Flavoured Dark Matter: from Freeze-Out Scenarios to LHC Signatures

Monika Blanke

FLASY 2024 Irvine – June 25. 2024

Two major puzzles of matter

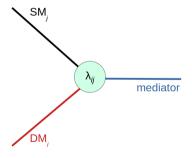
Flavour puzzle

- Why does visible matter come in three generations?
- Why are their masses so hierarchical?
- Why is flavour violation so small?

Dark matter puzzle

- What is the dark matter (DM) of the universe made of?
- How was it created?
- How does it couple to ordinary matter?

potential link: flavoured dark matter


What is flavoured dark matter?

© Bing 2024

Assumptions

- dark matter comes in three generations
- dark flavour triplet couples to SM flavour triplet via new mediator field
- new flavour-violating coupling matrix λ

Simplified models as tools to approach big puzzles

Fundamental UV-complete theory

- theoretical description up to high energy scales, based on fundamental symmetries
- addresses fundamental puzzles
- phenomenologically challenging: non-trivial connection to observables

Simplified models

- contain minimal set of relevant particles and interactions
- useful tool for efficient phenomenological studies
- constraints on classes of UV-complete theories

The flavoured DM simplified model space

Model-building choices

- the nature of DM
 - scalar or fermion
 - real or complex representation
 - > 4 options
- the SM fermion portal
 - quarks or leptons
 - left- or right-handed. . .
 - > 5 options
- the flavour structure
 - Minimal Flavour Violation (MFV) or beyond

In this talk

- Majorana fermion flavoured DM coupled to right-handed up-type quarks
- Dark Minimal Flavour Violation (DMFV)

AGRAWAL, MB, GEMMLER (2014)

- dark flavour symmetry O(3)
- ullet broken only by new coupling matrix λ
- > minimal step beyond MFV

talk based on:

Acaroğlu, MB (2021)

ACAROĞLU, MB, HEISIG, KRÄMER, RATHMANN (2023) illustrations: HEISIG @ MORIONDEW 2024

The model

Model basics

The model

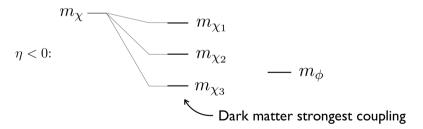
Acaroğlu, MB (2021)

$$\mathcal{L}_{\mathsf{dark}} = \frac{1}{2} \left(i \overline{\chi} \partial \!\!\!/ \chi - M_{\chi} \overline{\chi} \chi \right) - \left(\lambda_{ij} \overline{u}_{Ri} \chi_{j} \phi + \mathsf{h.c.} \right)$$
$$+ (D_{\mu} \phi)^{\dagger} (D^{\mu} \phi) - m_{\phi}^{2} \phi^{\dagger} \phi - V(\phi, H)$$

- ullet Majorana fermion χ : gauge singlet, triplet under new approx. flavour symmetry $O(3)_\chi$
- \bullet complex scalar ϕ : colour & hypercharge, couples DM to right-handed up-type quarks
- flavour-violating coupling matrix λ with 15 parameters

$$\lambda = UDOd$$

U: unitary, O: orthogonal, d: Majorana phases, $D = \operatorname{diag}(D_1, D_2, D_3)$ diagonal

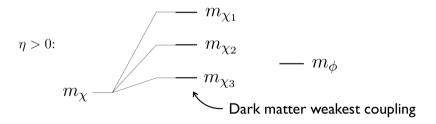

• \mathbb{Z}_2 symmetry: χ and ϕ odd to stabilise DM

DMFV and the mass spectrum

DMFV ansatz ties DM mass spectrum to coupling strength via spurion expansion

$$m_{\chi_i} = m_\chi (\mathbb{1} + \eta \, \mathsf{Re}(\lambda^\dagger \lambda) + \dots)_{ii} \simeq m_\chi \, igl[1 + \eta \, D_i^2 igr]$$

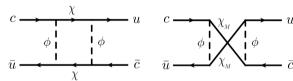
Standard hierarchy



DMFV and the mass spectrum

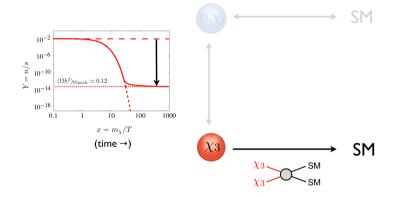
DMFV ansatz ties DM mass spectrum to coupling strength via spurion expansion

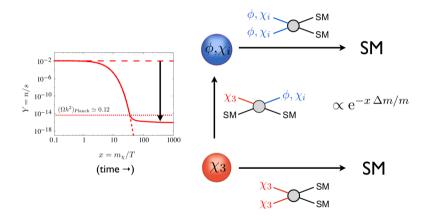
$$m_{\chi_i} = m_\chi (\mathbb{1} + \eta \operatorname{Re}(\lambda^\dagger \lambda) + \dots)_{ii} \simeq m_\chi \left[1 + \eta D_i^2 \right]$$


Inverse hierarchy

Experimental constraints

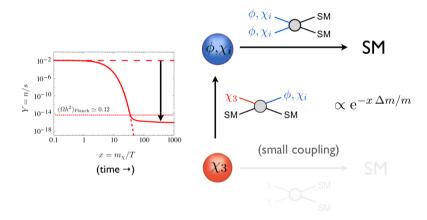
Acaroğlu, MB (2021)


ullet flavour constraints: neutral D meson mixing

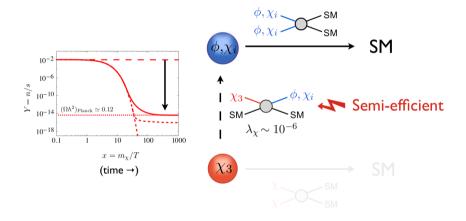

- direct detection limits: latest results from LZ experiment
- indirect detection constraints: cosmic-ray antiproton flux from AMS-02
- DM relic density: different possible freeze-out scenarios
- LHC searches: depending on dark spectrum

Freeze-out

DM freeze-out scenarios I: standard WIMP freeze-out



DM freeze-out scenarios II: coannihilation


GRIEST, SECKEL (1991); BELL, CAI, MEDINA (2013)

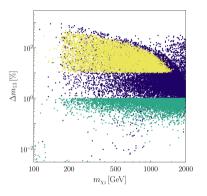
DM freeze-out scenarios II: coannihilation

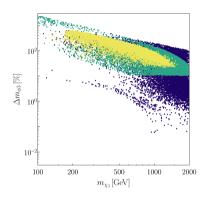
GRIEST, SECKEL (1991); BELL, CAI, MEDINA (2013)

DM freeze-out scenarios III: conversion-driven

Garny, Heisig, Lülf, Vogl (2017); D'Agnolo, Pappadopulo, Ruderman (2017)

Canonical freeze-out

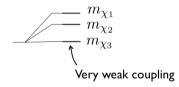

large couplings: efficient conversions between all \mathbb{Z}_2 -odd particles \succ thermal equlibrium

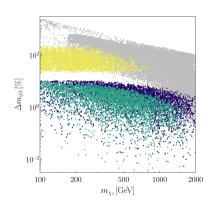

Scenarios

Acaroğlu, MB (2021); Acaroğlu, MB, Heisig, Krämer, Rathmann (2023)

- Single Flavour Freeze-Out (SFF)
 - significant mass splitting (> 10%) between χ_3 and other odd particles
 - standard WIMP scenario, coannihilations irrelevant
- Quasi-Degenerate Freeze-Out (QDF)
 - small mass splitting (< 1%) between χ_i flavours
 - all flavours contribute equally to freeze-out, according to their couplings
- Generic Canonical Freeze-Out (GCF)
 - no constraint on mass spectrum
 - captures relevant coannihilation effects

Canonical freeze-out scenarios – viable parameter space

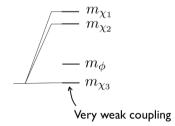

- coannihilation effects open up significant region of parameter space
- ullet quasi-degenerate mediator ϕ dilutes relic abundance due to QCD annihilations

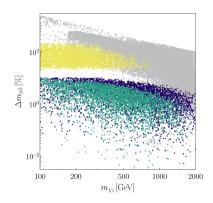

Conversion-driven freeze-out

Scenarios

• $\chi_2\chi_3$ -conversion $(C_\chi 1_u)$

$$\eta > 0$$
:
 m_{ϕ}

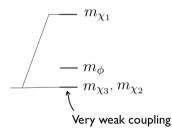


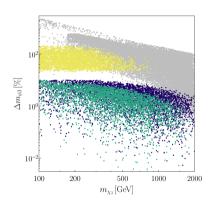

Conversion-driven freeze-out

Scenarios

- $\chi_2\chi_3$ -conversion $(C_\chi 1_u)$
- $\chi_3\phi$ -conversion $(C_\phi 1_u)$

$$\eta > 0$$
:

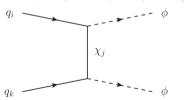




Conversion-driven freeze-out

Scenarios

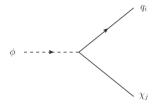
- $\chi_2\chi_3$ -conversion $(C_\chi 1_u)$
- $\chi_3 \phi$ -conversion $(C_\phi 1_u)$
- $\chi_{2,3}\phi$ -conversion $(C_{\phi}2_u)$ $\eta > 0$:


LHC signatures

Relevant LHC processes

Mediator pair-production

- QCD interactions (c.f. SUSY squarks)
- \bullet *t*-channel exchange of χ
- same-sign production due to Majorana nature of χ > enhanced for $uu \to \phi\phi$

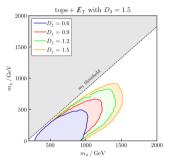

see also GARNY, IBARRA, PATO, VOGL (2013)

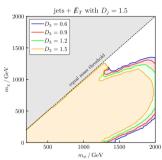
Acaroğlu, MB (2021) Acaroğlu, MB, Heisig, Krämer, Rathmann (2023)

Mediator decay

 \bullet determined by flavour structure of λ

- final states involving u, c, t and E_T
- ullet chain decays via intermediate $\chi_{1,2}$ states
- soft and long-lived signatures for quasi-degenerate spectrum and/or small couplings


Constraints from vanilla LHC searches


Mediator pair-production

- applicable constraints from SUSY squark searches
- ullet relevant final states $jj, tar{t} + E_T$
- cross-section affected by t-channel contribution
- ullet branching ratios determined by flavour structure of λ

Monojet

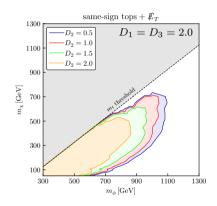
• competitive mainly in compressed region
c.f. Papucci, Vichi, Zurek (2014)

Limits on flavoured Majorana DM

- sensitivity strongly depends on coupling pattern
- strongest bound for $m_\chi \neq 0$ due to same-sign production Acaroğlu, MB (2021)

Unexplored signature I: same-sign tops from Majorana DM

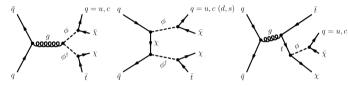
Same-sign top signature

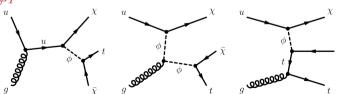

Acaroğlu, MB (2021)

$$pp \to \phi \phi \to tt + E_T$$

- top charge accessible in dilepton final state
- cross-section in the fb regime

Naive reach estimate using CMS $ttjj+E_T$ search

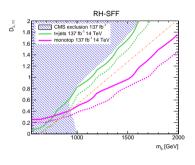

- different kinematics ➤ not fully applicable
- highest reach for non-zero DM mass
- ullet rate suppressed by ${\rm BR}(t o b\ell
 u)^2 \sim 0.05$ and requirement of extra jets
- \triangleright not competitive (?) with jets+ E_T

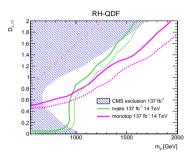

Unexplored signature II: single-top final states

Flavoured DM also induces flavour-violating final states – accessible with single-top

ullet $t+j+{E_T\over T}$ (dominated by mediator pair-production)

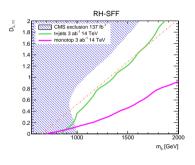


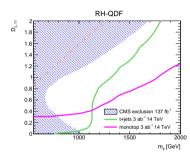

• "monotop" $t + E_T$



MB, Pani, Polesello, Rovedi (2020)

(HL-)LHC reach for single-top final states



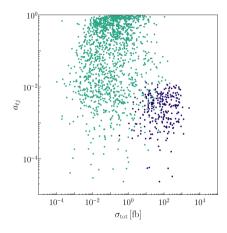

Dedicated single-top searches (shown: up-flavoured Dirac DM)

- cover additional parameter space
- probe thermal freeze-out in SFF scenario

(HL-)LHC reach for single-top final states

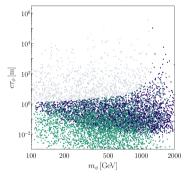
Dedicated single-top searches (shown: up-flavoured Dirac DM)

- cover additional parameter space
- probe thermal freeze-out in SFF scenario
- have significant discovery reach in particular at HL-LHC


Unexplored signature III: single-top charge asymmetry

Single-top charge asymmetry for Majorana DM

- combine previous insights on same-sign production and flavour-violating final states
- consider single-top charge asymmetry


$$a_{tj} = \frac{\sigma(tj + \cancel{E}_T) - \sigma(\bar{t}j + \cancel{E}_T)}{\sigma(tj + \cancel{E}_T) + \sigma(\bar{t}j + \cancel{E}_T)}$$

- ullet $a_{tj}>0$ only for Majorana flavoured DM $a_{tj}\sim0$ for Dirac flavoured DM
- > highly promising smoking gun signature!

Unexplored signatures IV: LLPs with intermediate lifetimes

Conversion-driven freeze-out

- relevant limit (C_{ϕ}) : stable R-hadrons (using SModelS reinterpretation tool)
- intermediate lifetimes not constrained

Opportunities for future LLP searches

➤ LLPs with intermediate decay lengths and soft decay products

Covering entire lifetime range

- searches for heavy stable charged particles
- searches for diasppearing tracks
- searches for displaced jets
- ullet E_T searches

EISIG, LESSA, RAMOS (2024)

Conclusions

Flavored dark matter

- potential link between flavour and dark matter puzzles
- rich phenomenology in direct & indirect detection, flavour and collider physics
- large regions of viable parameter space

Dark matter freeze-out scenarios

- canonical
 - standard WIMP
 - coannihilation
- conversion-driven
 - different possibilities depending on flavour structure

LHC signatures

- current gaps in LHC searches
 - complex decay chains, esp. with soft final states
 - long-lived particles (intermediate lifetimes)
 - flavour-violating final states
- Majorana-DM specific signatures
 - ullet same-sign tops suffer from small $\mathsf{BR}(t o b\ell
 u)$
 - single-top charge asymmetry promising