Dirac neutrinos and parity solution to the strong CP problem

Anil Thapa

University of Virginia

FI UCI

FLASY 2024

UCI - June 26, 2024

- Motivation
- Lightning review on Majorana neutrino mass models and test through lepton flavor violation
- Dirac neutrinos from left-right symmetric theory and its embedding into GUT
 - Parity solves the strong CP problem
 - Dirac neutrinos can be tested through $N_{\rm eff}$
 - GUT embedding predicts δ_{CP} and the lightest neutrino mass
- Summary

Strong CP Problem

QCD Lagrangian allows term that violates Parity P and Time Reversal T symmetries, thus CP symmetry:

$$\mathscr{L}_{\text{QCD}} = -\frac{1}{4}G^a_{\mu\nu}G^{a\mu\nu} + \theta \frac{g_s^2}{32\pi^2}G^a_{\mu\nu}\tilde{G}^{a\mu\nu} + \bar{q}\left(i\gamma^{\mu}D_{\mu} - m_q e^{i\theta_q\gamma_5}\right)q$$

Transformation properties under discrete symmetries: analogous to electrodynamics

$$-\frac{1}{4}F_{\mu\nu}F_{\mu\nu} = \frac{1}{2}\left(\overrightarrow{E}^2 - \right)$$

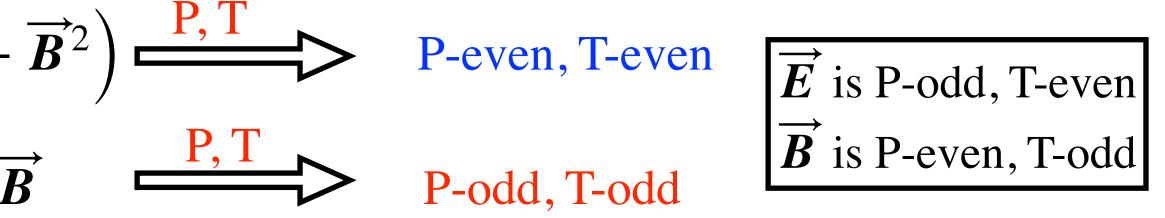
$$F_{\mu\nu}\tilde{F}_{\mu\nu} = -4 \,\,\overrightarrow{E} \cdot \,\,\overrightarrow{B}$$

 $\theta \rightarrow \theta + \alpha$ due to the anomalous nature of this rotation,

$$\Rightarrow \text{ only invariant physical quar} \\ \text{or } \bar{\theta} = \theta + \text{ArgDet}[M_Q] \text{ with measure of the second secon$$

 $g_s = \text{strong coupling}$ constant

$$G^a_{\mu\nu} = \partial_\mu G^a_\nu - \partial_\nu G^a_\mu + g_s f^{abc}$$



Any chiral rotation of the quark field, $q \rightarrow e^{i\alpha\gamma_5}q$ would lead to the redefinition of the new parameter

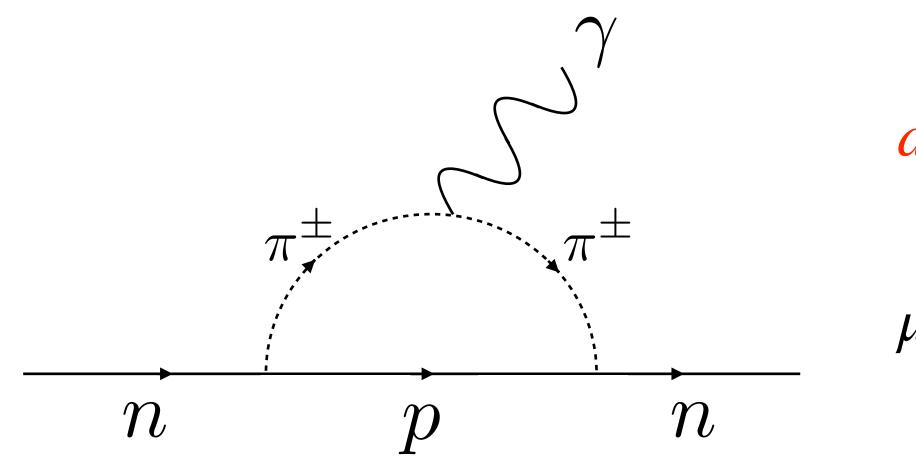
ntity is $\bar{\theta} = \theta + \theta_a$

ultiple flavors of the quark

em to cancel

Strong CP Problem

• $\bar{\theta}$ induces neutron electric dipole moment (neutron EDM)



• Current bound on neutron is $d_n < 3 \times 10^{-26}$

Why is $\bar{\theta}$ so small?

$$d_n = \frac{e\bar{\theta}g_A c_+ \mu}{8\pi^2 f_\pi^2} \log \frac{\Lambda^2}{m_\pi^2} \sim 3 \times 10^{-16} \ \bar{\theta} \ \text{e cm}$$
$$\mu = \frac{m_u m_d}{m_u + m_d}, \quad g_A \simeq 1.27, \ c_+ \simeq 1.6, \ \Lambda = 4\pi f_\pi$$

e cm
$$\implies \bar{\theta} < 10^{-10}$$

The mass parameters can in principle have arbitrary phases, and one would expect $\bar{\theta} \sim \mathcal{O}(1)$

Strong CP Problem

Solutions to the Strong CP Problem

Massless up quark $\bar{\theta} = \theta + \operatorname{ArgDet}[M_O]$

• chiral rotations, $u \to e^{i\alpha\gamma_5} u \Longrightarrow \theta \to \theta + \alpha$ can remove it.

 $\mathcal{L} \supset$

Make θ a dynamical filed.

axion:

• $m_{\mu} = 0$ is inconsistent with experimental data as well as lattice calculations.

> H. Georgi and I. Mc Arthur'81 K. Choi, C.W. Kim and W.K. Sze'88

Axion effective potential is such that the vacuum solution relaxes to $\theta = 0$

The Axion

A global chiral U(1) symmetry is introduced that is spontaneously broken. Effective interaction of

$$\left(\frac{a}{f_a} + \theta\right) \frac{1}{32\pi^2} G\tilde{G}$$

R.D. Peccei and H.R. Quinn'77 F. Wilczek'78, S. Weinberg'78

P or CP

Make P or CP exact symmetry broken spontaneously in such a way that the determinant of the quark mass matrix is real.

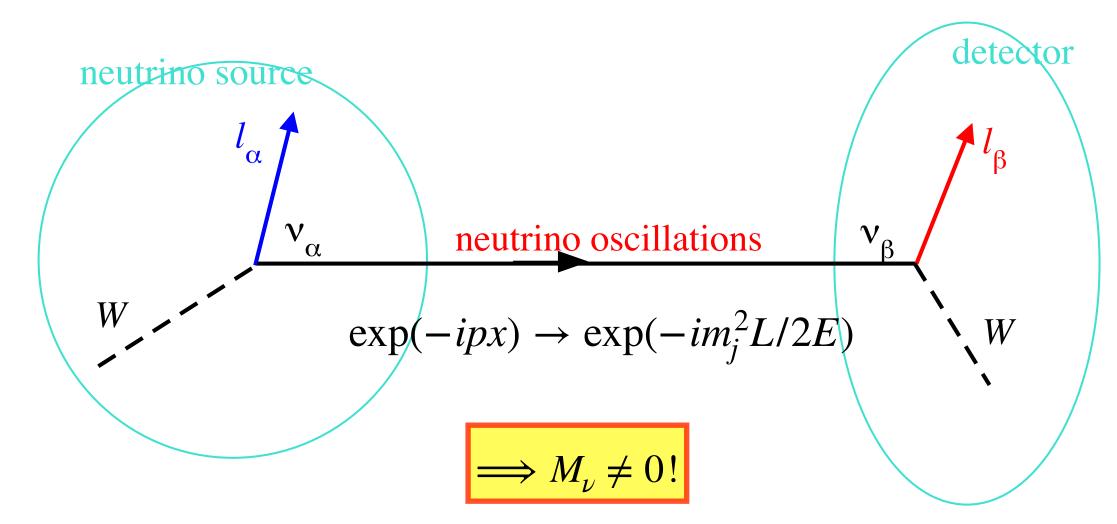
 $\bar{\theta} = 0$

A. Nelson'84 and S.M. Barr'84 Babu and Mohapatra, '90

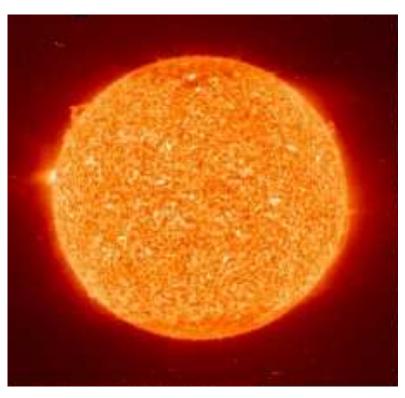
More on it later

Shortcomings of the Standard Model

Neutrino masses are predicted to be zero in the SM, but neutrino oscillates!



sun

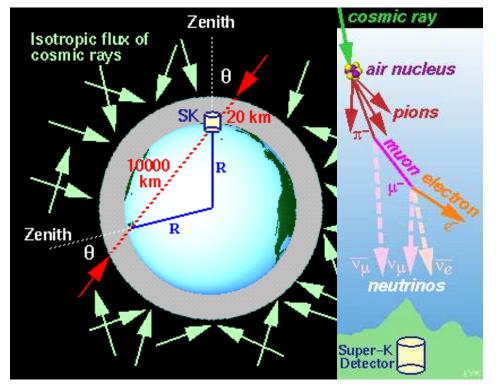


Homestake, SAGE, GALLEX SuperK, SNO, Borexino

reactors

KamLAND, D-CHOOZ DayaBay, RENO

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = U_{\text{PMNS}} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \begin{pmatrix} u_{11} \\ v_{22} \\ v_{23} \end{pmatrix} \begin{pmatrix} u_{12} \\ u_{23} \\ v_{23} \\ v_{23}$$



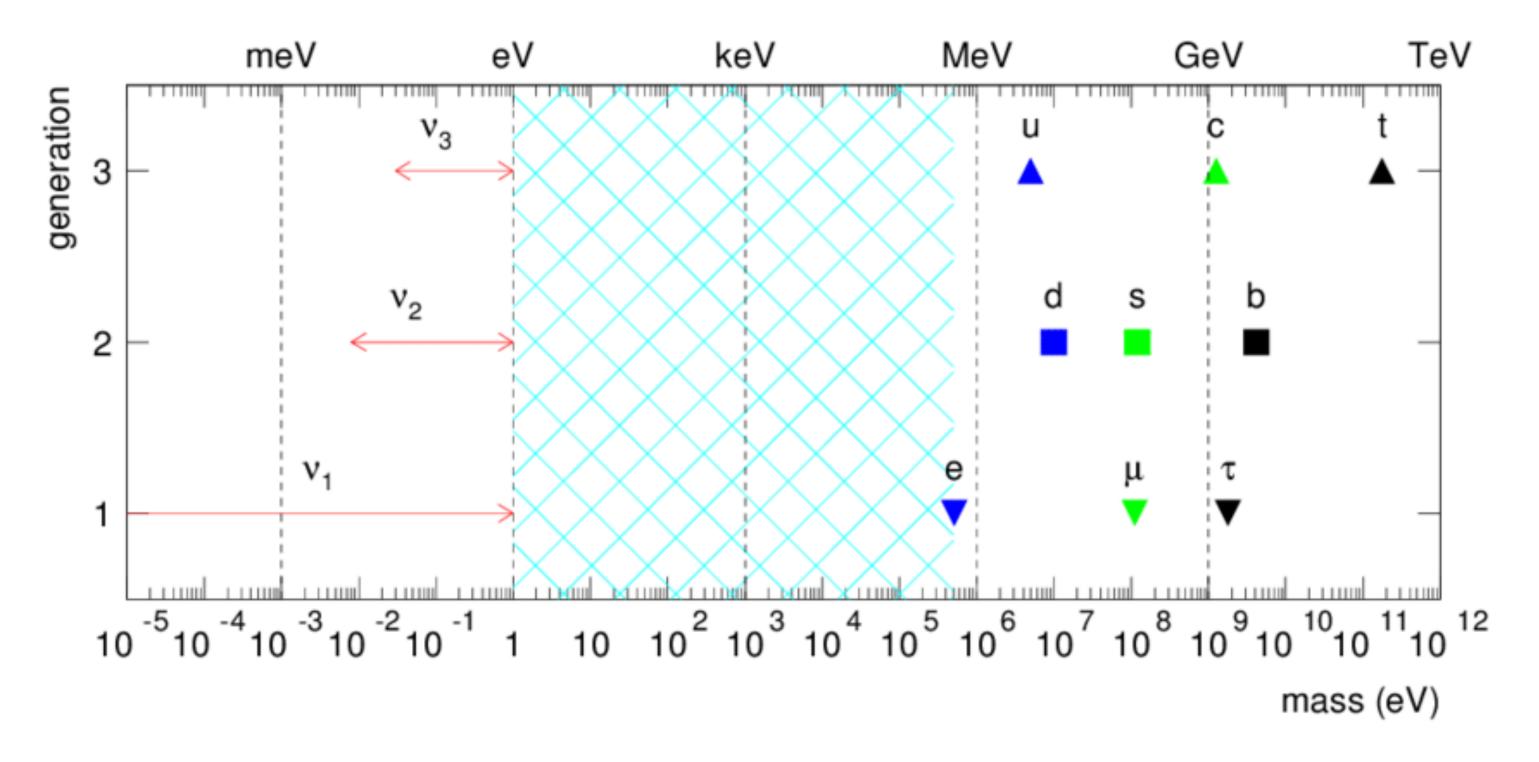
SuperKamiokande

accelerators

Kajita & McDonald, 2015

Open questions

- > Octant of θ_{23} ?
- > Absolute mass scale and mass hierarchy?
- > Are neutrinos their own antiparticle? Dirac vs Majorana
- > Is there CP Violation in lepton sector, $P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$?
- > Why is neutrino mass so tiny?



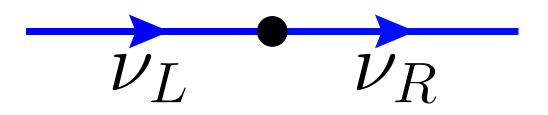
Dirac vs Majorana

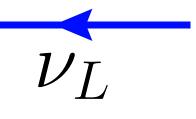
• Dirac neutrinos:

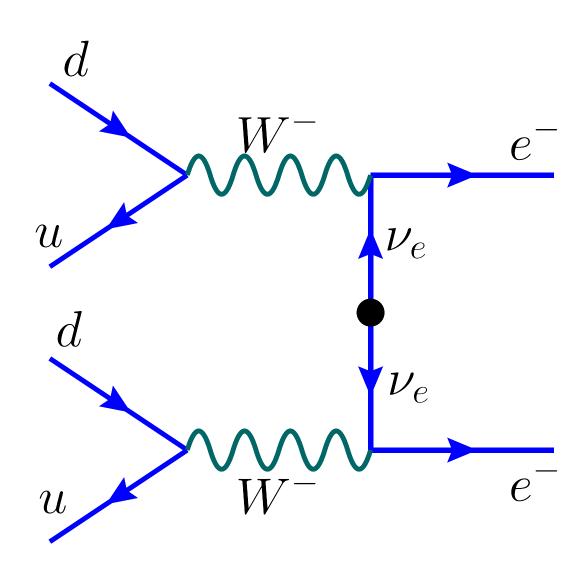
- $\nu = \nu_L + \nu_R \neq \bar{\nu}$
- $U(1)_L$ conserved
- $m_{\nu} = y_{\nu} \langle H \rangle \approx 0.1 \text{ eV}$, this means Yukawa coupling $y_{\nu} \sim 10^{-12}$!
- ν_R only couples to Higgs \implies difficult to measure

- Majorana neutrinos:
 - $\mathcal{V}_{\mathcal{I}}$ • $\nu = \nu_L + \nu_I^c = \bar{\nu}$
 - $U(1)_L$ broken \implies neutrinoless double beta decay $0\nu\beta\beta$
 - Weinberg operator *LLHH* generates Majorana masses

Introduce ν_R to the SM $(SU(3)_C \times SU(2)_L \times U(1)_Y)$ allowing $\mathscr{L}_Y : y_\nu \overline{L} H \nu_R + h \cdot c$.



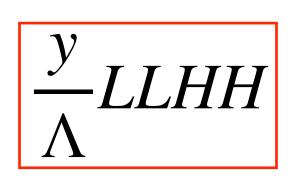




Recipe for Neutrino masses

• ν is Majorana: lowest non-renormalizable SM effective operator is the Weinberg operator

L = lepton doubletH = Higgs doublet y =dimensionless coupling $\Lambda = \text{new } \Delta L = 2 \text{ physics scale}$



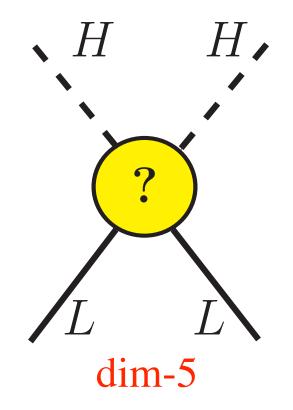
$$m_{\nu} \sim 0.1 \text{eV}, \quad v \sim 10^2 \text{GeV} \Longrightarrow \Lambda \sim 10^{14} \text{GeV}$$

In its simplest form, seesaw scale is very high Testability is very low

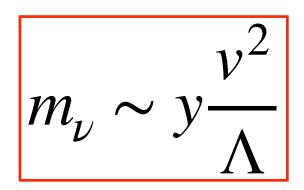
• Generalized Weinberg operator

 $\frac{y}{\Lambda^{1+2n}}LLHH(H^{\dagger}H)^{n}$

"Open up" all such operators (UV complete) \Rightarrow neutrino mass

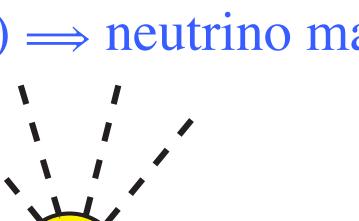


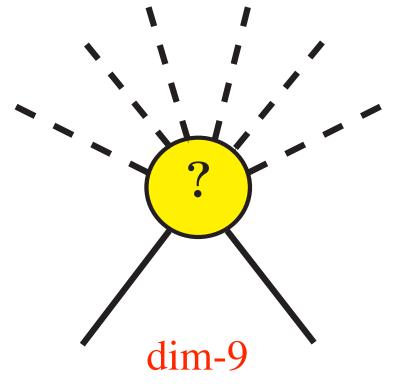
Majorana neutrinos \implies



seesaw formula

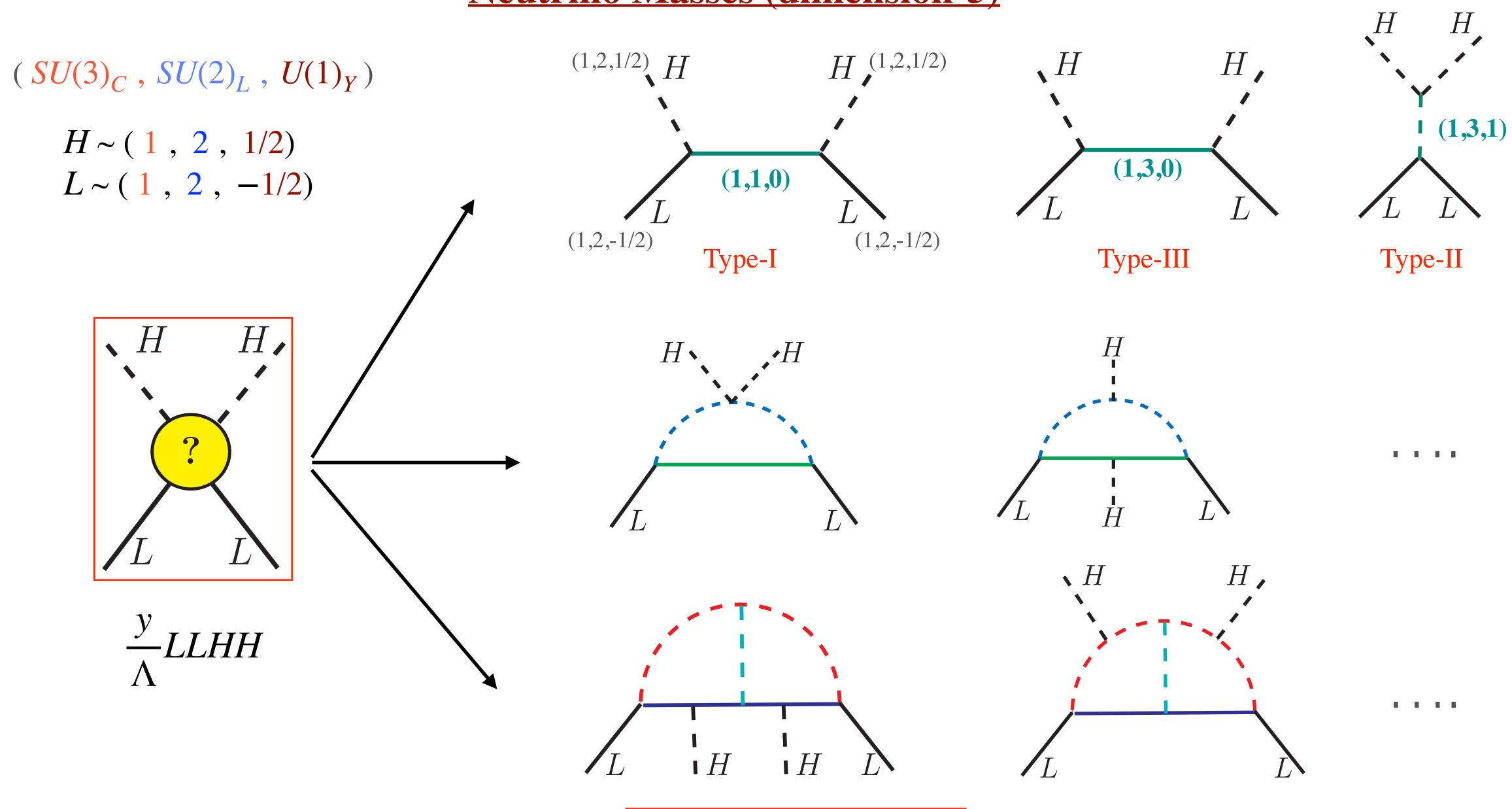
Higher the dimension lower the new physics scale





dim-7

Neutrino Masses (dimension-5)



How to test such models?

 $\nu_{\alpha} \leftrightarrow \nu_{\beta}$ prove that SM global symmetry U(1)

Lepton Flavor is definitely violated, so where is it?

Dirac neutrinos: \mathscr{L}_{Y} : $y_{\nu} \bar{L} H \nu_{R} + h \cdot c$. \bigcirc

$$m_{\nu} = y_{\nu} \langle H \rangle \approx 0.1 \text{ eV}$$

- Additional symmetry required to forbid ν_R Majorana mass
- LFV suppressed by Dirac mass, m_{ν}

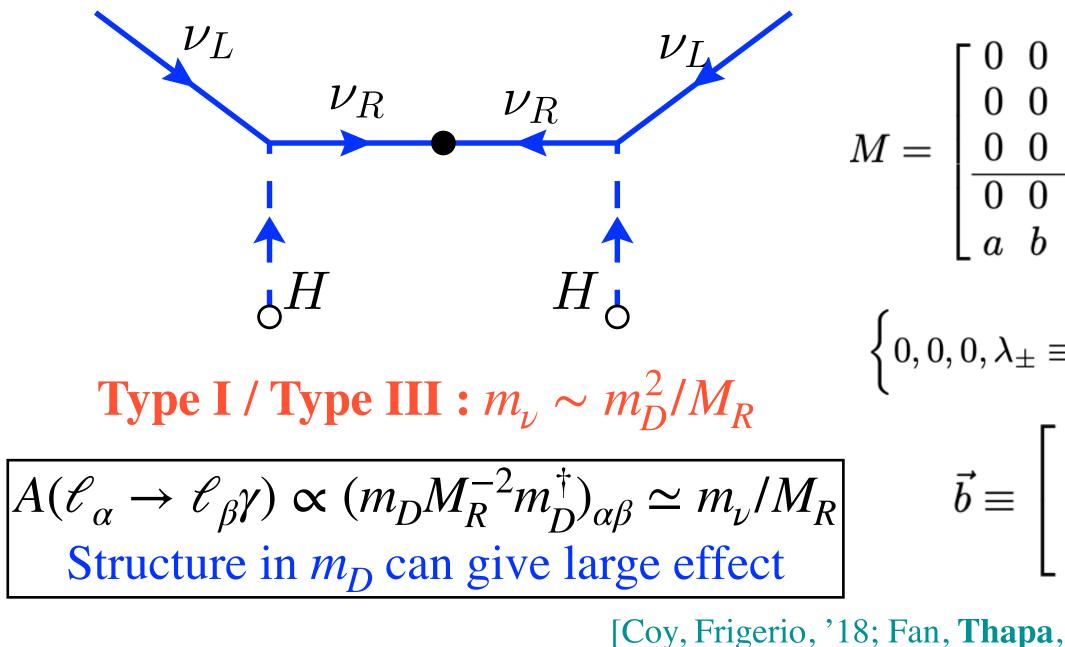
$$I_{L_e} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}} \Rightarrow U(1)_{L_{\tau}} \to U(1)_{L_{\mu}-L_{\tau}} \times U(1)_{L_{\mu}+L_{\tau}-2L_e}$$
 is broke

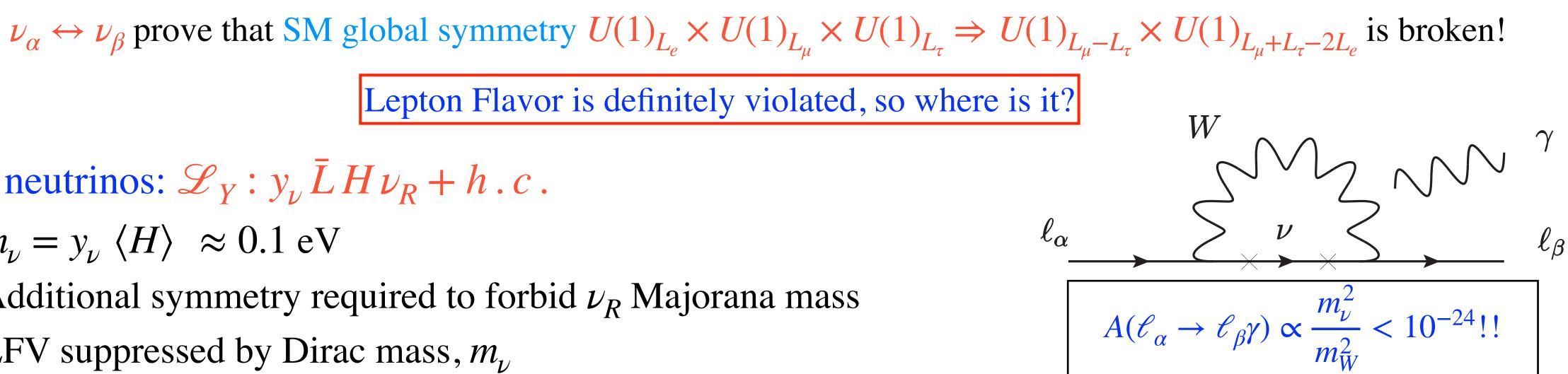
W ℓ_{lpha} ${\cal V}$ 10-24!! $A(\ell_{\alpha} \to \ell_{\beta} \gamma) \propto \frac{m_{\nu}^{2}}{m_{\nu}^{2}}$

Dirac neutrinos: \mathscr{L}_{Y} : $y_{\nu} \bar{L} H \nu_{R} + h \cdot c$.

$$m_{\nu} = y_{\nu} \langle H \rangle \approx 0.1 \text{ eV}$$

- Additional symmetry required to forbid ν_R Majorana mass
- LFV suppressed by Dirac mass, m_{μ}
- Majorana neutrino (Seesaw mass): ν -mass is induced via Weinberg's dim-5 operator $\mathscr{L}_{Y}: 1/2 \ M_{R}\overline{\nu}_{R}^{c}N_{R} + m_{D}\overline{\nu}_{L}\nu_{R} + h \, . \, c \, .$





$$\begin{bmatrix}
 m_D \\
 0 & 0 & a \\
 0 & 0 & b \\
 0 & 0 & c \\
 \hline
 0 & 0 & \mu \\
 c & \mu & 0
\end{bmatrix} M_R$$

$$\equiv \pm \sqrt{\vec{b}^2 + \mu^2}$$

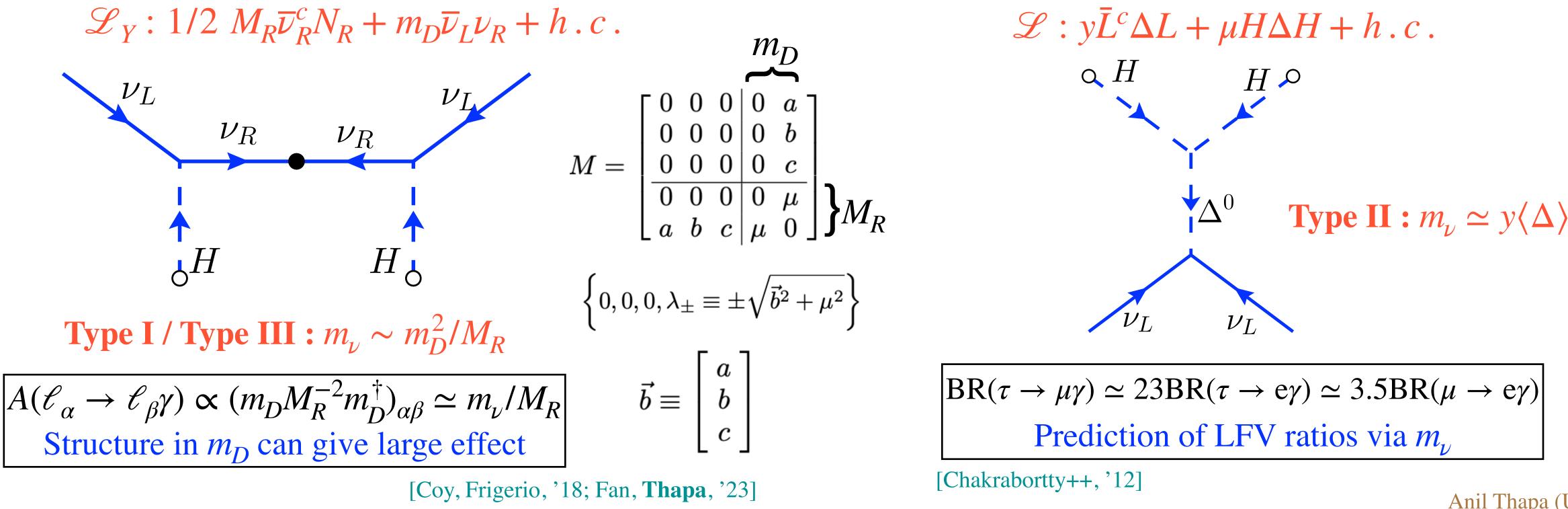
 $\nu_{\alpha} \leftrightarrow \nu_{\beta}$ prove that SM global symmetry U(1)

Lepton Flavor is definitely violated, so where is it?

Dirac neutrinos: \mathscr{L}_{Y} : $y_{\nu}LH\nu_{R} + h.c$.

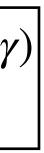
$$m_{\nu} = y_{\nu} \langle H \rangle \approx 0.1 \text{ eV}$$

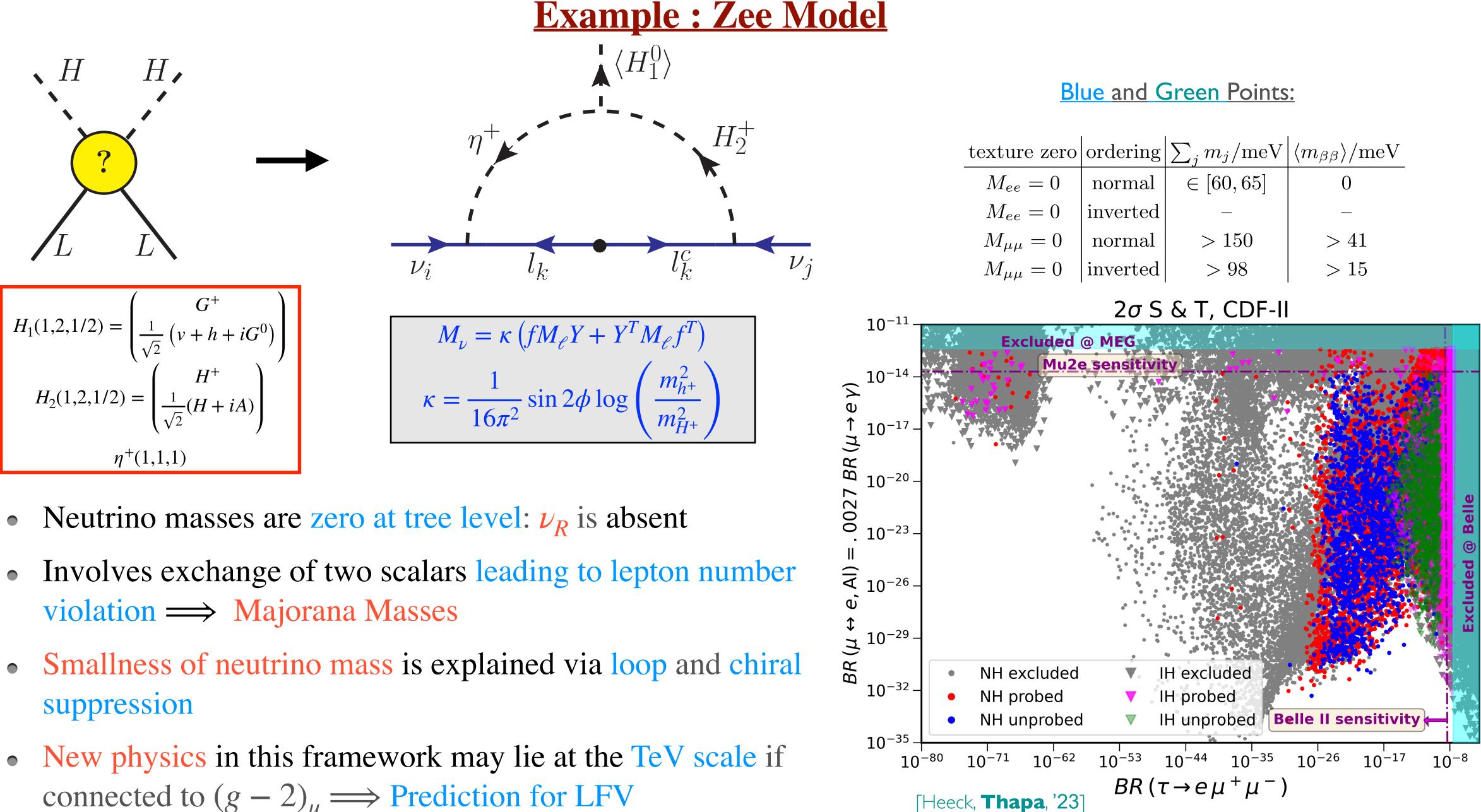
- Additional symmetry required to forbid ν_R Majorana mass
- LFV suppressed by Dirac mass, m_{ν}
- Majorana neutrino (Seesaw mass): ν -mass is induced via Weinberg's dim-5 operator $\mathscr{L}_{Y}: 1/2 M_{R}\overline{\nu}_{R}^{c}N_{R} + m_{D}\overline{\nu}_{L}\nu_{R} + h.c.$



$$1)_{L_e} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}} \Rightarrow U(1)_{L_{\mu}-L_{\tau}} \times U(1)_{L_{\mu}+L_{\tau}-2L_e}$$
is broke

W ℓ_{α} \mathcal{V} $A(\ell_{\alpha} \to \ell_{\beta} \gamma) \propto \frac{m_{\nu}^{2}}{m^{2}} < 10^{-24} !!$





- connected to $(g 2)_{\mu} \Longrightarrow$ Prediction for LFV

- number is conserved)
- If Dirac nature \implies important to understand the smallness of their masses
- Dirac seesaw can be achieved in Mirror Models

Dirac neutrinos from left-right symmetric theory and GUT

• Neutrinos may well be Dirac particles just as the electron $\implies \Delta L = 0$ (Lepton

• Oscillation experiments cannot distinguish Dirac neutrinos from Majorana neutrinos

• Dirac leptogenesis to explain observed baryon asymmetry is an attractive feature [Dick, Lindner, Ratz, Wrig, '99]

[Lee, Yang '56; Foot, Volkas '95; Berezhiani, Mohapatra '95, Silagadze '97]

Dirac Neutrinos from Left-Right Symmetry

Gauge symmetry is extended to:

• Fermion representation:

$$Q_L (3,2,1,1/3) = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$$
$$L_L (1,2,1,-1) = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$$

Higgs sector for symmetry breaking is very simple:

$$H_L(1,2,1,1) = \begin{pmatrix} H_L^+ \\ H_L^0 \end{pmatrix}_L \qquad H_R(1,1,2,1) =$$

$$SU(2)_L \times SU(2)_R \times U(1)_X \xrightarrow{\langle H_R^0 \rangle} SU(2)_R$$

• Parity symmetry is spontaneously broken

 $SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_X$ $Q_R(3,1,2,1/3) = \begin{pmatrix} u_R \\ d_R \end{pmatrix}$ $L_R (1,1,2,-1) = \begin{pmatrix} \nu_R \\ e_R \end{pmatrix}$

$$= \begin{pmatrix} H_R^+ \\ H_R^0 \\ H_R^0 \end{pmatrix}_R$$

 $(2)_I \times U(1)_V \xrightarrow{\langle H_L^0 \rangle} U(1)_{\rm EM}$

Standard LR Higgs fileds

$$\Phi(1,2,2,0)$$
$$\Delta_L(1,3,1,0)$$
$$\Delta_R(1,1,3,0)$$

Dirac Neutrinos from Left-Right Symmetry

• Vector-like fermion introduced to realize "seesaw" for charged fermion masses

$$M_F = \begin{pmatrix} 0 & y \kappa_L \\ y^{\dagger} \kappa_R & M \end{pmatrix}$$

Seesaw for charged fermion masses (no seesaw for neutrinos)

U(3,1,1,4/3), D(3,1,1,-2/3), E(1,1,1,-2) [Davidson, Wali '87]

$$\implies m_f \approx \frac{y^2 \kappa_L \kappa_R}{M}$$

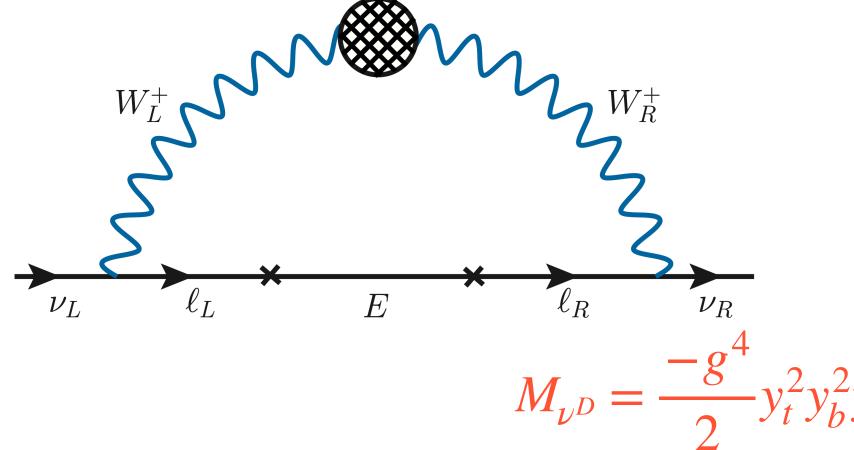
Dirac Neutrinos from Left-Right Symmetry

- Vector-like fermion introduced to realize "seesaw" for charged fermion masses

$$M_F = \begin{pmatrix} 0 & y \kappa_L \\ y^{\dagger} \kappa_R & M \end{pmatrix}$$

Seesaw for charged fermion masses (no seesaw for neutrinos)

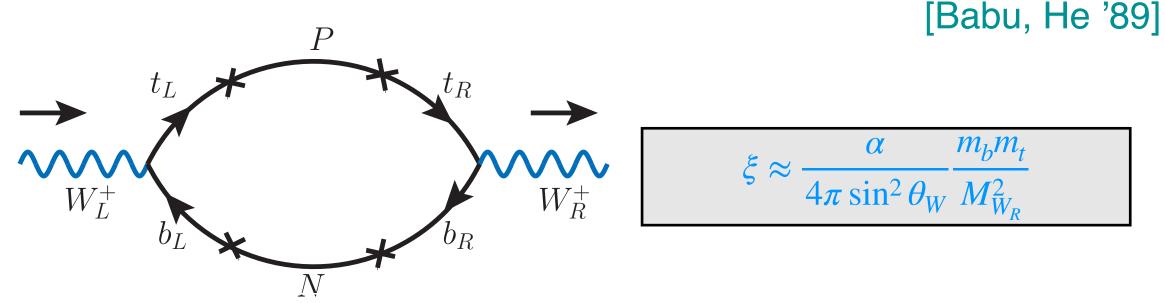
- $W_L^+ \leftrightarrow W_R^+$ mixing is absent at the tree level



U(3,1,1,4/3), D(3,1,1,-2/3), E(1,1,1,-2)[Davidson, Wali '87]

$$\implies m_f \approx \frac{y^2 \kappa_L \kappa_R}{M}$$

• $W_L^+ \leftrightarrow W_R^+$ mixing is induced at the loop level, which in turn induces two-loop Dirac masses for neutrino



$$\frac{1}{2} y_{\ell}^2 \kappa_L^3 \kappa_R^3 \frac{r M_P M_N M_{E_{\ell}}}{M_{W_L}^2 M_{W_R}^2} I_{E_{\ell}}$$

• Flavor structure of the two loop need to be studied to check its consistency with oscillation data [Babu, He, Su, **Thapa** '22]

 $M_{\nu^D} = y_{\ell} M_E I_E y_{\ell}^{\dagger}$

- Enough parameters to fit oscillation data
- Both normal and inverted ordering allowed
- Dirac CP phase is not constrained
- No neutrinoless double beta decay
- Left-right symmetry breaking is not constrained

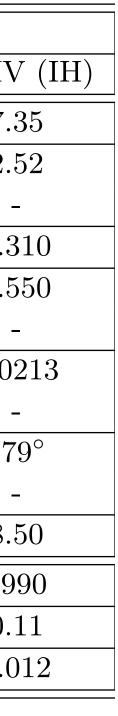
Oscillation	3σ range	Model prediction			
parameters	NuFit5.1	BP I (NH)	BP II (NH)	BP III (IH)	BP IV
$\Delta m_{21}^2 (10^{-5} \text{ eV}^2)$	6.82 - 8.04	7.42	7.38	7.35	7.3
$\Delta m_{23}^2 (10^{-3} \text{ eV}^2) (\text{IH})$	2.410 - 2.574	-	_	2.48	2.52
$\Delta m_{31}^2 (10^{-3} \text{ eV}^2) (\text{NH})$	2.43 - 2.593	2.49	2.51	-	-
$\sin^2 heta_{12}$	0.269 - 0.343	0.324	0.301	0.306	0.31
$\sin^2 \theta_{23}$ (IH)	0.410 - 0.613	-	_	0.510	0.55
$\sin^2 \theta_{23}$ (NH)	0.408 - 0.603	0.491	0.533	_	-
$\sin^2 \theta_{13}$ (IH)	0.02055 - 0.02457	-	_	0.0219	0.02
$\sin^2 \theta_{13}(\mathrm{NH})$	0.02060 - 0.02435	0.0234	0.0213	-	-
$\delta_{ m CP}$ (IH)	192 - 361	-	_	236°	279
$\delta_{ m CP}$ (NH)	105 - 405	199°	280°	_	-
$m_{\rm light} \ (10^{-3}) \ {\rm eV}$		0.66	2.04	14.1	8.5
M_{E_1}/M_{W_R}		917	45.5	1936	199
		0.650	0.43	0.12	0.1
$ M_{E_2}/M_{W_R} M_{E_3}/M_{W_R} $		0.019	0.029	0.015	0.01

- Model can be tested through $N_{\rm eff}$

Fit to Oscillation Data

[Babu, He, Su, **Thapa** 2205.09127]

Universal left-right symmetric theory can solve strong CP problem without the need for an axion



Testing Dirac Neutrinos with N_{eff}

- were in thermal equilibrium with the SM plasma
- to additional radiation density in early universe.
- neutrino degrees of freedom
- Dirac neutrino modes of this type will modify $N_{\rm eff}$ by about 0.14 \bigcirc

$$\Delta N_{\rm eff} \simeq 0.027 \left(\frac{106.75}{g_{\star} (T_{\rm dec})} \right)^{4/3} g_{\rm eff}$$
$$g_{\rm eff} = (7/8) \times (2) \times (3) = 21/4$$

• CMB is sensitive to extra radiation density arising from new extra degrees of freedom that

• ν_R (ultra-light new particles, new degrees of freedom) couples to other particles and contributes

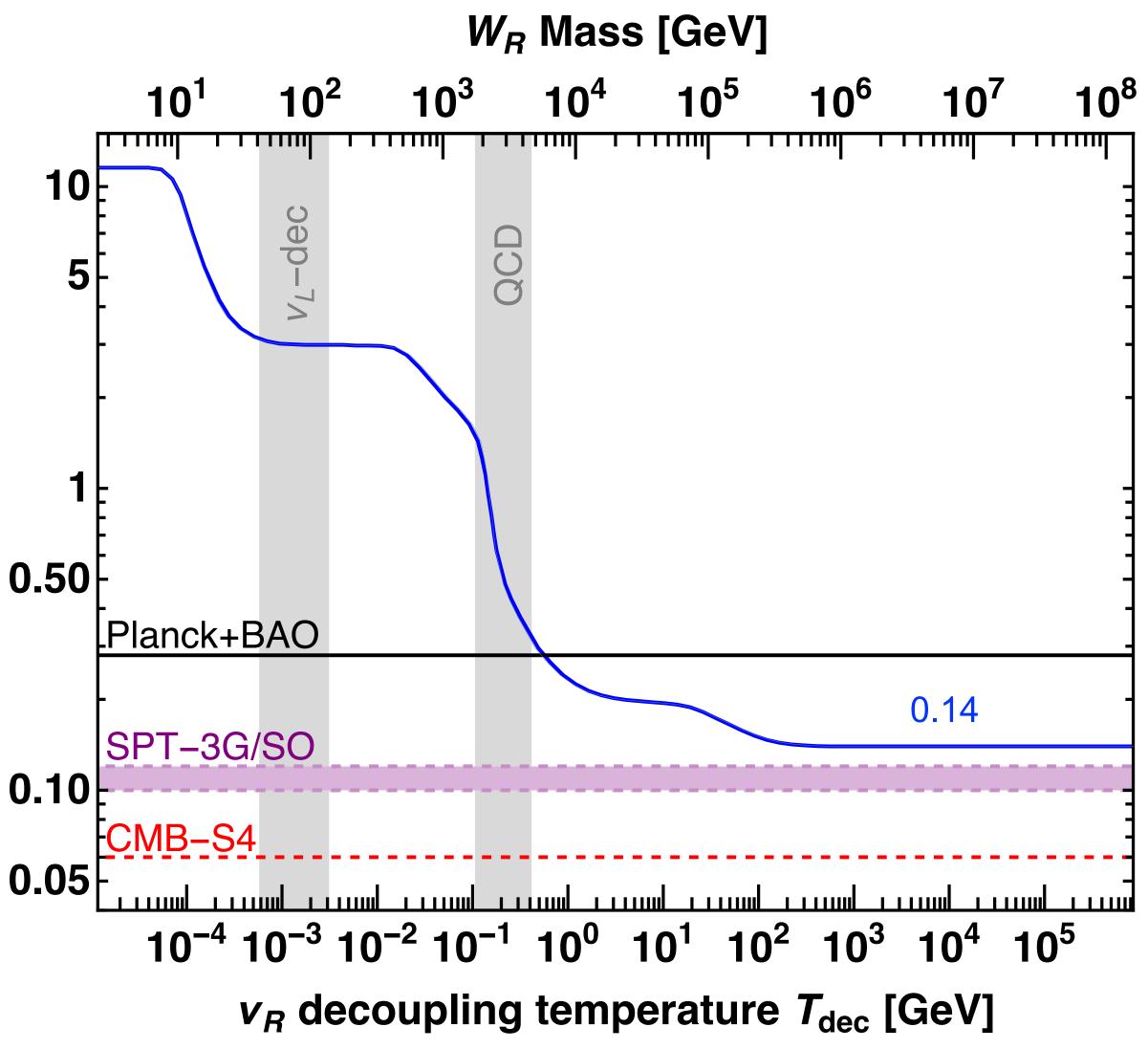
• The effect of such light particles is parameterized as $\Delta N_{\rm eff}$ and is measured in units of extra

$$G_F^2 \left(\frac{M_{W_L}}{M_{W_R}}\right)^4 T_{dec}^5 \approx \sqrt{g_\star \left(T_{dec}\right)} \frac{T_{dec}^2}{M_{Pl}}$$
$$T_{dec} \simeq 400 \text{MeV} \left(\frac{g_* \left(T_{dec}\right)}{70}\right)^{1/6} \left(\frac{M_{W_R}}{5 \text{TeV}}\right)^{4/3}$$

- In SM $N_{\rm eff} \simeq 3$
- Improvement on $\Delta N_{\rm eff}$ in CMB-S4
- Valid for 3 ν_R were in thermal equilibrium with SM
- This gives strong constraints for any (e.g., LR model) Dirac neutrino mass model
- Planck+BAO sets a lower limit of 7 TeV on W_R mass

0.10

Dirac Neutrino in Cosmology



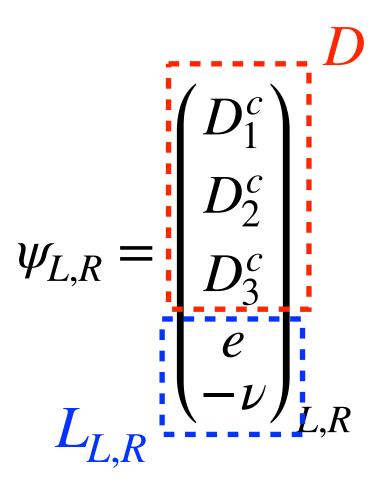
[Heeck, Abazajian '19; Babu, He, Su, **Thapa** '22]

- nature for neutrinos?
- Can we still solve the strong CP problem?
- What else can the model do?

• Can we embed this version of the LR model into GUT while preserving the Dirac

Any predictions in neutrino oscillation (normal vs inverted, Dirac CP, ...)?

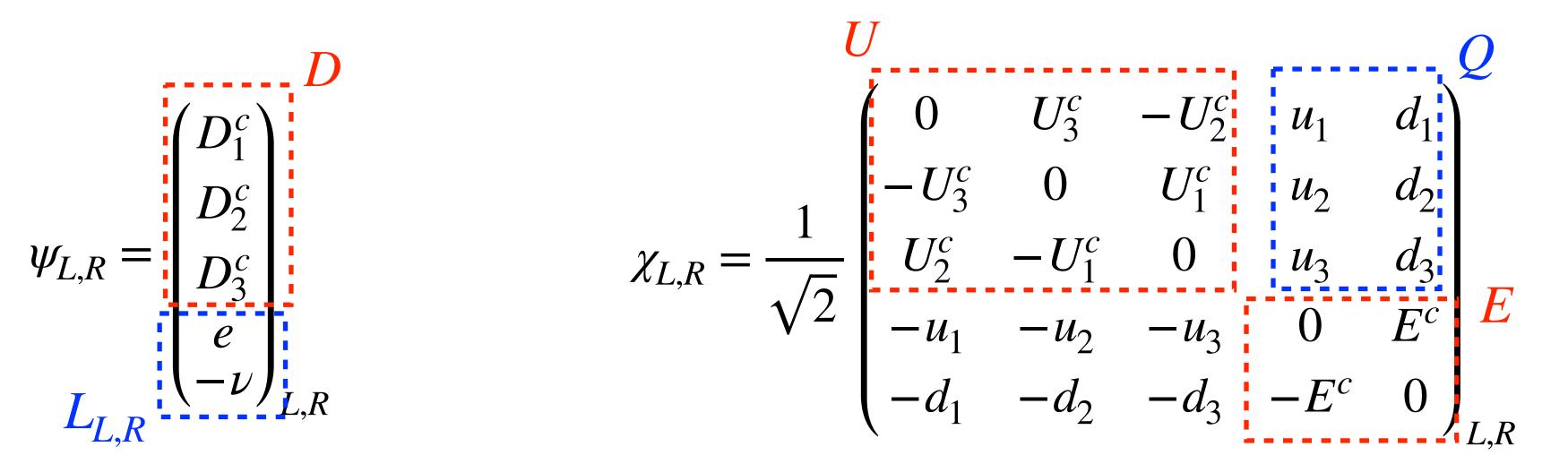
- The fermion spectrum of the model has a natural embedding in $SU(5)_L \times SU(5)_R$ \bigcirc unification
- \bigcirc
- The remaining vector-like quarks and leptons fill rest of the multiples



• Parity can be imposed under which $\psi_L \leftrightarrow \psi_R$ and $\chi_L \leftrightarrow \chi_R$

Embedding in $SU(5)_L \times SU(5)_R$

All left-handed (right-handed) fermions of the SM fit into 10 + 5 of $SU(5)_{I}$ ($SU(5)_{R}$)



<u>GUT Symmetry Breaking and Gauge Coupling Unification</u></u>

- couplings: $b_1 = \frac{41}{26}, \quad b_2 = -\frac{19}{6}, \quad b_3 = -\frac{7}{2}$
- If $SU(5) \times SU(5)$ directly break to the SM group, $\implies \sin^2 \theta_W = 3/16$ \implies Cannot reconcile value measured at E^V
 - \implies An intermediate symmetry is needed

With the SM particles, we obtain the following beta function coefficients with properly normalized gauge

where
$$g_i$$
 meet at a single value. $\alpha_{GUT} = 2 \ \alpha_3 = \alpha_2 = \frac{13}{3} \alpha$
We scale $\sin^2 \theta_W(m_t) = \frac{3}{16} \left[1 + \frac{\alpha}{6\pi} \left\{ -\frac{185}{3} \log \frac{M_G}{m_t} \right\} \right]$

<u>GUT Symmetry Breaking and Gauge Coupling Unification</u></u>

- couplings: $b_1 = \frac{41}{26}, \quad b_2 = -\frac{19}{6}, \quad b_3 = -\frac{7}{2}$
- If $SU(5) \times SU(5)$ directly break to the SM group, lacksquare $\implies \sin^2 \theta_W = 3/16$ \implies Cannot reconcile value measured at E \implies An intermediate symmetry is needed

{ $\Sigma_L(75,1) + \Sigma_R(1,75)$ }, { $H_L(5,1) + H_R(1,5)$ }, $\Phi(\overline{5},5)$, $\eta(\overline{15},15)$ Why not (24,1)+(1,24) ? Required for fermion mass generation > allows $(24,1)H_R^{\dagger}\Phi H_L$ and $(24,1)\eta^{\dagger}\Phi\Phi$ that spoils strong CP solution Required for symmetry breaking

[Babu, Mohapatra, **Thapa**, '24]

With the SM particles, we obtain the following beta function coefficients with properly normalized gauge

where
$$g_i$$
 meet at a single value. $\alpha_{\text{GUT}} = 2 \ \alpha_3 = \alpha_2 = \frac{13}{3} \alpha$
We scale $\sin^2 \theta_W(m_t) = \frac{3}{16} \left[1 + \frac{\alpha}{6\pi} \left\{ -\frac{185}{3} \log \frac{M_G}{m_t} \right\} \right]$

To break $SU(5)_L \times SU(5)_R$ spontaneously to $SU(3)_c \times U(1)_{em}$ we choose the following Higgs multiplets

Required for gauge coupling unification Why not (**10**, **10**)?

- > allows rapid proton decay
- > spoils strong CP
- > makes g_{5R} nonperturbative

<u>GUT Symmetry Breaking and Gauge Coupling Unification</u></u>

$$SU(5)_{L} \times SU(5)_{R}$$

$$\downarrow M_{G} \sim \left\langle \Sigma_{L} \right\rangle$$

$$SU(3)_{CL} \times SU(2)_{L} \times U(1)_{L} \times SU(5)_{R}$$

$$\downarrow M_{I} \sim \left\langle \Phi \right\rangle, \left\langle H_{R} \right\rangle$$

$$SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y}$$

$$\downarrow M_{W} \sim \left\langle H_{L} \right\rangle$$

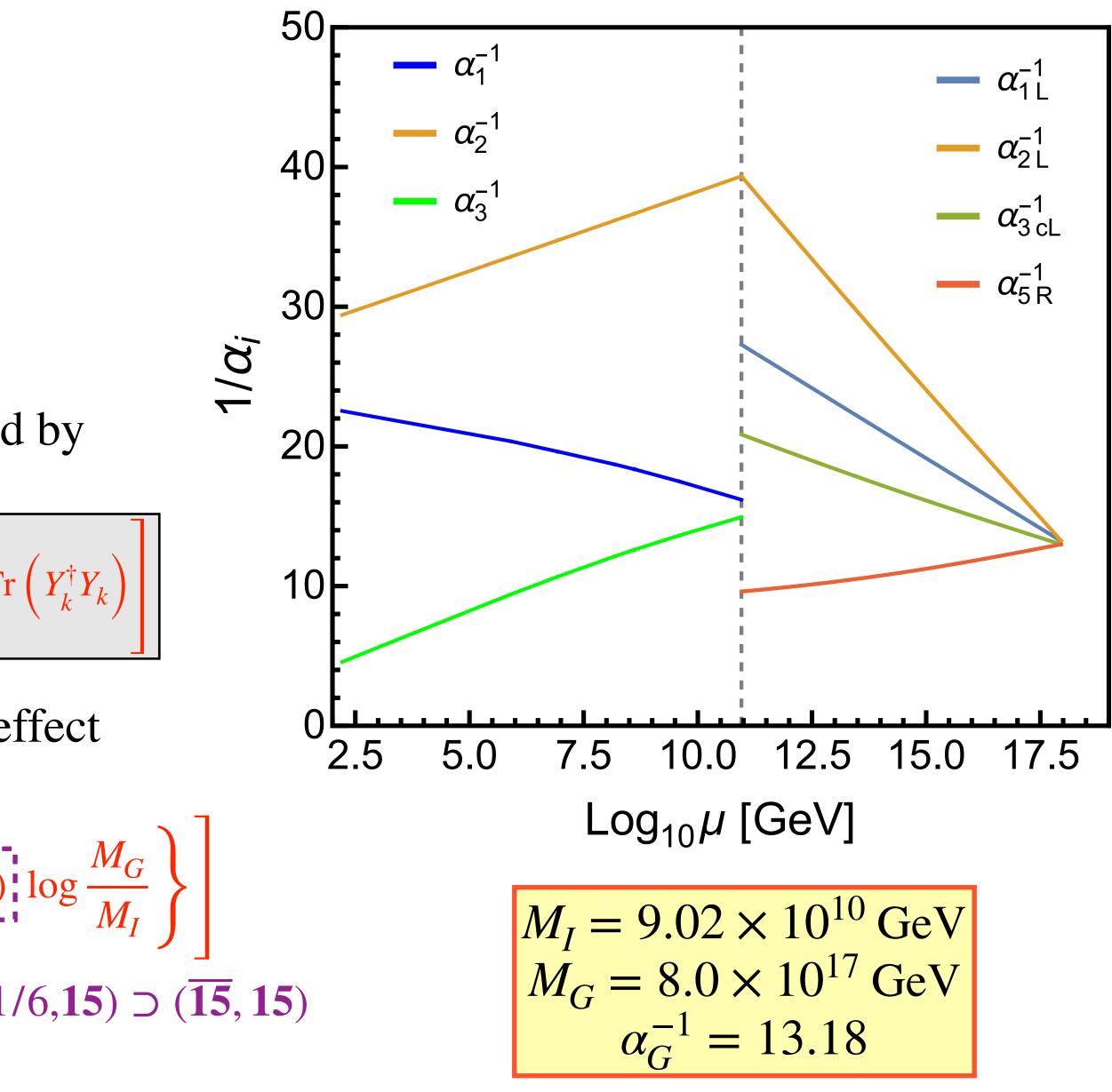
$$SU(3)_{C} \times U(1)_{em}$$

The evolution of the gauge couplings are governed by the following **RGEs**

$$16\pi^2 \frac{dg_i}{dt} = g_i^3 b_i + \frac{g_i^3}{16\pi^2} \sum_{j} b_{ij} g_j^2 - \sum_k C_{ik} Tr$$

• $\sin^2 \theta_W$ at one-loop accuracy (ignoring threshold effect) from VLF)

$$\sin^2 \theta_W(m_t) = \frac{3}{16} \left[1 + \frac{\alpha}{6\pi} \left\{ -\frac{185}{3} \log \frac{M_I}{m_t} + (46 + 39) \right\} \right]$$
(3, 2, -1)



Fermion Mass Generation

$$-\mathscr{L}_{\text{Yuk}} = \frac{(Y_{u}^{\star})_{ij}}{4} \epsilon_{\alpha\beta\gamma\delta\rho} \left\{ \chi_{Li}^{\alpha\beta} \chi_{Lj}^{\gamma\delta} H_{L}^{\rho} + \chi_{Ri}^{\alpha\beta} \chi_{Rj}^{\gamma\delta} H_{R}^{\rho} \right\} + \chi_{Ri}^{\alpha\beta} \chi_{Ri}^{\gamma\delta} H_{R}^{\rho} \right\}$$

After spontaneous symmetry breaking, the masses of fermions read as

$$M_{u} = \begin{pmatrix} 0 & Y_{u} \kappa_{L} \\ Y_{u}^{\dagger} \kappa_{R} & 0 \end{pmatrix}, \qquad M_{\ell} = \begin{pmatrix} 0 & Y_{\ell} \kappa_{L} \\ Y_{\ell}^{\dagger} \kappa_{R} & 0 \end{pmatrix}, \qquad M_{d} = \begin{pmatrix} 0 & Y_{\ell}^{T} \kappa_{L} \\ Y_{\ell}^{\star} \kappa_{R} & Y_{D} v_{\phi} \end{pmatrix}$$

Crucial for the model to be compatible with proton decay with $SU(5)_R$ intermediate symmetry.

 $\sqrt{2} \left(Y_{\ell}^{\star}\right)_{ij} \left\{ \psi_{Li\alpha} \chi_{Lj}^{\alpha\beta} H_{L\beta}^{\star} + \psi_{Ri\alpha} \chi_{Rj}^{\alpha\beta} H_{R\beta}^{\star} \right\} + \left(Y_{D}^{\star}\right)_{ij} \overline{\psi}_{Li}^{\alpha} \Phi_{\alpha}^{\beta} \psi_{Rj\beta}$



Anil Thapa (UVA)

Fermion Mass Generation

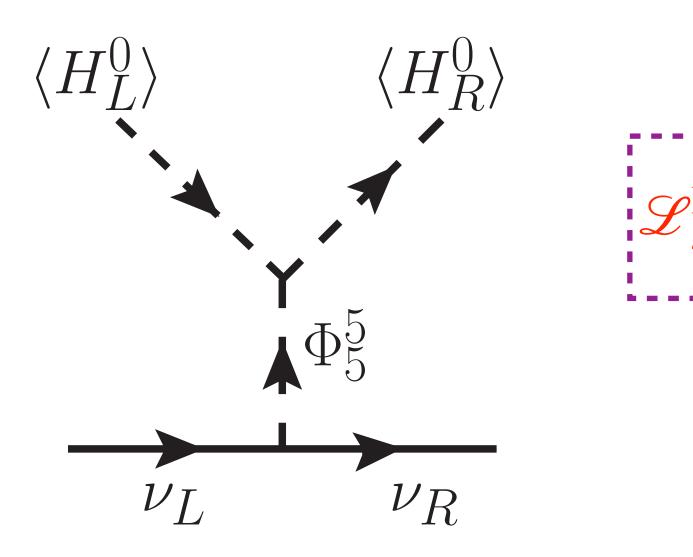
$$-\mathscr{L}_{\text{Yuk}} = \frac{(Y_{u}^{\star})_{ij}}{4} \epsilon_{\alpha\beta\gamma\delta\rho} \left\{ \chi_{Li}^{\alpha\beta} \chi_{Lj}^{\gamma\delta} H_{L}^{\rho} + \chi_{Ri}^{\alpha\beta} \chi_{Rj}^{\gamma\delta} H_{R}^{\rho} \right\} + \chi_{Ri}^{\alpha\beta} \chi_{Ri}^{\gamma\delta} H_{R}^{\rho} \right\}$$

After spontaneous symmetry breaking, the masses of fermions read as

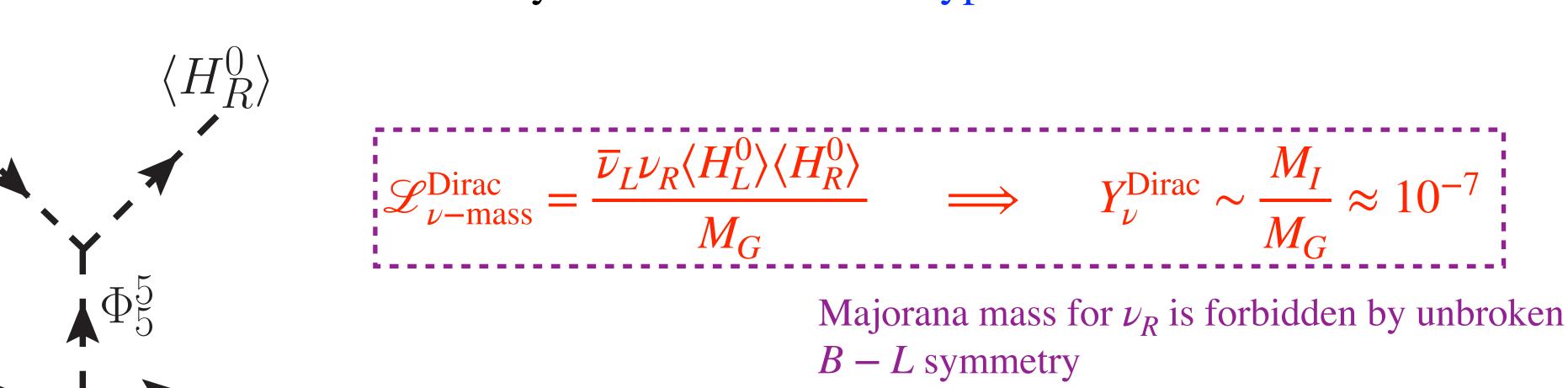
$$M_{u} = \begin{pmatrix} 0 & Y_{u} \kappa_{L} \\ Y_{u}^{\dagger} \kappa_{R} & 0 \end{pmatrix}, \qquad M_{\ell} = \begin{pmatrix} 0 & Y_{\ell} \kappa_{L} \\ Y_{\ell}^{\dagger} \kappa_{R} & 0 \end{pmatrix}, \qquad M_{d} = \begin{pmatrix} 0 & Y_{\ell}^{T} \kappa_{L} \\ Y_{\ell}^{\star} \kappa_{R} & Y_{D} v_{\phi} \end{pmatrix}$$

Crucial for the model to be compatible with proton decay with $SU(5)_R$ intermediate symmetry.

Small Dirac neutrinos masses are induced naturally at the tree level via type-II Dirac seesaw



 $\sqrt{2} \left(Y_{\ell}^{\star}\right)_{ij} \left\{ \psi_{Li\alpha} \chi_{Li}^{\alpha\beta} H_{L\beta}^{\star} + \psi_{Ri\alpha} \chi_{Ri}^{\alpha\beta} H_{R\beta}^{\star} \right\} + \left(Y_{D}^{\star}\right)_{ij} \overline{\psi}_{Li}^{\alpha} \Phi_{\alpha}^{\beta} \psi_{Rj\beta}$



Preditions for Neutrino Oscillations

In the basis where Y_{μ} and Y_{ℓ} are diagonal, down-type quark mass matrix M_d read as

$$M_{u} = \begin{pmatrix} 0 & \hat{M}_{u} \kappa_{L} \\ \hat{M}_{u} \frac{\kappa_{R}}{\kappa_{L}} & 0 \end{pmatrix}, \qquad M_{\ell} = \begin{pmatrix} 0 & \hat{M}_{\ell} \kappa_{L} \\ \hat{M}_{\ell} \frac{\kappa_{R}}{\kappa_{L}} & 0 \end{pmatrix}$$
$$M_{d} = \begin{pmatrix} 0 & \hat{M}_{\ell} \\ \hat{M}_{\ell} \frac{\kappa_{R}}{\kappa_{L}} & \frac{v_{\phi}}{v_{\nu}} U_{\text{PMNS}}^{*} \hat{M}_{\nu} U_{\text{PMNS}}^{T} \end{pmatrix}$$

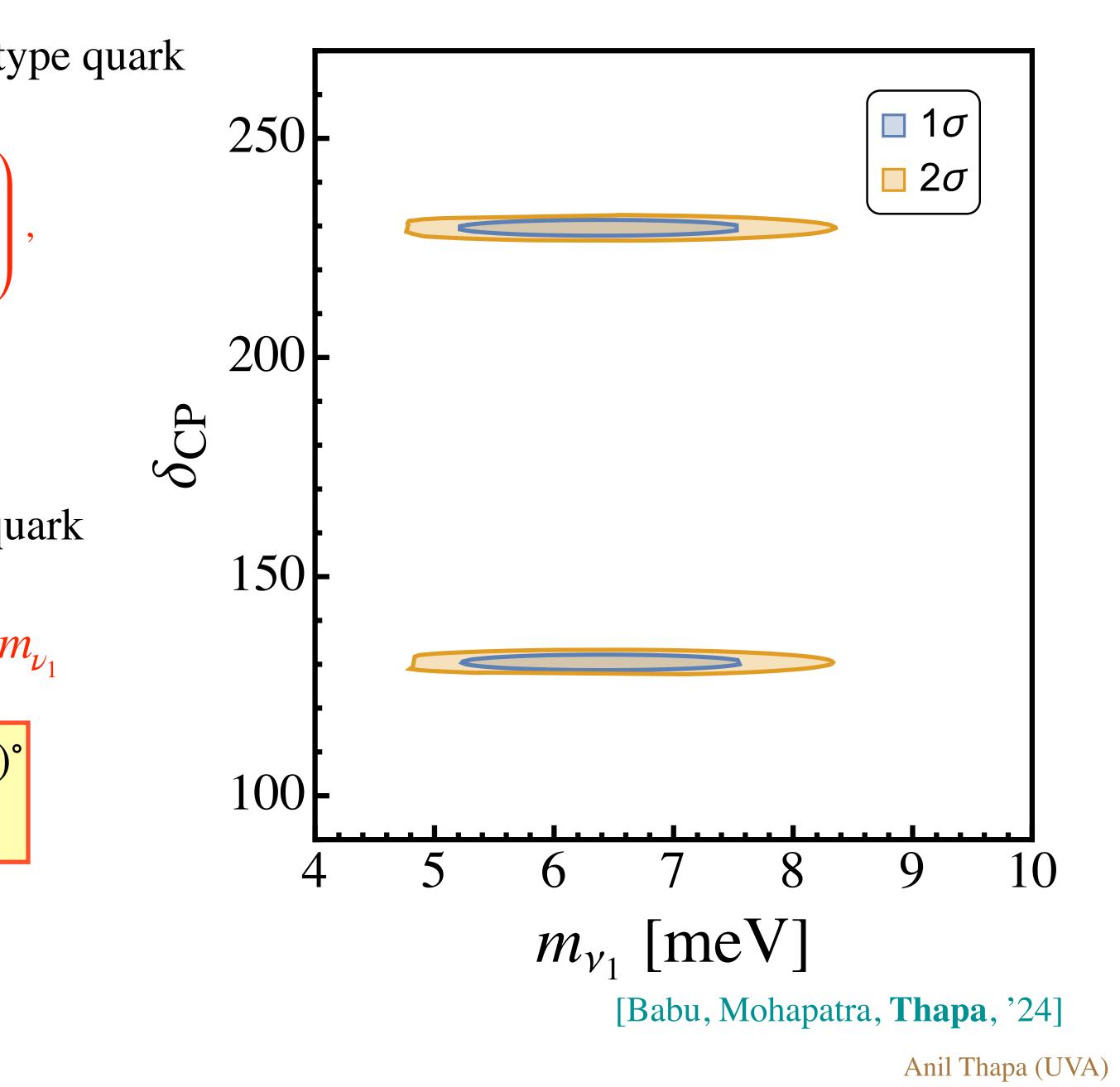
• Only one parameter in M_d to fit three light down-quark masses

 \implies Predicts δ_{CP} and lightest neutrino mass m_{ν_1}

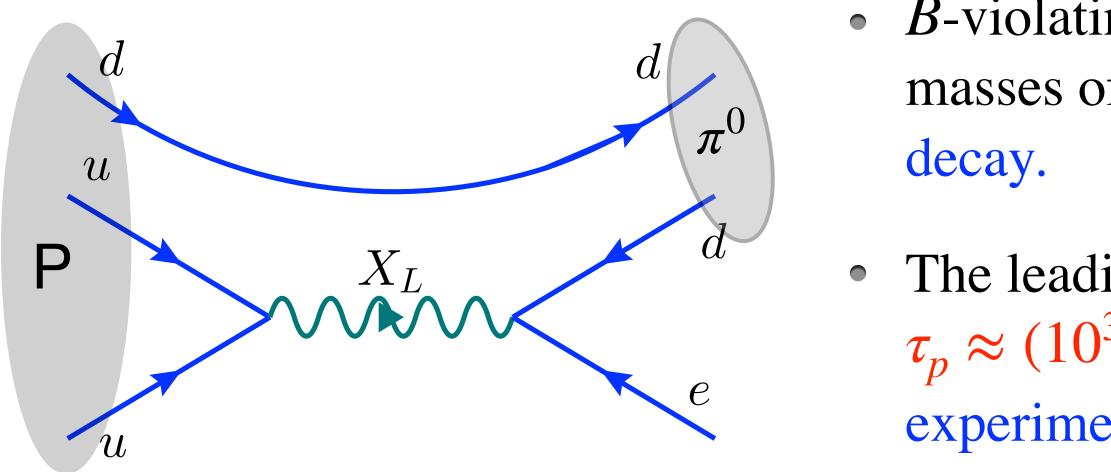
$$\delta_{CP} = (130.4 \pm 1.2)^{\circ} \text{ or } (229.6 \pm 1.2)$$

 $m_{\nu_1} = (4.8 - 8.4) \text{ meV}$

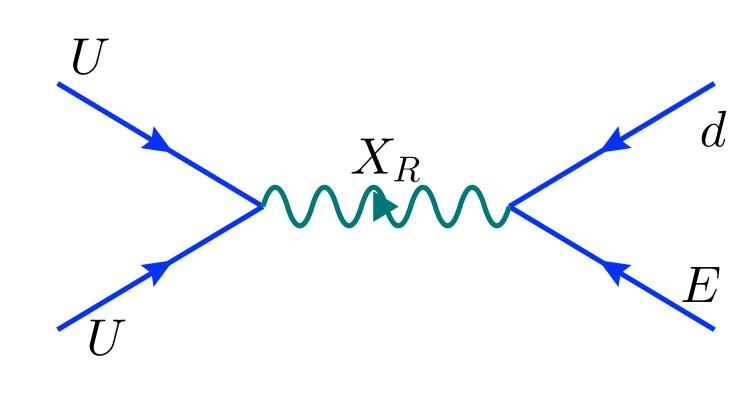
 \implies Only normal hierarchy



- Gauge bosons of $SU(5)_R$ with masses $M_{X_R,Y_R} \simeq M_I \sim 10^{11}$ GeV do not lead to proton decay owing to the structure of the zeros in (2,2)blocks of M_{μ} and M_{ℓ}
- These couplings involve at least one heavy field \bigcirc
- Same is true with $H_R(1,5)$ Higgs field which has mass of order M_I \bigcirc



Proton Decay



• B-violating interactions of X_L and Y_L gauge bosons of $SU(5)_L$ with masses of order $M_G = (7 \times 10^{16} - 8 \times 10^{17})$ GeV mediate proton

The leading decay mode of proton is $p \rightarrow e^+ \pi^0$ with lifetime $\tau_p \approx (10^{38} - 10^{42})$ years. (Well beyond the reach of forthcoming experiments like JUNO, Hyperkamiokande, and DUNE)

Parity Solves the Strong CP Problem

$\bar{\theta} = \theta + \text{Arg Det } [M_Q]$ $M_Q \propto \text{ parity breaking views}$ sure the determinant is real. $G^{a}_{\mu\nu}\tilde{G}^{a\mu\nu} \propto \overrightarrow{E}_{color} \cdot \overrightarrow{B}_{color}$

quark mass matrix

 $M_Q \propto$ parity breaking VEVs, need to make

 θ is odd under parity, therefore in parity symmetric theory it would vanish.

Parity Solves the Strong CP Problem

$$\bar{\theta} = \theta + \text{Arg Det } [A]$$

$$G^{a}_{\mu\nu}\tilde{G}^{a\mu\nu} \propto \vec{E}_{\text{color}} \cdot \vec{B}_{\text{color}}$$

$$\theta \text{ is odd under parity, theref}$$

• $SU(5)_L \times SU(5)_R$ with parity has the following quark mass matrices

$$M_{u} = \begin{pmatrix} 0 & Y_{u} \kappa_{L} \\ Y_{u}^{\dagger} \kappa_{R} & 0 \end{pmatrix} \qquad M_{d} = \begin{pmatrix} 0 \\ Y_{\ell}^{\star} \kappa_{R} \end{pmatrix}$$

are real with parity. Thus CP conserving vacuum is admitted, where all the VEVs are real.

ark mass matrix

 $M_Q \propto$ parity breaking VEVs, need to make sure the determinant is real.

fore in parity symmetric theory it would vanish.

$$\begin{array}{l} Y_{\ell}^{T} \kappa_{L} \\ Y_{D} v_{\phi} \end{array} \end{array} \longrightarrow \begin{array}{l} \text{Det} \left[M_{Q} \right] = \text{Det} \left[M_{u} M_{d} \right] \equiv \text{Real} \\ \implies \overline{\theta} = 0 \text{ at tree level} \end{array}$$

All the Higgs potential parameters with the fields $[\{\Sigma_L(75,1) + \Sigma_R(1,75)\}, \{H_L(5,1) + H_R(1,5)\}, \Phi(\overline{5},5), \eta(\overline{15},15)]$

Parity Solves the Strong CP Problem

$$\bar{\theta} = \theta + \text{Arg Det } [A]$$

$$G^{a}_{\mu\nu}\tilde{G}^{a\mu\nu} \propto \vec{E}_{\text{color}} \cdot \vec{B}_{\text{color}}$$

$$\theta \text{ is odd under parity, theref}$$

• $SU(5)_L \times SU(5)_R$ with parity has the following quark mass matrices

$$M_{u} = \begin{pmatrix} 0 & Y_{u} \kappa_{L} \\ Y_{u}^{\dagger} \kappa_{R} & 0 \end{pmatrix} \qquad M_{d} = \begin{pmatrix} 0 \\ Y_{\ell}^{\star} \kappa_{R} \end{pmatrix}$$

All the Higgs potential parameters with the fields $[\{\Sigma_L(75,1) + \Sigma_R(1,75)\}, \{H_L(5,1) + H_R(1,5)\}, \Phi(\overline{5},5), \eta(\overline{15},15)]$ are real with parity. Thus CP conserving vacuum is admitted, where all the VEVs are real.

• Quantum corrections would in general induce $\bar{\theta} \neq 0$, but this may be within experimentally allowed range $\bar{\theta} \leq 1.19 \times 10^{-10}$ arising from neutron EDM limits.

ark mass matrix

 $M_Q \propto$ parity breaking VEVs, need to make sure the determinant is real.

fore in parity symmetric theory it would vanish.

$$\begin{array}{l} Y_{\ell}^{T} \kappa_{L} \\ Y_{D} v_{\phi} \end{array} \end{array} \longrightarrow \begin{array}{l} \text{Det} \left[M_{Q} \right] = \text{Det} \left[M_{u} M_{d} \right] \equiv \text{Real} \\ \implies \overline{\theta} = 0 \text{ at tree level} \end{array}$$

Vanishing of one loop $\bar{\theta}$ **contributions**

the interaction Lagrangian.

 \implies need to sum all possible chirality flip in the propagator

$$\overrightarrow{L, b} \otimes \overrightarrow{R, a} + \overrightarrow{L, b} \otimes \overrightarrow{R, c} \otimes \overrightarrow{L, d} \otimes \overrightarrow{R, a} + \dots = \overline{f_R} \left(M_d^{\dagger} \frac{k^2}{k^2 - M_d M_d^{\dagger}} \right) f_L \qquad f_{L,R} = \begin{pmatrix} d \\ D \end{pmatrix}$$

• Convenient to work in the flavor basis, where the mass matrices M_{μ} and M_{d} are treated as part of

Vanishing of one loop θ **contributions**

the interaction Lagrangian.

 \implies need to sum all possible chirality flip in the propagator

$$\overrightarrow{L, b} \otimes \overrightarrow{R, a} + \overrightarrow{L, b} \otimes \overrightarrow{R, c} \otimes \overrightarrow{L, d} \otimes \overrightarrow{R, a} + \dots = \overline{f_R} \left(M_d^{\dagger} \frac{k^2}{k^2 - M_d M_d^{\dagger}} \right) f_L \qquad f_{L,R} = \begin{pmatrix} d \\ D \end{pmatrix}$$

• Loop-corrected quark mass matrix

tree level quark mass for q = u, dwhere Arg Det $[M_q^{(0)}] = 0$ $C = C_1 + C_2 + \dots \text{ contribution}$ from 1-loop, 2-loop, ... $M_q = M_q^{(0)} + \delta M_q = M_q^{(0)}(1 + C)$

$$M_q = M_q^{(0)} + \delta$$

L : light sector *H* : heavy sector $\delta M_q = \begin{pmatrix} \delta M_{LL}^q & \delta M_{LH}^q \\ \delta M_{HL}^q & \delta M_{HH}^q \end{pmatrix}$

• Convenient to work in the flavor basis, where the mass matrices M_{μ} and M_{d} are treated as part of

Vanishing of one loop θ **contributions**

the interaction Lagrangian.

 \implies need to sum all possible chirality flip in the propagator

• Loop-corrected quark mass matrix

tree level quark mass for q = iwhere Arg Det $[M_a^{(0)}] = 0$

$$M_q = M_q^{(0)} + \delta M_q = M_q^{(0)}(1 + C)$$

L : light sector *H* : heavy sector

$$\delta M_q =$$

 δM_{LH}^q $\delta M^q_{HL} \delta M^q_{HH}$

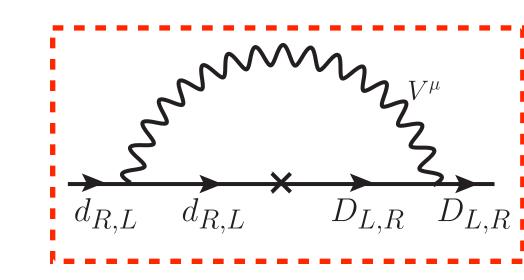
• $\bar{\theta}$ is given by

$$\overline{\vartheta} = \text{Im } \text{Tr}C_1 + \text{Im } \text{Tr}(C_2 - \frac{1}{2}C_1^2) + \dots$$

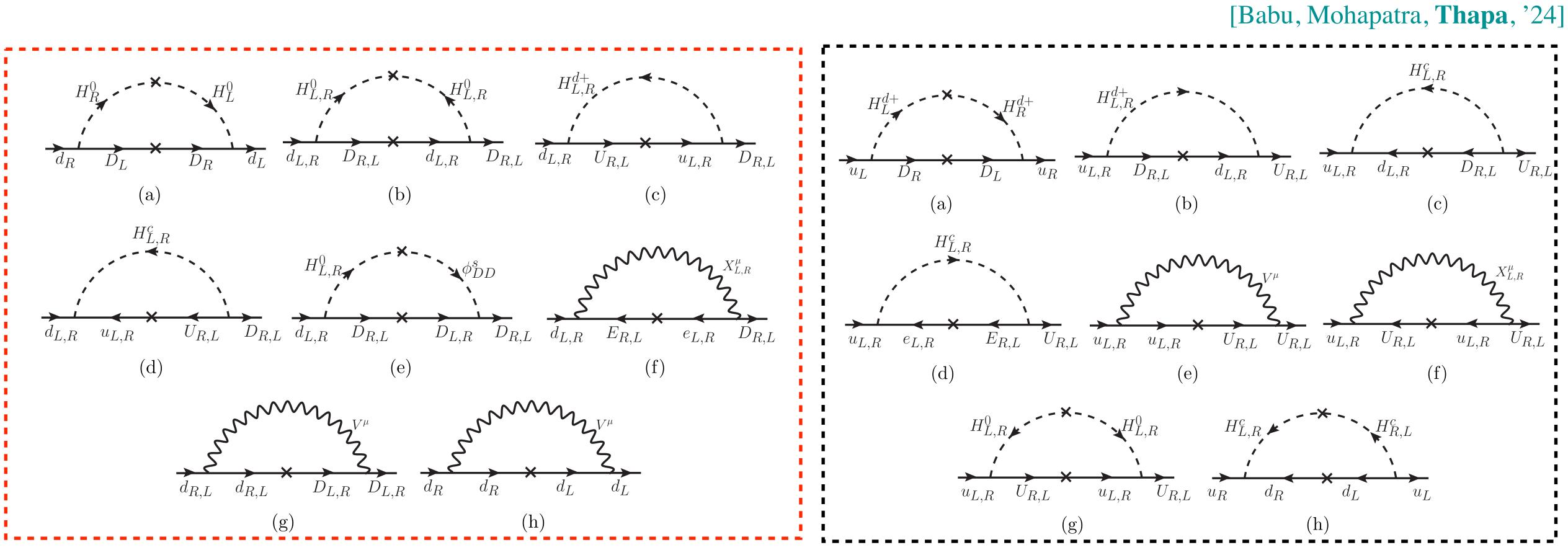
$$\bar{\vartheta} = \operatorname{Im} \operatorname{Tr} \left[-\frac{v_{\phi}}{\kappa_{L}\kappa_{R}} \delta M_{LL}^{d} (Y_{d}^{\dagger})^{-1} Y_{D} Y_{d}^{-1} + \frac{1}{\kappa_{L}} \delta M_{LH}^{d} Y_{d}^{-1} + \frac{1}{\kappa_{R}} \delta M_{HL}^{d} (Y_{d}^{\dagger})^{-1} \right]$$

• Convenient to work in the flavor basis, where the mass matrices M_{μ} and M_{d} are treated as part of

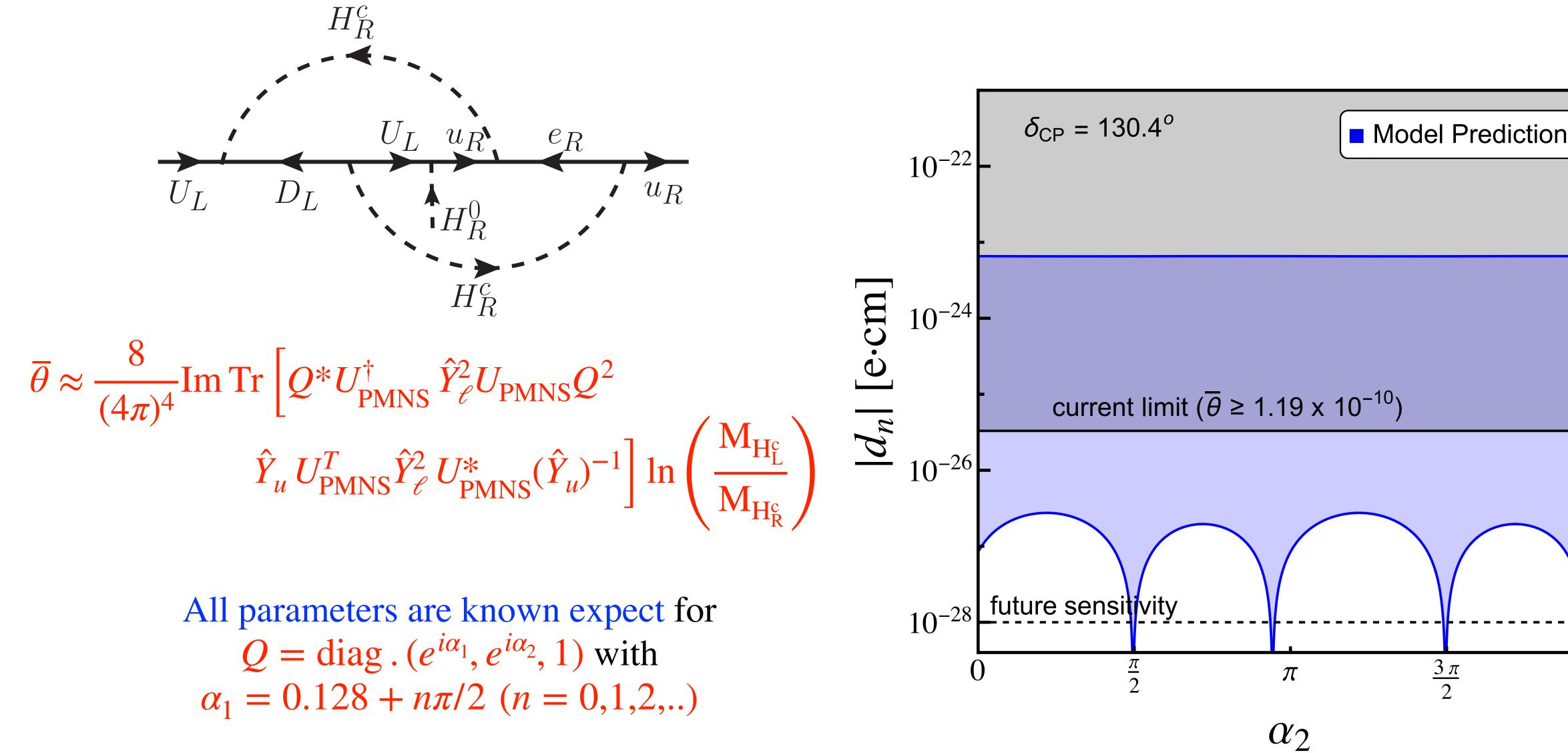
$$C = C_1 + C_2 + \dots$$
 contribution
from 1-loop, 2-loop, ...



Vanishing of one loop θ



Each diagram individually gives $\bar{\theta} = 0$



Two loop contribution to θ

- Universal LRSM has natural embedding in $SU(5)_L \times SU(5)_R$
- Open questions in neutrino oscillations > Absolute mass scale and mass hierarchy? ✓ $m_{\nu_1} = (4.8 - 8.4)$ meV and Normal hierarchy > Are neutrinos their own antiparticle? Dirac neutrino via type-II seesaw > Is there CP Violation in lepton sector? Predicts $\delta_{CP} = (130.4 \pm 1.2)^\circ$ or $(229.6 \pm 1.2)^\circ$ > Why is neutrino mass so tiny? ✓ Dirac mass suppressed by $\mathcal{O}(M_I/M_G) \approx 10^{-7}$
- The model solves strong CP problem without the need for an axion $\bar{\theta} = 0$ at tree level and one-loop level.
- No $0\nu\beta\beta$ and suppressed proton decay

Summary

Thank you for your time

Renormalization group evolution of $\overline{\theta}$

- There is the possibility that extrapolation of the Yukawa couplings by the RGE from the GUT scale to the weak scale could generate a nonzero $\bar{\theta}$
- The induced $\bar{\theta}$ via RGE from the up-quark sector read as

$$\delta(\bar{\theta}) = \operatorname{Im} \operatorname{Tr} \left[\frac{d}{dt} \left(Y_{uL} Y_{uR}^{\dagger} \right) \left(Y_{uL} Y_{uL}^{\dagger} \right)^{-1} \right]$$

$$\beta^{(1)}\left(Y_{uL}\right) = +\frac{3}{2}Y_{uL}Y_{uL}^{\dagger}Y_{uL} - \frac{3}{2}Y_{dL}Y_{dL}^{\dagger}Y_{uL} + 3\operatorname{Tr}\left(Y_{uL}^{\dagger}Y_{uL}\right)Y_{uL} + 3\operatorname{Tr}\left(Y_{dL}^{\dagger}Y_{dL}\right)Y_{uL} + \operatorname{Tr}\left(Y_{lL}^{\dagger}Y_{lL}\right)Y_{uL} - \frac{17}{20}g_{1L}^{2}Y_{uL} - \frac{9}{4}g_{2L}^{2}Y_{uL} - 8g_{3L}^{2}Y_{uL} - 8$$

• $\frac{d}{dt}\left(Y_{uL}Y_{uR}^{\dagger}\right)$ is a hermitian matrix \implies does not generate $\bar{\theta}$ if the initial $\bar{\theta}$ is zero *NI*

Fermion mass fitting

• Redefine the down-type quarks (d, D) and the charged leptons (e, E) to go from the original basis to new basis such that \hat{M}_{ℓ} and \hat{M}_{μ} are diagonal

 $d_L = V_R P^* d'_L, \quad d_R = V_R P^* d'_R, \quad D_L = Q U_{\text{PMNS}}^T D'_L, \quad D_R = Q U_{\text{PMNS}}^T D'_R e_L = Q^* U_{\text{PMNS}}^\dagger e'_L, \quad e_R = Q^* U_{\text{PMNS}}^\dagger$ $e'_{R}, \quad \nu_{L} = Q^{*}\nu'_{L}, \quad \nu_{R} = Q^{*}\nu'_{R}E_{L} = V^{*}_{R}PE'_{L}, \quad E_{R} = V^{*}_{R}PE'_{R}.$

$$M_{u} = \begin{pmatrix} 0 & \hat{M}_{u} \kappa_{L} \\ \hat{M}_{u} \frac{\kappa_{R}}{\kappa_{L}} & 0 \end{pmatrix}, \qquad M_{\ell} = \begin{pmatrix} 0 & \hat{M}_{\ell} \kappa_{L} \\ \hat{M}_{\ell} \frac{\kappa_{R}}{\kappa_{L}} & 0 \end{pmatrix}, \qquad M_{d} = \begin{pmatrix} 0 & \hat{M}_{\ell} \\ \hat{M}_{\ell} \frac{\kappa_{R}}{\kappa_{L}} & \frac{v_{\phi}}{v_{\nu}} U_{\text{PMNS}}^{*} \hat{M}_{\nu} U_{\text{PMNS}}^{T} \end{pmatrix}$$
$$\xi_{L}^{\dagger} M_{d} \xi_{R} = \text{diag} \cdot \begin{pmatrix} m_{d}, m_{s}, m_{b}, m_{D_{1}}, m_{D_{2}}, m_{D_{3}} \end{pmatrix} \text{ where } \xi_{L,R} = \begin{pmatrix} \xi^{11} & \xi^{12} \\ \xi^{21} & \xi^{22} \end{pmatrix}_{L,R}$$
$$\text{matrix is given by } V_{\text{CKM}} = P'^{*} V_{R} P^{*} \xi_{L}^{11} Q'^{*}$$

• CKM

$$m_{D_1}(M_I) = 1.05 \times 10^7 \text{ GeV}$$
 $m_{D_2}(M_I) =$

unspecified unitary matrix V_R , thus V_{CKM} is unconstrained

 $m_{D_1}(M_I) = 4.38 \times 10^9 \text{ GeV}$ $= 1.62 \times 10^8 \text{ GeV}$

