_1, \tilde{a}_2) |\epsilon|^{\eta} \implies m_1^2 m_2^2 m_3^2 \equiv F_{\eta}(m_2, m_3) |\epsilon|^{\eta}$

Using these solutions we find an approximate mass correlation

$$\frac{m_1^2 m_2^2 m_3^2}{F(m_2, m_3)} \approx |\epsilon|^{\eta}$$

• The prediction in a specific model is the polynomial

$$F(m_2, m_3)$$

Using these solutions we find an approximate mass correlation

$$\frac{m_1^2 m_2^2 m_3^2}{F(m_2, m_3)} \approx \|\epsilon\|^{\eta}$$

Homogeneous

The prediction in a specific model is the polynomial
 Order 6 polynomial

 $F(m_2, m_3)$

Using these solutions we find an approximate mass correlation

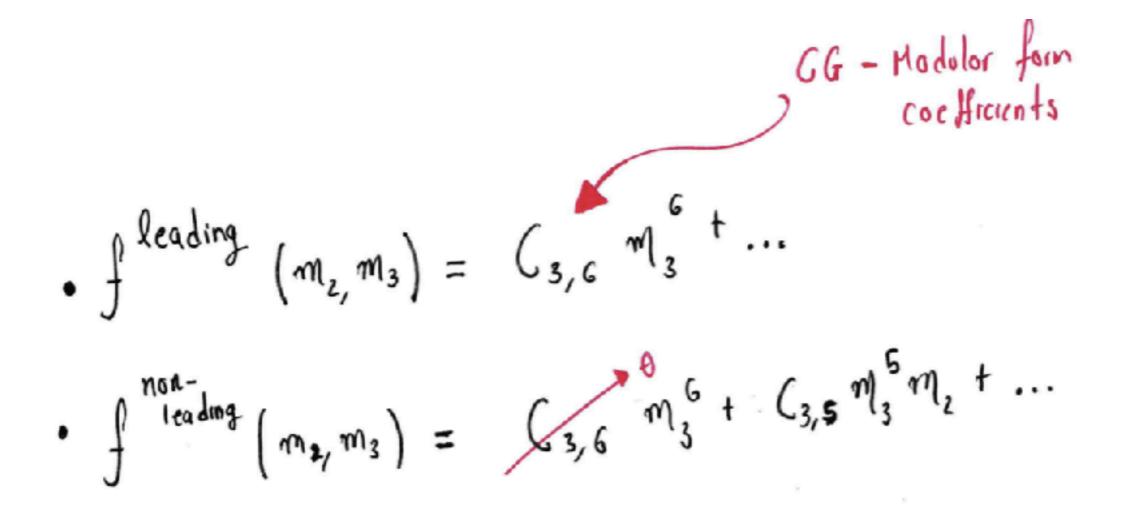
$$\frac{m_1^2 m_2^2 m_3^2}{F(m_2, m_3)} \approx \|\epsilon\|^{\eta}$$

• In a given model the coefficients are determined by the specific modular symmetry

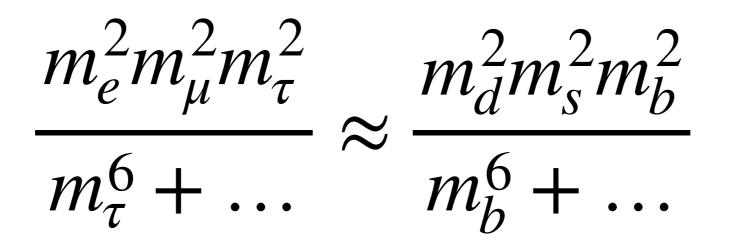
$$F(m_2, m_3) = C_{3,6}m_3^6 + C_{3,5}m_3^5m_2\cdots$$

In particular there is a class that are appealing

$$F^{leading}(m_2, m_3)$$



Interesting Fact: Experimental data is compatible' with a F-leading correlation between



Highly non-trivial

In our paper we explicitly obtain four relations in an S_4 modular symmetry model

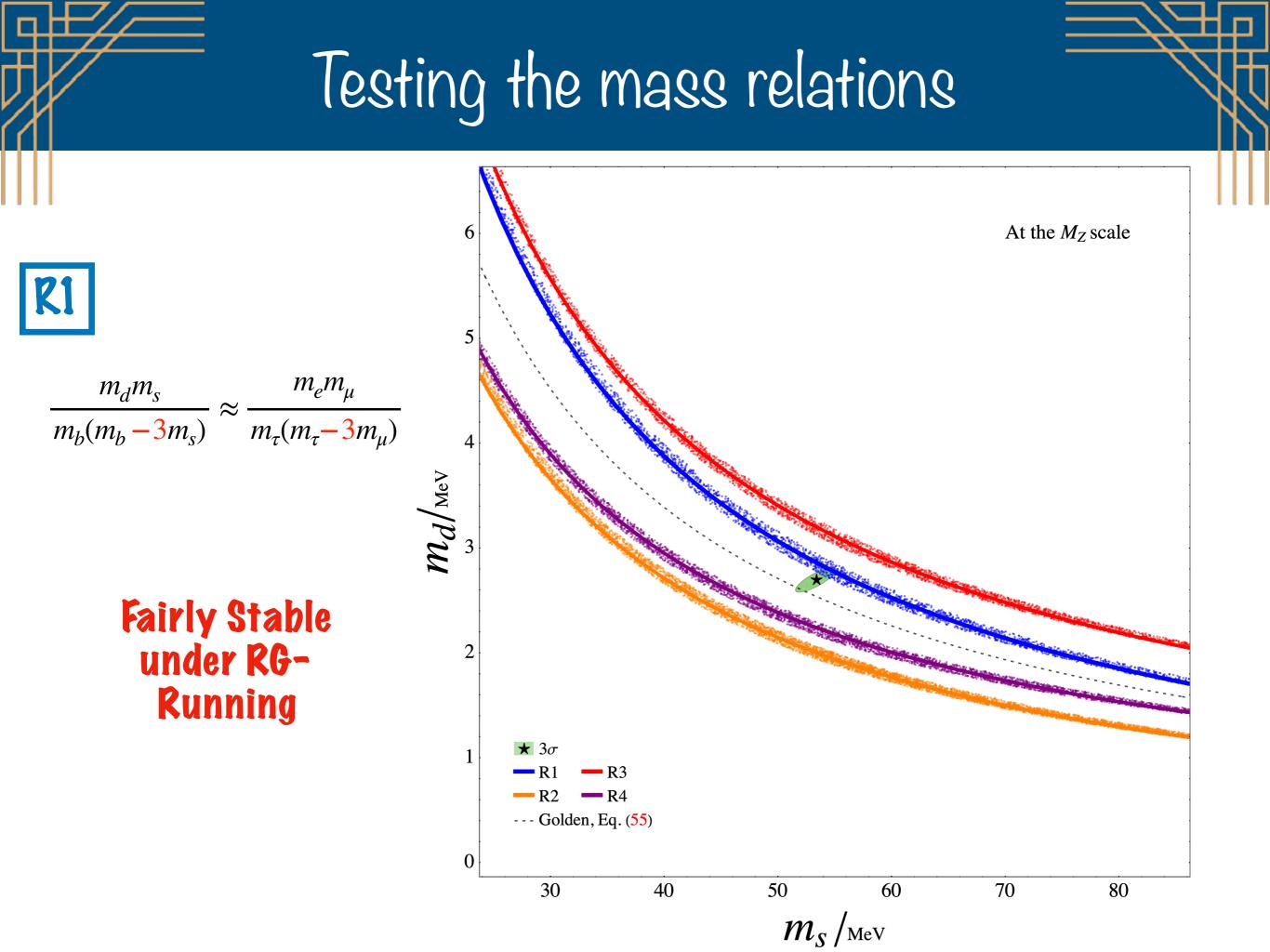
$$\frac{m_d m_s}{m_b (m_b \pm 3m_s)} \approx |\epsilon|^4 \approx \frac{m_e m_\mu}{m_\tau (m_\tau \pm 3m_\mu)}$$

In our paper we explicitly obtain four relations in an S_4 modular symmetry model

$$\frac{m_d m_s}{m_b (m_b \pm 3m_s)} \approx |\epsilon|^4 \approx \frac{m_e m_\mu}{m_\tau (m_\tau \pm 3m_\mu)}$$

• When comparing against data, one fits better

$$\frac{m_d m_s}{m_b (m_b - 3m_s)} \approx \frac{m_e m_\mu}{m_\tau (m_\tau - 3m_\mu)}$$



Different mass-relations for different modular groups

mass relations can allow to test modular flavor symmetries

For more details...

JHEP 02 (2024) 160

- We review the need for a fundamental theory of flavor
- We discusses modular flavor symmetries $SL(2,\mathbb{Z})$

Minimal Parameters

Natural Hierarchies

• One generic prediction are mass-relations

$$\frac{m_1^2 m_2^2 m_3^2}{F(m_2, m_3)} \approx |\epsilon|^{\eta}$$

