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An example and a claim:  
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• Yukawa interaction  

• Is not based on the gauge principle. 

• In the SM breaks the flavor symmetry 

• The flavor symmetry breaking manifests in

Ye =
yee yeμ yeτ
yμe yμμ yμτ
yτe yτμ yττ

mfermions, UCKM, VLMM

Yukawa Interaction

Yij
e LiΦeRj



1st Piece of the Flavor Puzzle



• Large number of input parameters related to flavor

1st Piece of the Flavor Puzzle



• Large number of input parameters related to flavor 

• 5 of the SM come from gauge interactions

1st Piece of the Flavor Puzzle



• Large number of input parameters related to flavor 

• 5 of the SM come from gauge interactions 

• 22 parameters come from the Yukawa sector 

1st Piece of the Flavor Puzzle



• Large number of input parameters related to flavor 

• 5 of the SM come from gauge interactions 

• 22 parameters come from the Yukawa sector 

Huge hint for a more fundamental 
theory of flavor

1st Piece of the Flavor Puzzle
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• Large hierarchies among fermion masses 

• Even among same class of fermions:

2nd Piece of the Flavor Puzzle

Me = vΦ

yee yeμ yeτ
yμe yμμ yμτ
yτe yτμ yττ

Singular Values

me , mμ , mτ

me

mτ
≈

1
3400

mμ

mτ
≈

1
17

mτ

mτ
= 1Example



CKM

PMNS (Normal Ordering)

Not explained 
in the SM 

The Flavor Puzzle

me

mt
∼ 10−6
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To reduce parameters…
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Flavor Symmetry
• A new symmetry at a higher energy scale

• This symmetry must be broken at lower energies

• Potentially explains the masses and mixings of quark and 
leptons by few parameters 

SU(3)C ⊗ SU(2)L ⊗ U(1)Y ⊗ Gflavor

Flavor Symmetry

(through correlations)

{
GFlavor ⟹ mfermions, VCKM, UPMNS
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L =
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ℒ′�

S4
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Non-Abelian Discrete Symmetries

   Putting different  fields in packages! 

L =
Le

Lμ

Lτ

∼ (1, 2, − 1,3)

ℒ′�

S4
= ℒs4

 Discrete Flavor Symmetries

Finite set of  
transformations

1, 1′�, 2, 3, 3′�

S4

S = (
1 0 0
0 −1 0
0 0 −1) T = (

1 0 0
0 0 −1
0 1 0 )

   Example: The       group has five irreps



Ye =
yee yeμ yeτ
yμe yμμ yμτ
yτe yτμ yττ

Abelian

ℤn (n ≥ 2)
Deletes couplings
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Yij
e LiΦeRj



Ye =
yee yeμ yeτ
yμe yμμ yμτ
yτe yτμ yττ

Abelian Non-Abelian

ℤn (n ≥ 2) A4, S3, T′�, . . .
Deletes couplings Deletes and Relates couplings

Discrete Flavor Symmetries

Yij
e LiΦeRj
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• Residual        symmetry from  ℤ2 S4

Residual Symmetries

⟨ϕ⟩ =
vϕ

0
0

∼ 3

Flavon

VEV Invariant  
under

ℤ2



Modular Flavor Symmetries

1923-CirclesInACircle-Kandinsky
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• The modular group  becomes the Flavor Symmetry 

• It is the infinite discrete group 

• With generators

Modular Flavor Symmetries
SU(3)C ⊗ SU(2)L ⊗ U(1)Y ⊗ SL(2,ℤ)

SL(2,ℤ) ≡ Γ

γ ∈ Γ γ = (a b
c d) ad − cb = 1

S = ( 0 1
−1 0) , T = (1 1

0 1) ,



• Modular symmetries have rich mathematical structure 
and fundamental origin:

Modular Flavor Symmetries

Extra-Dimensional  
field theories

String Theory

Almumin et al. (2021) Nilles and Ramos-Sanchez 
(2021)e.g. e.g.
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• Modular symmetries have rich mathematical structure 
and fundamental origin: 

• But the central idea is very simple 

• For example:

Modular Flavor Symmetries

See Talks by  
Rukami, Xueqi, Xiang-Gan, and Saul

Yukawa Couplings 
 are modular forms

mν =
2Y1(τ) −Y3(τ) −Y2(τ)
−Y3(τ) 2Y2(τ) −Y1(τ)
−Y2(τ) −Y1(τ) 2Y3(τ)

vu2

Λ

Y1(τ)
Y2(τ)
Y3(τ)

Y(τ) τ ∈ ℂ Modulus 
“spurion”



• Effective (SUSY         ) action 

Building a Modular Flavor Model
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𝒩 = 1

{
Kähler Potential Superpotential

{
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• Effective (SUSY         ) action  

• The action is invariant under the modular group 

Building a Modular Flavor Model

𝒮 = ∫ d4xd2θd2θ̄ 𝒦(τ̄, ψ̄, τ, ψ) + ∫ d4xd2θ𝒲(τ, ψ) + h . c ,

𝒩 = 1

{
Kähler Potential Superpotential

{
𝒮 𝒮

SL(2,ℤ)

Two kinds  
of super fields

Modulus Matter

τ ψ



• The transformation of the fields under

Field Transformations
SL(2,ℤ)

γ = (a b
c d)

τ γ aτ + b
cτ + d

Modulus



• The transformation of the fields under

Field Transformations
SL(2,ℤ)

γ = (a b
c d)

L γ (cτ + d)−k ρr(γ) L

Matter 
fields weight

Matrix Representation of a 
discrete flavor symmetry

L ≡
Le

Lμ

Lτ

Example

Automorphic 
Factor



• The transformation of the fields under

Field Transformations
SL(2,ℤ)

γ = (a b
c d)

L γ (cτ + d)−k ρr(γ) L
L ≡

Le

Lμ

Lτ

Example Matter 
fields

S3, A4, S4, A5, …

So it contains a 
“tradicional” flavor 

symmetry
The authomorphic  
factor perceives 

SL(2,ℤ)



• Under these               transformations the 
superpotential must be invariant

Modular Invariance
SL(2,ℤ)

𝒲 ⊃ ∑
i,k,β

αi (ψ Φu,d ψcY(k)
rβ

(τ))1
,



• Under these               transformations the 
superpotential must be invariant 

• Thus, Yukawa couplings are modular form 
multiplets of the discrete flavor symmetry

Modular Invariance
SL(2,ℤ)

𝒲 ⊃ ∑
i,k,β

αi (ψ Φu,d ψcY(k)
rβ

(τ))1
,

Y(k)(τ) γ (cτ + d)k ρ(γ)Y(k)(τ)Yukawa 
Couplings

S3, A4, S4, A5, …



• Example from an        model   

Modular Forms
A4

mν =
2Y1(τ) −Y3(τ) −Y2(τ)
−Y3(τ) 2Y2(τ) −Y1(τ)
−Y2(τ) −Y1(τ) 2Y3(τ)

vu2

Λ
Y(2)

3 (τ) =
Y1(τ)
Y2(τ)
Y3(τ)

L ≡
Le

Lμ

Lτ

∼ (3, −1)

Feruglio (2017)

weighted  
representation



Symmetry points
τ



• Some values of       lead to residual symmetries

Symmetry points
τ
Fixed Points



• Some values of       lead to residual symmetries

Symmetry points
τ

SL(2,ℤ)

ℤN

τT = i∞ τS = i τST = ei 2π
3

ℤ2

Modular Forms align at the 
symmetry points!

Fixed Points

(
1
0
0)

1
1 − 3

−2 + 3

ℤ3

1
ω
ω2

2



• At the symmetry points some masses can vanish

Vanishing Masses at the symmetry points

(mτ, mμ, me) ∼ (mτ, 0, 0)Example



• At the symmetry points some masses can vanish 

• Thus, masses can be generated from a deviation from 
a symmetry point 2

3/2

1
3/2

1/2

−1/2 1/20
0
−1 1

e2πi
3

i∞

iIm
τ

Re τ

Vanishing Masses at the symmetry points

(mτ, mμ, me) ∼ (mτ, 0, 0)

ϵ(τ)

Deviation 
Parameter

Example



• Near the symmetry points we can obtain textures of 
hierarchical masses 

The so-called “Near critical behavior”

mν =
2Y1(τ) −Y3(τ) −Y2(τ)
−Y3(τ) 2Y2(τ) −Y1(τ)
−Y2(τ) −Y1(τ) 2Y3(τ)

vu2

Λ

Example



• Near the symmetry points we can obtain textures of 
hierarchical masses 

The so-called “Near critical behavior”

mν ≈
2 18ϵ2 6ϵ

18ϵ2 12ϵ −1
6ϵ −1 36ϵ2

vu2

Λ

ϵ(τ)
Example

τ ∼ i∞near 



• This might look like Froggatt-Nielsen but there is a 
crucial difference: Fixed coefficients (or reduced)

The so-called “Near critical behavior”

mν ≈
2 18ϵ2 6ϵ

18ϵ2 12ϵ −1
6ϵ −1 36ϵ2

vu2

Λ

ϵ(τ)
Example

τ ∼ i∞near 
Can lead to actual 

predictions!



What modular flavor symmetries?

Modular
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Hierarchies

Froggatt–

Nielsen &

Randall–

Sundrum

Unfixed

Coe�cients

Fixed

Structure

Finite

Groups

No

Hierarchies

By  
Michael Ratz



What modular flavor symmetries?

Modular

Flavor

Symmetries

Hierarchies

Froggatt–

Nielsen &

Randall–

Sundrum

Unfixed

Coe�cients

Fixed

Structure

Finite

Groups

No

Hierarchies

By  
Michael Ratz HAS THE BEST OF 

BOTH  
FRAMEWORKS



Quark-Lepton mass relations

1926- SeveralCircles-Kandinsky



• This section follows: 

• Main result: 

Quark-Lepton mass relations

Viable and testable correlations among 
quark and lepton masses can emerge in 

modular symmetry models

MODEL INDEPENDENT  
DERIVATION

JHEP 02 (2024) 160

https://inspirehep.net/files/c3412ab19e10baef99329b8f8f766806


• We will study the mass matrix of three generations 
of fermions:   

Fixing notation

ψ =
ψ1
ψ2
ψ3

, ψc =
ψc

1

ψc
2

ψc
3



• We will study the mass matrix of three generations 
of fermions: 

• In modular flavor models we have invariance under       

Fixing notation

𝒲 ⊃ ∑
i,k,β

αi (ψΦu,dψcY(k)
rβ

(τ))1
,

ψ =
ψ1
ψ2
ψ3

, ψc =
ψc

1

ψc
2

ψc
3

SL(2,ℤ) ΓN : S3 , A4 , …



• From the superpotential  we obtain the mass matrix

Fixing notation

𝒲 ⊃ ∑
i,k,β

αi (ψΦu,dψcY(k)
rβ

(τ))1
,



• From the superpotential  we obtain the mass matrix 

• We will define the dimensionful parameters

Fixing notation

𝒲 ⊃ ∑
i,k,β

αi (ψΦu,dψcY(k)
rβ

(τ))1
,



• The mass matrix will be a function of        and  

Fixing notation

𝒲 ⊃ ψ Mψ(ai, τ) ψc

ai τ



• The mass matrix will be a function of        and   

• From the mass matrix we can compute the masses as 
a function of the parameters

Fixing notation

𝒲 ⊃ ψ Mψ(ai, τ) ψc

ai τ

By definition



• It is more convenient to work with the Hermitian 
matrix

Fixing notation

Eigenvalues



• Using         we can find three (basis invariant) 
equations for the masses in terms of the parameters

Invariant Equations
Hψ

MASTER EQUATIONS Three eqs. 
Thress masses



• We assume closeness to a symmetry point (near 
critical behavior) 

Invariant Equations

2

3/2

1
3/2

1/2

−1/2 1/20
0
−1 1

e2πi
3

i∞

iIm
τ

Re τ

ϵ(τ)

Deviation 
Parameter

Instead of

τ



• In some model the following two conditions should 
satisfied to obtain a mass relation

Conditions for mass relation



• In some model the following two conditions should 
satisfied to obtain a mass relation 

• C1: The mass matrix has at most two coefficients

Conditions for mass relation

a1 , a2 ⟹ Mψ(a1, a2, ϵ)



• In some model the following two conditions should 
satisfied to obtain a mass relation 

• C1: The mass matrix has at most two coefficients 

• C2: At least one mass is generated as a deviation 
from a symmetry point

Conditions for mass relation

a1 , a2 ⟹ Mψ(a1, a2, ϵ)

lim
ϵ→0

Det[Hψ] = 0



• If in some model these two conditions are satisfied 
for two species of fermions, there will be a mass 
relation

Conditions for mass relation

Me(ae
1, ae

2, ϵ)

lim
ϵ→0

Det[He] = 0

Example

Md(ad
1 , ad

2 , ϵ)
Charged Leptons Down-quarks

C1

C2 lim
ϵ→0

Det[Hd] = 0



• We can compute the general form of the mass 
relations 

• If C1 and C2 are satisfied, we have

Conditions for mass relation

MODEL INDEPENDENT  

Expanding



• We can compute the general form of the mass 
relations 

• If C1 and C2 are satisfied, we have

Conditions for mass relation

MODEL INDEPENDENT  

Expanding

f0(a1, a2) = 0No epsilon 
independent term



• If C1 and C2 are satisfied, we can write

Conditions for mass relation



• If C1 and C2 are satisfied, we can write

Conditions for mass relation

m2
1m2

2m2
3 = fη(a1, a2)|ϵ|η



• At the symmetry point… 

Solutions at the symmetry point
ϵ → 0
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• Solving this equation system 

• We find solutions at the symmetry point

Solutions at the symmetry point

ϵ → 0

ã1(m2, m3) , ã2(m2, m3)

m2
1m2

2m2
3 = fη(ã1, ã2)|ϵ|η ⟹ m2

1m2
2m2

3 ≡ Fη(m2, m3)|ϵ|η



• Using these solutions we find an approximate mass 
correlation 

• The prediction in a specific model is the                
polynomial

General mass relation

m2
1m2

2m2
3

F(m2, m3)
≈ |ϵ|η

F(m2, m3)



• Using these solutions we find an approximate mass 
correlation 

• The prediction in a specific model is the                
polynomial

General mass relation

m2
1m2

2m2
3

F(m2, m3)
≈ |ϵ|η

F(m2, m3)
Order 6 polynomial

Homogeneous



• Using these solutions we find an approximate mass 
correlation 

• In a given model the coefficients are determined by 
the specific modular symmetry

General mass relation

m2
1m2

2m2
3

F(m2, m3)
≈ |ϵ|η

F(m2, m3) = C3,6m6
3+C3,5m5

3m2⋯



• In particular there is a class that are appealing

General mass relation

Fleading(m2, m3)



• Interesting Fact: Experimental data is compatible 
with a F-leading correlation between

General mass relation

m2
e m2

μm2
τ

m6
τ + …

≈
m2

dm2
s m2

b

m6
b + …

Highly non-trivial



• In our paper we explicitly obtain four relations in    
an        modular symmetry model 

Example

mdms

mb(mb ±3ms)
≈ |ϵ|4 ≈

memμ

mτ(mτ±3mμ)

S4



• In our paper we explicitly obtain four relations in    
an        modular symmetry model  

• When comparing against data, one fits better 

Example

mdms

mb(mb ±3ms)
≈ |ϵ|4 ≈

memμ

mτ(mτ±3mμ)

S4

mdms

mb(mb −3ms)
≈

memμ

mτ(mτ−3mμ)R1



Testing the mass relations

R1
mdms

mb(mb −3ms)
≈

memμ

mτ(mτ−3mμ)

Fairly Stable 
under RG-
Running



Some comments

For more details…

This is only a particular example 

mass relations can allow to test modular flavor 
symmetries

Different mass-relations for different modular groups

JHEP 02 (2024) 160

https://inspirehep.net/files/c3412ab19e10baef99329b8f8f766806


Summary
• We review the need for a fundamental theory of 

flavor 

• We discusses modular flavor symmetries  

• One generic prediction are mass-relations
Minimal Parameters

SL(2,ℤ)
Natural Hierarchies

m2
1m2

2m2
3

F(m2, m3)
≈ |ϵ|η m2

e m2
μm2

τ

m6
τ + …

≈
m2

dm2
s m2

b

m6
b + …

non-trivial




