

UC San Diego

Cutting operators with MATCHETE

automatic reduction to a minimal EFT basis and treatment of evanescent operators

Based on [2012.08506], [2212.04510] and [2211.09144] in collaboration with Javier Fuentes-Martín, Matthias König, Anders Eller Thomsen and Felix Wilsch

FLASY, UCI June 24, 2024

ATLAS Heavy P	article Sea	rches	s* - 9	5% CL Upper Exclusion Limits		ATLA	S Preliminary
Status: March 2023					$\int \mathcal{L} dt = (3$.6 – 139) fb ⁻¹	\sqrt{s} = 13 TeV
Model	ℓ , γ Jets	E E T	∫£ dt[fl	⁻¹] Limit	,		Reference
ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		139 36.7 139 3.6 139 36.1 36.1 36.1	M _D Ms Ms Mth Mth Mth Gкк mass 2.3 TeV gкк mass 1.8 TeV	9.55 TeV 4.5 TeV 3.8 TeV	n = 2 n = 3 HLZ NLO n = 6 $n = 6, M_D = 3 \text{ TeV, rot BH}$ $k/\overline{M}_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 1.0$ $\Gamma/m = 15\%$ Tier (1,1), $\mathcal{B}(A^{(1,1)} \rightarrow tt) = 1$	2102.10874 1707.04147 1910.08447 1512.02586 2102.13405 1808.02380 1804.10823 1803.09678
SSM $Z' \rightarrow \ell\ell$ SSM $Z' \rightarrow \tau\tau$ Leptophobic $Z' \rightarrow bb$ Leptophobic $Z' \rightarrow tt$ SSM $W' \rightarrow \ell\nu$ SSM $W' \rightarrow \tau\nu$ SSM $W' \rightarrow tb$ HVT $W' \rightarrow WZ$ model B HVT $W' \rightarrow WZ \rightarrow \ell\nu \ell'\ell'$ model B HVT $Z' \rightarrow WW$ model B LRSM $W_R \rightarrow \mu N_R$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Yes Yes IJ – J Yes ⁼) Yes	139 36.1 139 139 139 139 139 139 139 139 139 80	Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 2.1 TeV Z' mass 2.1 TeV W' mass 340 GeV Z' mass 340 GeV W _R mass 2.1 TeV		$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V c_H = 1, g_f = 0$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 ATLAS-CONF-2021-025 ATLAS-CONF-2021-043 2004.14636 2207.03925 2004.14636 1904.12679
Cl qqqq Cl ℓℓqq Cl eebs Cl μμbs Cl tttt	$\begin{array}{cccc} - & 2 \mathrm{j} \\ 2 e, \mu & - \\ 2 e & 1 \mathrm{b} \\ 2 \mu & 1 \mathrm{b} \\ \geq 1 e, \mu & \geq 1 \mathrm{b}, \geq \end{array}$	- - - 1 j Yes	37.0 139 139 139 36.1	Λ Λ Λ 1.8 TeV Λ 2.0 TeV Λ 2.57 TeV	_	$\begin{array}{c c} \textbf{21.8 TeV} & \eta_{LL}^- \\ \textbf{35.8 TeV} & \eta_{LL}^- \\ g_* = 1 \\ g_* = 1 \\ C_{4t} = 4\pi \end{array}$	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac DM) Vector med. Z'-2HDM (Dirac Pseudo-scalar med. 2HDM+a	DM) 0 <i>e</i> , <i>µ</i> 2 b	– Yes Yes	139 139 139 139	m _{med} 376 GeV m _{Z'} 3.0 T m _a 800 GeV	3.8 TeV TeV	g_q =0.25, g_{χ} =1, $m(\chi)$ =10 TeV g_q =1, g_{χ} =1, $m(\chi)$ =1 GeV $\tan \beta$ =1, g_Z =0.8, $m(\chi)$ =100 GeV $\tan \beta$ =1, g_{χ} =1, $m(\chi)$ =10 GeV	ATL-PHYS-PUB-2022-036 2102.10874 2108.13391 ATLAS-CONF-2021-036
Scalar LQ 1st genScalar LQ 2nd genScalar LQ 3rd genVector LQ mix genVector LQ 3rd gen	$\begin{array}{cccc} 2 \ e & \geq 2 \ j \\ 2 \ \mu & \geq 2 \ j \\ 1 \ \tau & 2 \ b \\ 0 \ e, \mu & \geq 2 \ j, \geq 2 \\ \geq 2 \ e, \mu, \geq 1 \ \tau & \geq 1 \ j, \geq 1 \\ 0 \ e, \mu, \geq 1 \ \tau & 0 - 2 \ j, 2 \\ \end{array}$ multi-channel $\geq 1 \ j, \geq 1 \\ 2 \ e, \mu, \tau & \geq 1 \ b \end{array}$	b – 2 b Yes b Yes	139 139 139 139 139 139 139 139	LQ mass 1.8 TeV LQ mass 1.7 TeV LQ" mass 1.49 TeV LQ" mass 1.24 TeV LQ" mass 1.43 TeV LQ" mass 1.26 TeV LQ" mass 2.0 TeV LQ" mass 1.96 TeV		$\begin{split} &\beta = 1 \\ &\beta = 1 \\ &\mathcal{B}(\mathrm{LQ}_3^u \to b\tau) = 1 \\ &\mathcal{B}(\mathrm{LQ}_3^u \to t\nu) = 1 \\ &\mathcal{B}(\mathrm{LQ}_3^d \to t\tau) = 1 \\ &\mathcal{B}(\mathrm{LQ}_3^d \to b\nu) = 1 \\ &\mathcal{B}(\tilde{U}_1 \to t\mu) = 1, \text{ Y-M coupl.} \\ &\mathcal{B}(\mathrm{LQ}_3^V \to b\tau) = 1, \text{ Y-M coupl.} \end{split}$	2006.05872 2006.05872 2303.01294 2004.14060 2101.11582 2101.12527 ATLAS-CONF-2022-052 2303.01294
VLQ $TT \rightarrow Zt + X$ VLQ $BB \rightarrow Wt/Zb + X$ VLQ $T_{5/3}T_{5/3} T_{5/3} \rightarrow Wt + X$ VLQ $T \rightarrow Ht/Zt$ VLQ $Y \rightarrow Wb$ VLQ $B \rightarrow Hb$ VLL $\tau' \rightarrow Z\tau/H\tau$	$1 e, \mu \ge 1 b, \ge 1$	1 j Yes 3 j Yes 1 j Yes	139 36.1 139 36.1 139 36.1 139 139	T mass 1.46 TeV B mass 1.34 TeV T _{5/3} mass 1.64 TeV T mass 1.8 TeV Y mass 1.85 TeV B mass 2.0 TeV τ' mass 898 GeV		SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ SU(2) singlet, $\kappa_T = 0.5$ $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ SU(2) doublet, $\kappa_B = 0.3$ SU(2) doublet	2210.15413 1808.02343 1807.11883 ATLAS-CONF-2021-040 1812.07343 ATLAS-CONF-2021-018 2303.05441
Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $p^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton τ^*	$ \begin{array}{ccc} - & 2 j \\ 1 \gamma & 1 j \\ - & 1 b, 1 \\ 2 \tau & \geq 2 j \end{array} $	_ _ j _ _	139 36.7 139 139	q* mass q* mass b* mass τ* mass	6.7 TeV 5.3 TeV ? TeV 4.6 TeV	only u^* and $d^*, \Lambda = m(q^*)$ only u^* and $d^*, \Lambda = m(q^*)$ $\Lambda = 4.6 \text{ TeV}$	1910.08447 1709.10440 1910.08447 2303.09444
Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Multi-charged particles Magnetic monopoles	2,3,4 <i>e</i> , μ ≥2 j 2 μ 2 j 2,3,4 <i>e</i> , μ (SS) various 2,3,4 <i>e</i> , μ (SS) - - - - - - -	Yes s Yes - - 13 TeV	139 36.1 139 139 139 34.4	N° mass910 GeVN _R mass3.2H±± mass350 GeVH±± mass1.08 TeVmulti-charged particle mass1.59 TeVmonopole mass2.37 TeV	2 TeV	$m(W_R) = 4.1 \text{ TeV}, g_L = g_R$ DY production DY production DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	2202.02039 1809.11105 2101.11961 2211.07505 ATLAS-CONF-2022-034 1905.10130
		data		10 ⁻¹ 1	10	Mass scale [TeV]	

Julie Pagès — UCSD — Cutting operators with MATCHETE

Why SMEFT?

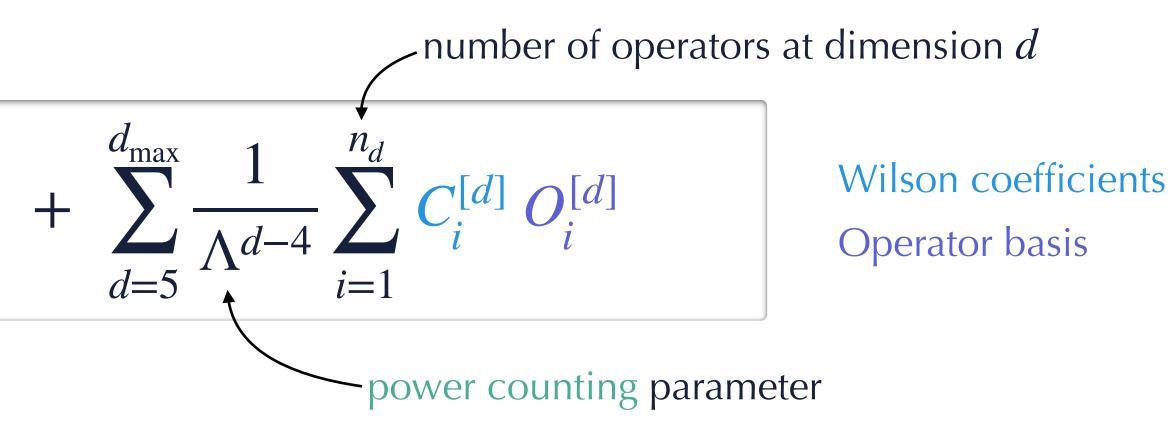
The EFT approach: bottom-up

Extend the SM with an organized tower of new operators:

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}}$$

Advantages:

- RG evolution known (for dim 6 and most of dim 8)
- Generic commonly-used description to parametrize new physics


 \hookrightarrow many fitting tools developed:

and likelihood generators:

Julie Pagès — UCSD — Cutting operators with MATCHETE

Limitation of the bottom-up EFT approach:

- Too many parameters! 1) 2 499 (B conserving) operators at dim 6 36 971 (B conserving) operators at dim 8 • • •
- no correlation between parameters 2)
- 3) only valid up to a cutoff scale \rightarrow EFT is not a fundamental theory

But

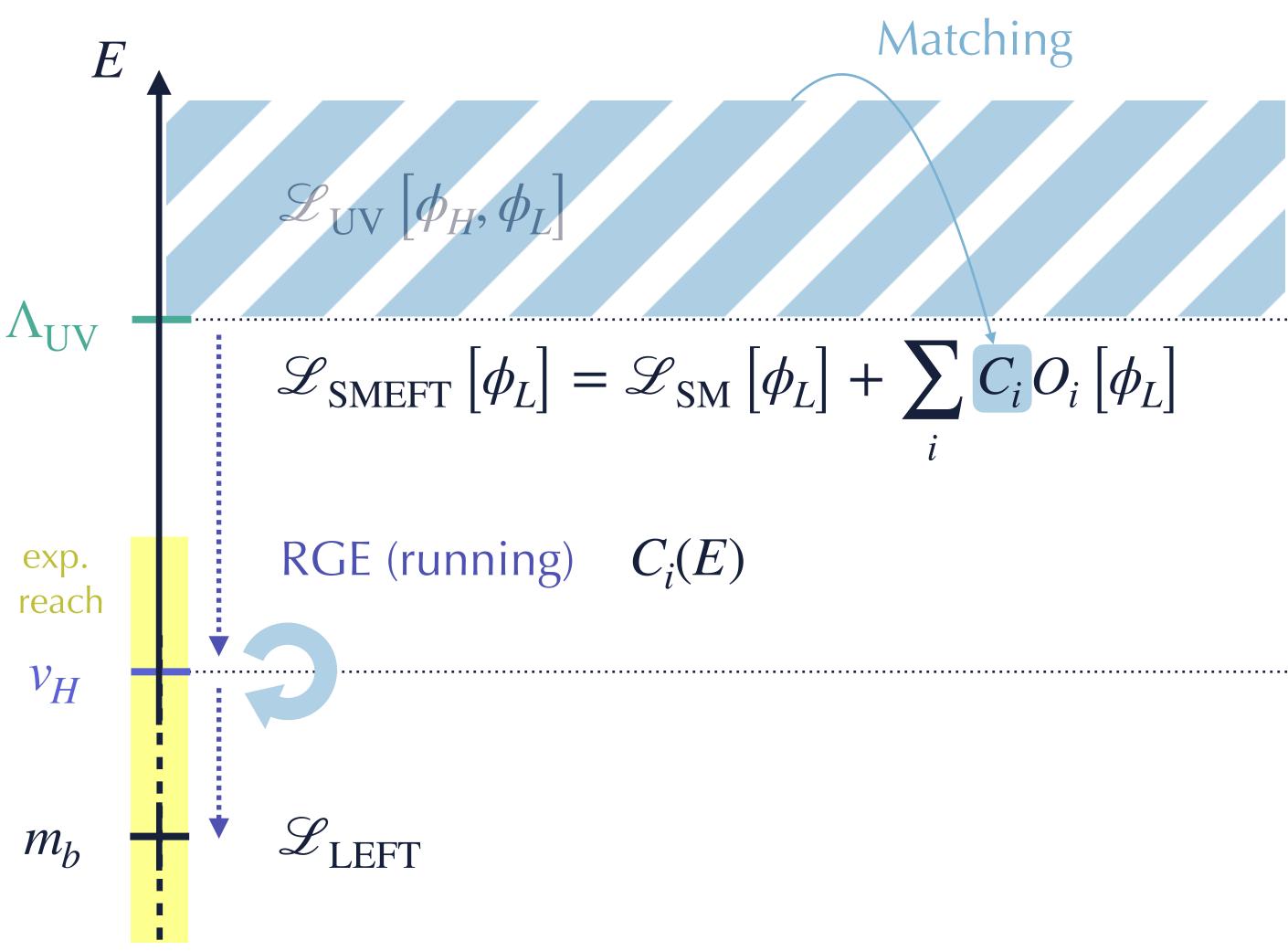
- new RGE needed for each theory
- new observables calculation for each theory

Take best of both worlds: the top-down EFT approach

Julie Pagès — UCSD — Cutting operators with MATCHETE

A need for the UV

counting with Hilbert series [Henning, Lu, Melia, Murayama, 1512.03433]


 \Rightarrow start from a renormalizable UV theory $\rightarrow 1$ (2) (3)

\rightarrow less predictive

The EFT approach: top-down

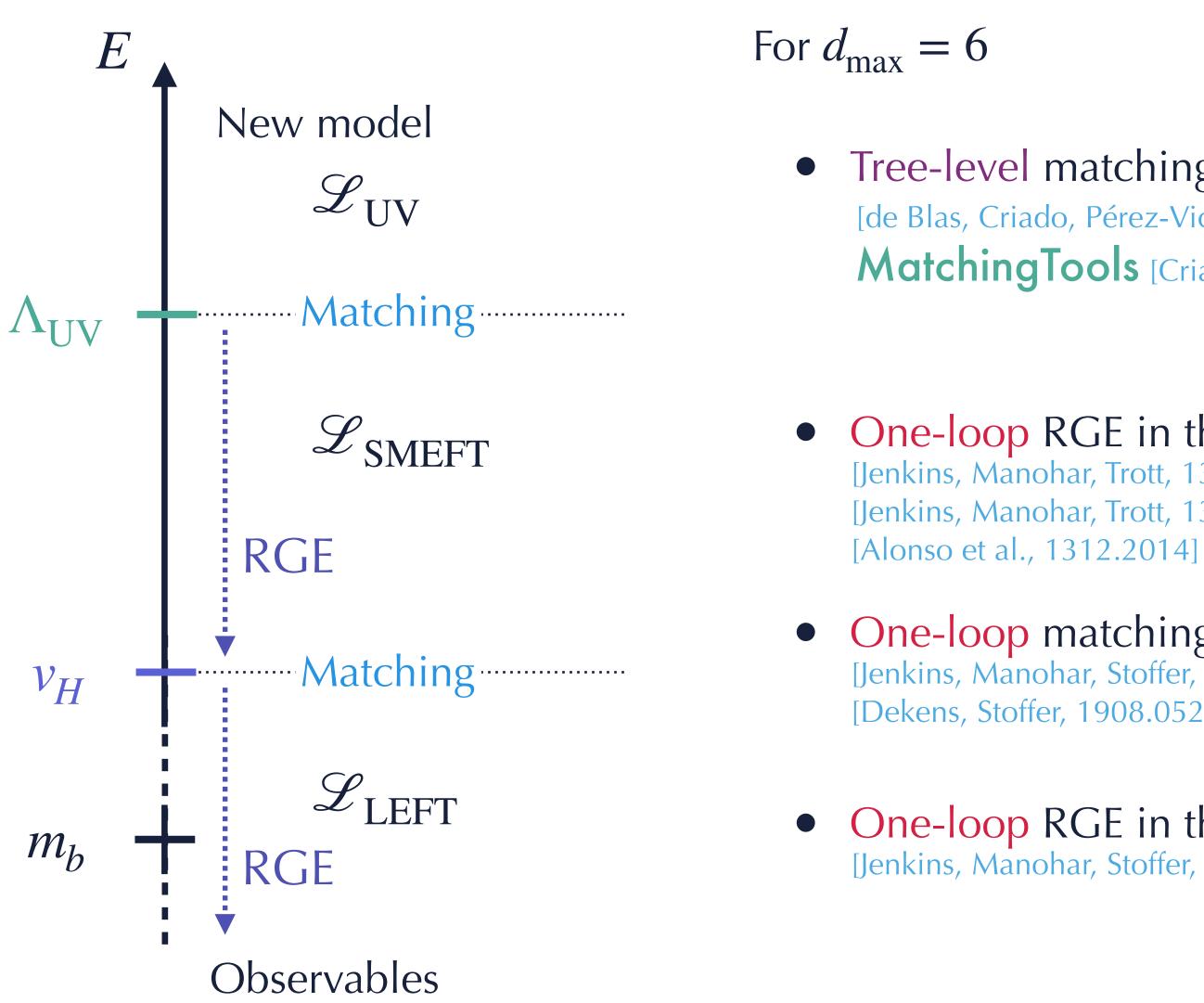
Julie Pagès — UCSD — Cutting operators with MATCHETE

The top-down EFT approach:

Combine the reusability of EFTs with the predictivity of UV theories.

Match at Λ_{IIV}

Run from $\Lambda_{\rm UV}$ to $v_{\rm H}$


(Repeat)

Compare at observable scale (e.g. m_b)

The EFT approach: developed tools

Julie Pagès — UCSD — Cutting operators with MATCHETE

• Tree-level matching to the SMEFT for generic NP mediators

[de Blas, Criado, Pérez-Victoria, Santiago, 1711.10391] MatchingTools [Criado, 1710.06445]

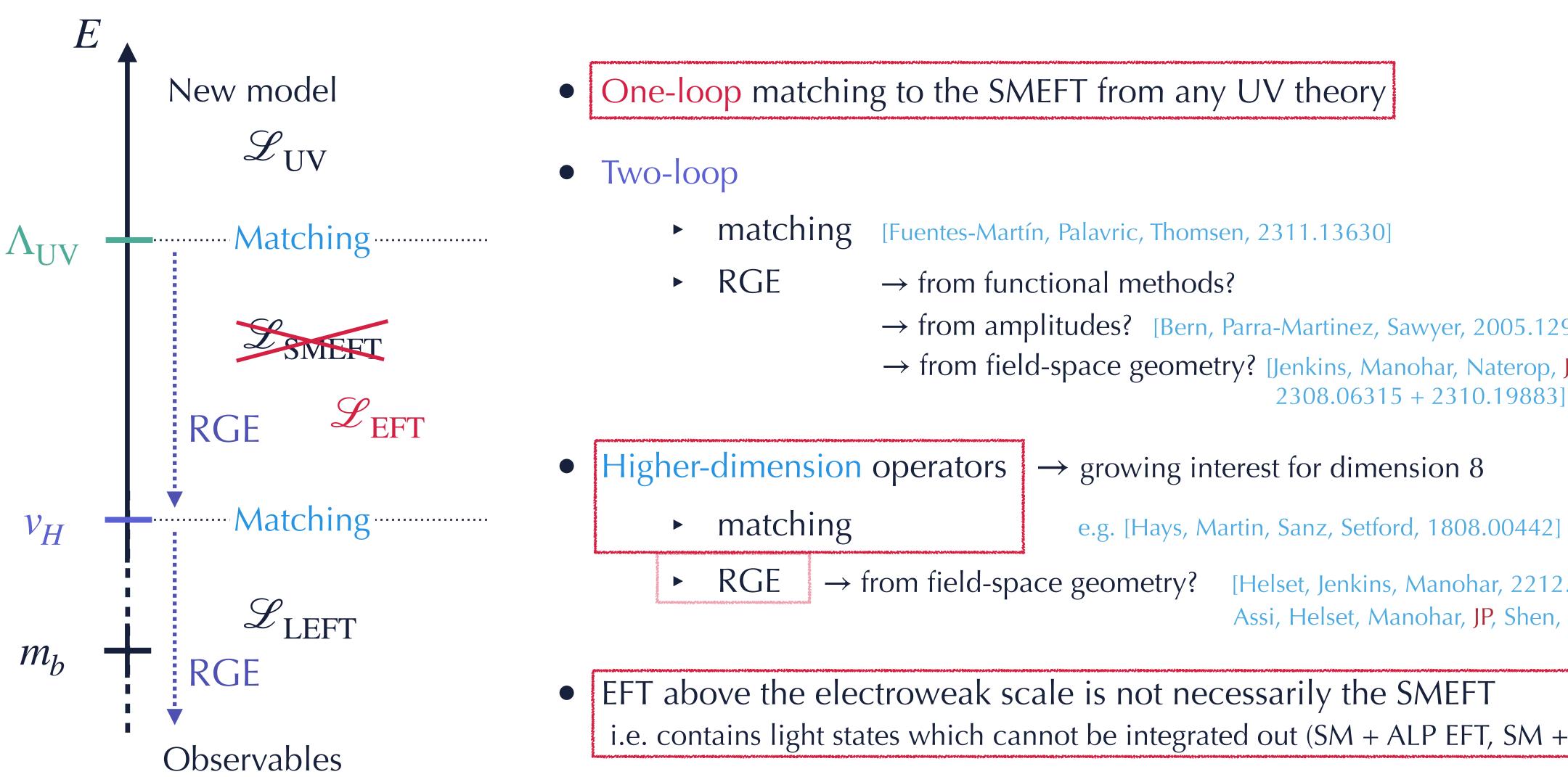
• One-loop RGE in the SMEFT

[Jenkins, Manohar, Trott, 1308.2627] [Jenkins, Manohar, Trott, 1310.4838]

One-loop matching of SMEFT to LEFT

[Jenkins, Manohar, Stoffer, 1709.04486] [Dekens, Stoffer, 1908.05295]

One-loop RGE in the LEFT [Jenkins, Manohar, Stoffer, 1711.05270]


[Cellis et al., 1704.04504] [Fuentes-Martín et al., 2010.16341]

[Aebischer, Kumar, Straub, 1804.05033]

The EFT approach: ongoing effort

Julie Pagès — UCSD — Cutting operators with MATCHETE

- - → from amplitudes? [Bern, Parra-Martinez, Sawyer, 2005.12917]
 - \rightarrow from field-space geometry? [Jenkins, Manohar, Naterop, JP,

 \rightarrow growing interest for dimension 8

e.g. [Hays, Martin, Sanz, Setford, 1808.00442] ...

[Helset, Jenkins, Manohar, 2212.03253; Assi, Helset, Manohar, JP, Shen, 2307.03187]

i.e. contains light states which cannot be integrated out (SM + ALP EFT, SM + DM EFT, \dots)

Automation of one-loop matching

One-loop matching from an arbitrary UV model to the corresponding EFT must be automatized since:

- there exists a jungle of new physics models
- calculations are very long and repetitive
- algorithmic nature of the computation is more suited for a machine than for a human

Tools to automate:

Functional methods

[Fuentes-Martín, König, JP, Eller Thomsen, Wilsch, 2212.04510]

IR/UV dictionary

Julie Pagès — UCSD — Cutting operators with MATCHETE

Diagrammatic methods

MatchMakerEFT

[Carmona, Lazopoulos, Olgoso, Santiago, 2112.10787]

[Guedes, Olgoso, Santiago, 2303.16965]

Functional matching

Matching procedure

For $m_H \gg m_I$, compute the Wilson coefficients $\{C_i\}$ as function of $\{\lambda_{UV}\}$ such that

Diagrammatic approach

Equate correlators from diagrams

N K $G_{\rm UV}(\{\lambda_{\rm UV}\}) =$ $G_{\text{EFT}}(\{C_i\})$

Julie Pagès — UCSD — Cutting operators with MATCHETE

 $\mathscr{L}_{\mathrm{IIV}}[\phi_H, \phi_I] \xrightarrow{E \ll m_H} \mathscr{L}_{\mathrm{EFT}}[\phi_L]$

Functional approach

MATCHETE

- Use background field method to compute path integral in UV theory
- Equate the 1LPI effective action

 $\Gamma_{\rm L,UV}(\{\lambda_{\rm UV}\})$ $\Gamma_{\text{EFT}}(\{C_i\})$

Matching procedure

For $m_H \gg m_L$, compute the Wilson coefficients $\{C_i\}$ as function of $\{\lambda_{UV}\}$ such that

Diagrammatic approach

- Traditional procedure, valid to any loop order
- Can be performed on-shell (more diagrams, no redundancies) or off-shell (only 1LPI diagrams, additional redundancies)
- EFT basis must be constructed by hand

Julie Pagès — UCSD — Cutting operators with MATCHETE

 $\mathscr{L}_{\mathrm{IIV}}[\phi_H, \phi_I] \xrightarrow{E \ll m_H} \mathscr{L}_{\mathrm{EFT}}[\phi_I]$

Functional approach

MATCHETE

- Recent developments at two-loop order
- Manifestly gauge invariant
- EFT basis is automatically derived (up to redundancies)

Loop expansion

Use background field method $\phi \rightarrow \hat{\phi} + \eta$ where

on the 1LPI effective action at m_H

$$e^{i\Gamma[\hat{\phi}]} = \int \mathcal{D}\eta \exp\left(i\int d^d x \,\mathscr{L}[\hat{\phi} + \eta]\right)$$

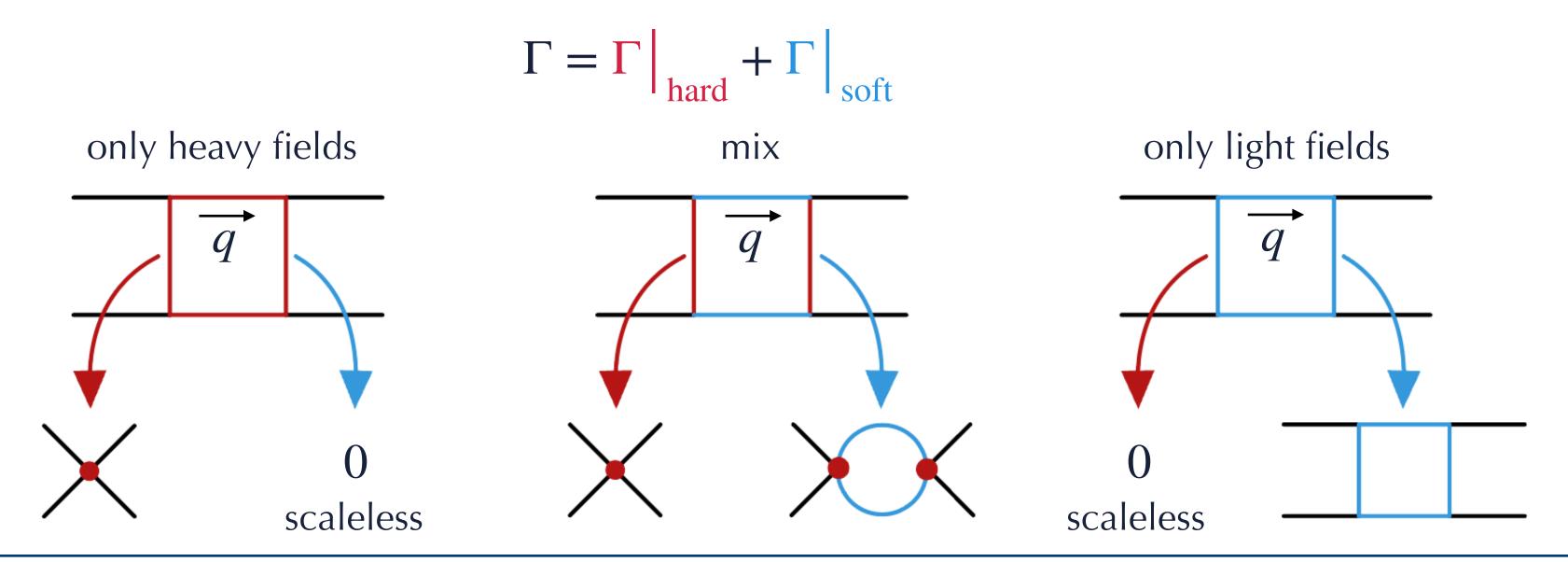
At one-loop:

$$\Gamma[\hat{\phi}] = S[\hat{\phi}] + \frac{i}{2} \operatorname{STr} \log \frac{\delta \mathscr{L}}{\delta \bar{\eta}_i \delta \eta_j} \bigg|_{\eta=0}$$

Julie Pagès — UCSD — Cutting operators with MATCHETE

$\hat{\phi}$: background field (tree line) η : quantum fluctuation (loop line)

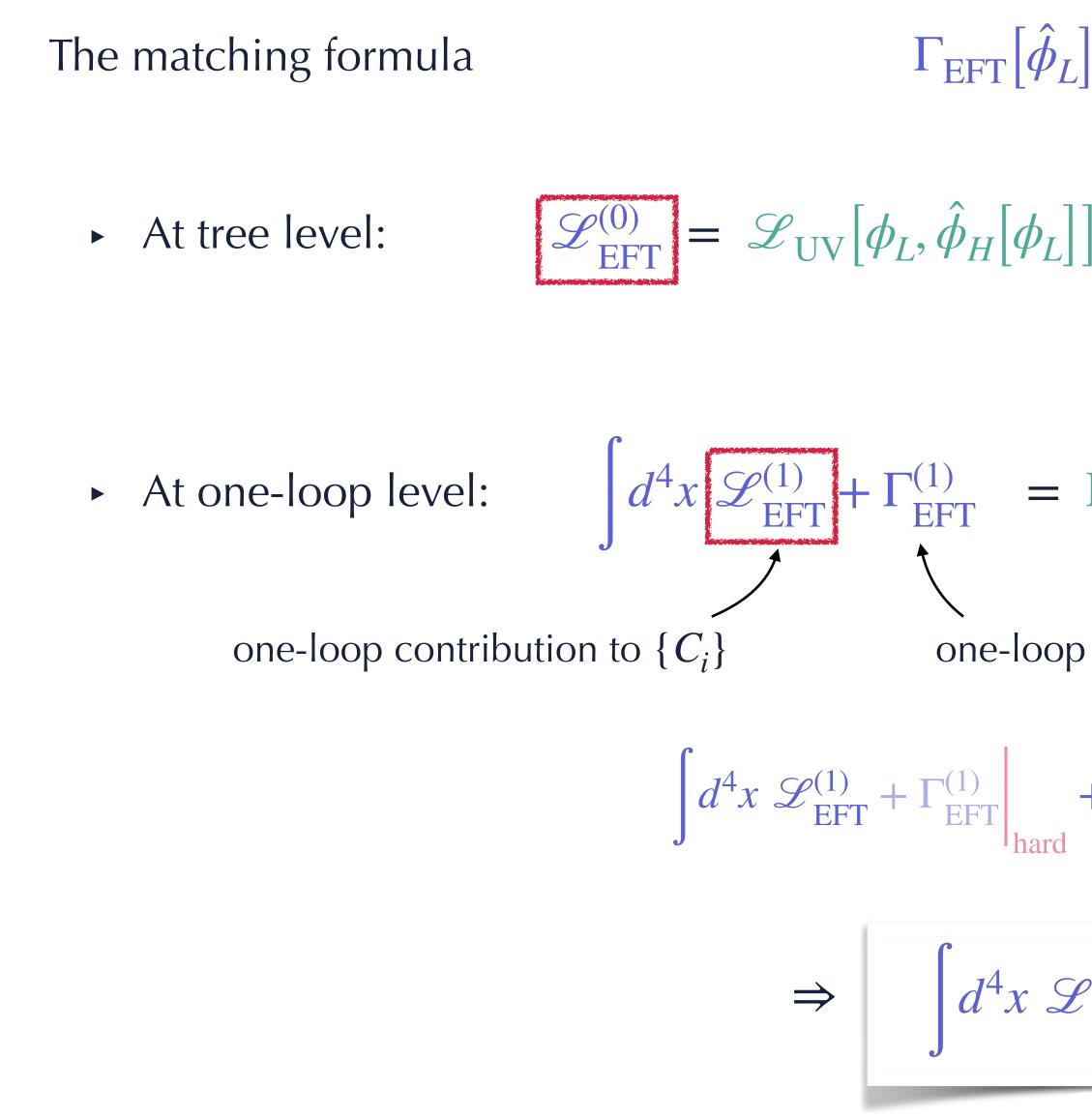
where
$$S[\hat{\phi}] = \int d^4x \mathscr{L}[\hat{\phi}]$$


EFT power counting expansion

Expand in inverse power of heavy scale m_H^{-1} and replace heavy field by its equation of motion $\phi_H[\phi_L]$

and use method of regions

$$\int I(q) d^d q = \int I(q \sim m_H) d^d q + \int I(q \sim m_L \ll m_H) d^d q$$


 \Rightarrow The 1LPI effective action can be split:

Julie Pagès — UCSD — Cutting operators with MATCHETE

Matching formula

Julie Pagès — UCSD — Cutting operators with MATCHETE

$$\begin{bmatrix} \hat{\phi}_L \end{bmatrix} = \Gamma_{L,UV} [\hat{\phi}_L] = \Gamma_{UV} [\hat{\phi}_L, \hat{\phi}_H [\hat{\phi}_L]]$$

$$\begin{bmatrix} \hat{\phi}_L \end{bmatrix} = 0 \quad \text{standard EOM technique}$$

$$\begin{bmatrix} \hat{\phi}_H \end{bmatrix}_{\phi_H = \hat{\phi}_H} = 0$$

$$\Gamma_{\rm UV}^{(1)}[\hat{\phi}_L,\hat{\phi}_H[\hat{\phi}_L]]$$

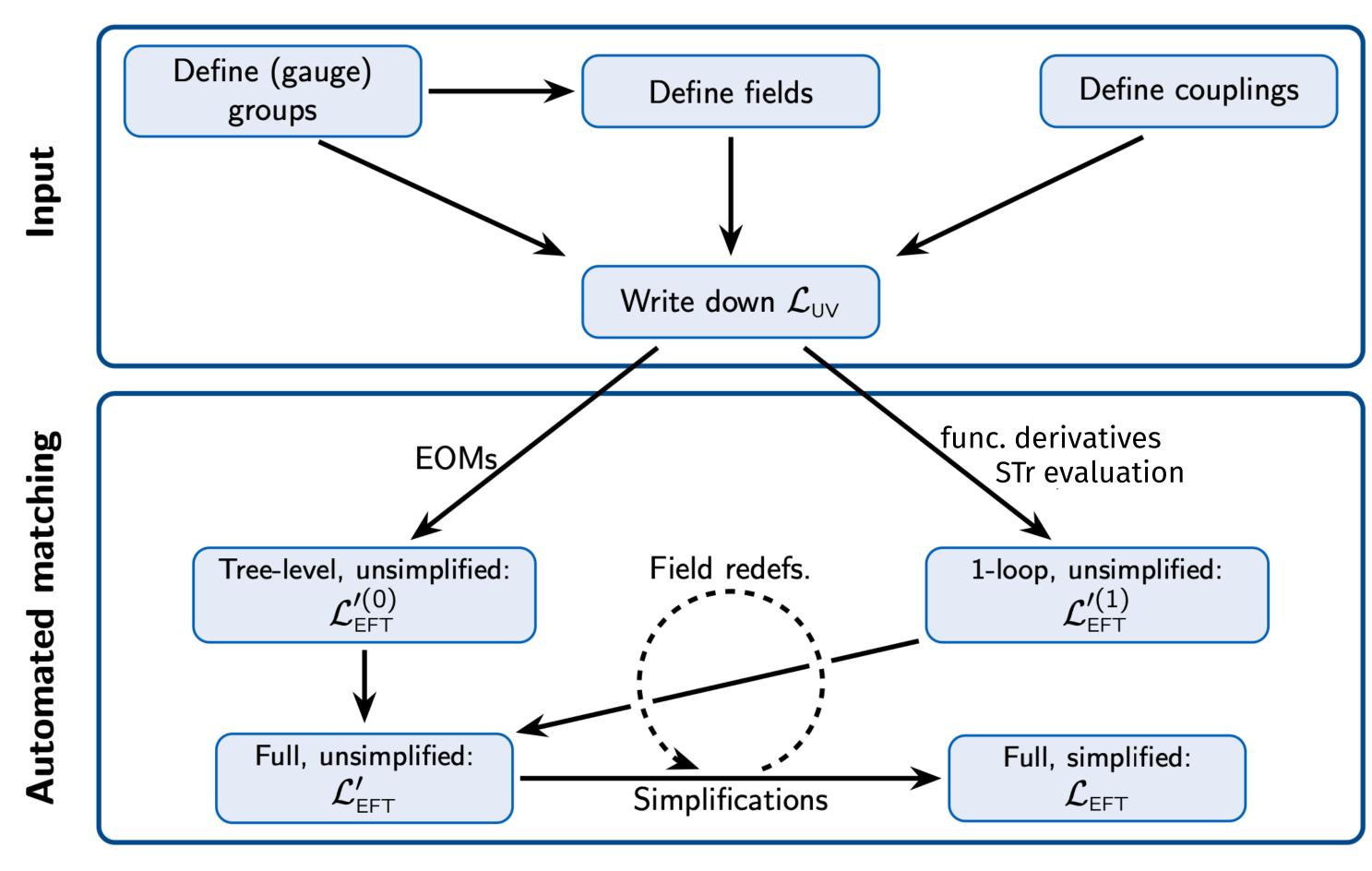
one-loop eff. action from tree-level $\{C_i\}$

$$+ \Gamma_{\rm DFT}^{(1)} \bigg|_{\rm soft} = \Gamma_{\rm UV}^{(1)} \bigg|_{\rm hard} + \Gamma_{\rm JV}^{(1)} \bigg|_{\rm soft}$$

$$\mathcal{P}_{\rm EFT}^{(1)} = \Gamma_{\rm UV}^{(1)} \bigg|_{\rm hard}$$

hard region matching

[Fuentes-Martín, Portolés, Ruiz-Femenía, 1607.02142]



Automated matching

MATCHETE C: Mathematica package aimed at fully automating one-loop matching of a generic weakly coupled UV theory to the corresponding EFT.

[Fuentes-Martín, König, Pagès, Thomsen, Wilsch, 2212.04510]

Julie Pagès — UCSD — Cutting operators with MATCHETE

The program

Matchete v0.2 publicly available:

- Simple and intuitive usage: input $\mathscr{L}_{\text{UV}} \rightarrow \text{output } \mathscr{L}_{\text{EFT}}$,
- Can match any UV model with heavy scalar, fermion, vectors*, *vectors only at tree-level
- Up to any mass dimension * ,
- Handles all representations of any semi-simple Lie group*, *only limited by computation time
- Fully simplified output*
 - *fierzing coming soon

Demo with a toy model

Integrating out a heavy vector-like fermion Ψ of mass M, charged under $U(1)_e$ coupling to a neutral light scalar ϕ and a charged light fermion ψ

$$\mathcal{L}_{\rm UV} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} (\partial^{\mu} \phi) (\partial_{\mu} \phi) +$$

 \rightarrow Validated against diagrammatic computation by hand \checkmark

Julie Pagès — UCSD — Cutting operators with MATCHETE

$\bar{\psi} i D \psi + \Psi (i D - M) \Psi - (y \bar{\psi}_L \phi \Psi_R + h.c.)$

3 weeks by hand
 v.s.
 ~ 30 s for Matchete

Demo - model definition

Toy-model with vector-like fermions

Definition of the model

Gauge group, fields and coupling

Define gauge group

In[3]:= DefineGaugeGroup[U1e, U1, e, A]

Define fields

```
In[4]:= DefineField[♥, Fermion, Charges → {U1e[1]}, Mass → {Heavy, M}]
DefineField[♥, Fermion, Charges → {U1e[1]}, Mass → 0]
DefineField[Ø, Scalar, Mass → 0, SelfConjugate → True]
```

Define coupling

In[7]:= DefineCoupling[y]

Shortcuts

In[8]:= **\$\$\$**[]

Out[8]= Field[φ, Scalar, {}, {}]

In[9]:= **y**[]

```
Out[9]= Coupling[y, {}, 0]
```

Julie Pagès — UCSD — Cutting operators with MATCHETE

Lagrangian

Write interactions

 $\ln[10]:= \text{Lint} = -y[] \times \text{Bar}@\psi[] ** PR ** \Psi[] \times \phi[] // PlusHc;$

Define Lagrangian

In[11]:= LUV = FreeLag[] + Lint; LUV // NiceForm CheckLagrangian[LUV] CheckLagrangian[LUV, DetailedOutput → True]

$$-\frac{1}{4} \mathbf{A}^{\mu \vee 2} + \frac{1}{2} \left(\mathbf{D}_{\mu} \phi \right)^{2} + \mathbb{i} \left(\overline{\psi} \cdot \gamma_{\mu} \cdot \mathbf{D}_{\mu} \psi \right) + \mathbb{i} \left(\overline{\Psi} \cdot \gamma_{\mu} \cdot \mathbf{D}_{\mu} \Psi \right) - \mathbf{M} \left(\overline{\Psi} \cdot \Psi \right) - \mathbf{y} \phi \left(\overline{\psi} \cdot \mathbf{P}_{\mathsf{R}} \cdot \Psi \right) - \overline{\mathbf{y}} \phi$$

Out[13]= True

Out[14]= <|Open/Complex/InconsistentSpinChains → {}, Hermiticity → True, UncontractedIndices → {}, CanonicallyNormalized → True, HeavyMassBasis → True, HeavyTadpoles → {}, ChargeNeutral → True, FreeOfGaugeFields → True, AllObjectsDefined → True, GaugeAnomalies → {} |>

Lagrangian of only light degrees of freedom

In[15]:= Llight = FreeLag[ψ, φ, A];
% // NiceForm

$$-\frac{1}{4} A^{\mu\nu2} + \frac{1}{2} (D_{\mu}\phi)^{2} + i (\overline{\psi} \cdot \gamma_{\mu} \cdot D_{\mu}\psi)$$

Demo - Match

One-loop matching to the effective Lagrangian

 $\ln[17] := \text{LEFT} = \text{Match}[\text{LUV}, \text{LoopOrder} \rightarrow 1, \text{EFTOrder} \rightarrow 6] / \cdot \epsilon^{-1} \rightarrow 0;$ LEFT - Llight // CollectOperators // NiceForm

Out[18]//NiceForm=

$$\begin{aligned} -\frac{1}{3} \hbar e^{2} A^{\mu\nu2} \log\left[\frac{\mu^{2}}{H^{2}}\right] + \frac{1}{2} \hbar y y \left(1 + 2 \log\left[\frac{\mu^{2}}{H^{2}}\right]\right) \left(D_{\mu}\phi\right)^{2} - 2 \hbar y y M^{2} \left(1 + \log\left[\frac{\mu^{2}}{H^{2}}\right]\right) \phi^{2} + \frac{1}{8} \hbar y y \left(3 + 2 \log\left[\frac{\mu^{2}}{H^{2}}\right]\right) \left(D_{\mu}\psi \cdot \gamma_{\mu} P_{L} \cdot \psi\right) + \frac{7}{270} \hbar e^{2} \frac{1}{M^{2}} \left(D_{\mu}A^{\mu\nu}\right)^{2} + \frac{1}{20} \hbar e^{2} \frac{1}{M^{2}} A^{\mu\nu} D^{2} A^{\mu\nu} + \frac{7}{270} \hbar e^{2} \frac{1}{M^{2}} D_{\mu}A^{\mu\nu} - \frac{1}{90} \hbar e^{2} \frac{1}{M^{2}} D_{\nu}A^{\mu\nu} D_{\mu}A^{\mu\nu} + \frac{1}{20} \hbar e^{2} \frac{1}{M^{2}} \left(D_{\mu}A^{\mu\nu}\right)^{2} + \frac{1}{20} \hbar e^{2} \frac{1}{M^{2}} A^{\mu\nu} D^{2} A^{\mu\nu} + \frac{7}{270} \hbar e^{2} \frac{1}{M^{2}} D_{\mu}A^{\mu\nu} D_{\nu}A^{\mu\nu} - \frac{1}{90} \hbar e^{2} \frac{1}{M^{2}} D_{\nu}A^{\mu\nu} D_{\mu}A^{\mu\nu} + \frac{1}{20} \hbar e^{2} \frac{1}{M^{2}} A^{\mu\nu} D_{\mu}D_{\mu}A^{\mu\nu} + \frac{1}{20} \hbar e^{2} \frac{1}{M^{2}} A^{\mu\nu} D_{\mu}D_{\mu}A^{\mu\nu} - \frac{2}{9} \hbar y y \frac{1}{M^{2}} \left(1 + 3 \log\left[\frac{\mu^{2}}{M^{2}}\right]\right) \phi D_{\mu}D^{2}D_{\mu}\phi + \frac{1}{9} \hbar y y \frac{1}{M^{2}} \left(7 + 12 \log\left[\frac{\mu^{2}}{M^{2}}\right]\right) \phi D_{\mu}D_{\nu}D_{\mu}D_{\nu}\phi + \frac{1}{72} \hbar y y \frac{1}{M^{2}} \left(5 + 6 \log\left[\frac{\mu^{2}}{M^{2}}\right]\right) \left(\overline{\psi} \cdot \gamma_{\mu} P_{L} \cdot D_{\mu}D_{\mu}D^{2}\psi\right) - \frac{1}{36} \hbar y y \frac{1}{M^{2}} \left(1 + 6 \log\left[\frac{\mu^{2}}{M^{2}}\right]\right) \left(\overline{\psi} \cdot \gamma_{\mu} P_{L} \cdot D_{\nu}D_{\mu}D_{\nu}\psi\right) + \frac{1}{32} \hbar y y \frac{1}{M^{2}} \left(5 + 6 \log\left[\frac{\mu^{2}}{M^{2}}\right]\right) \left(\overline{\psi} \cdot \gamma_{\mu} P_{L} \cdot D_{\mu}D^{2}\psi\right) - \frac{1}{36} \hbar y y \frac{1}{M^{2}} \left(5 + 6 \log\left[\frac{\mu^{2}}{M^{2}}\right]\right) \left(D_{\mu}D^{2}\overline{\psi} \nabla_{\nu} P_{L} \cdot \psi\right) + \frac{1}{36} \hbar y y \frac{1}{M^{2}} \left(1 + 6 \log\left[\frac{\mu^{2}}{M^{2}}\right]\right) \left(D_{\mu}D_{\nu}D_{\mu}\overline{\psi} \nabla_{\nu} P_{L} \cdot \psi\right) - \frac{1}{72} \hbar y y \frac{1}{M^{2}} \left(5 + 6 \log\left[\frac{\mu^{2}}{M^{2}}\right]\right) \left(D_{\mu}D^{2}\overline{\psi} \nabla_{\mu} P_{L} \cdot \psi\right) - \hbar y^{2}y^{2}\phi^{4} \log\left[\frac{\mu^{2}}{M^{2}}\right] + \frac{1}{3} \hbar y^{3}y^{3} \frac{1}{M^{2}}\phi^{6} + \frac{13}{12} \hbar y^{2}y^{2} \frac{1}{M^{2}}\phi^{2} \left(D_{\mu}\phi\right)^{2} + \frac{1}{12} \frac{1}{10} \frac{$$

Julie Pagès — UCSD — Cutting operators with MATCHETE

Operator reduction

Initial output contain many redundancies (off-shell matching).

Allowed operations on the Lagrangian are:

Exact simplifications:

Integration by parts: add a constant term

Dirac and group structures identities

On-shell equivalence:

Field redefinitions: leave S-matrix invariant

GreensSimplify \rightarrow Green's basis

EOMSimplify \rightarrow Minimal basis

Green's Basis

GreensSimplify

Exact simplifications:

Contraction of generalized Clebsch-Gordon coefficients: GroupMagic

Linear simplifications 4. (() p

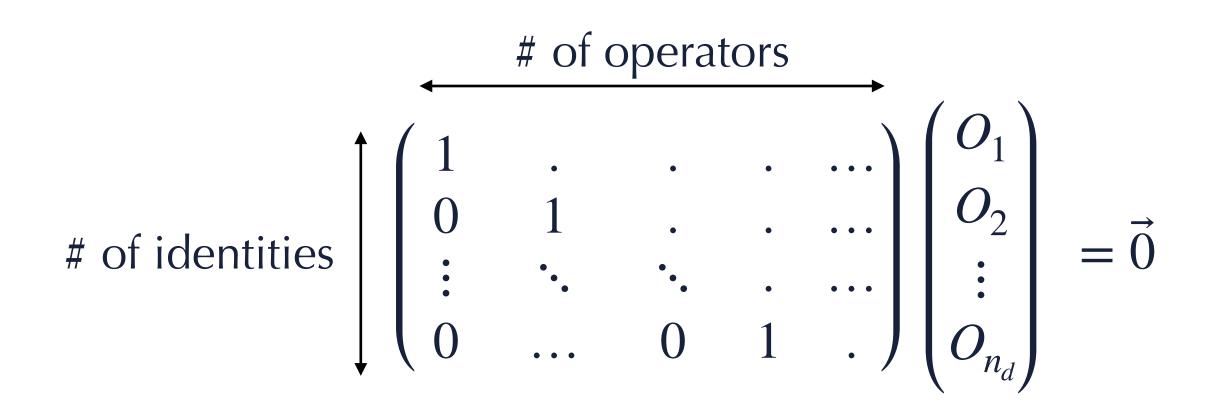
- Integration by parts identitie
- Commutation of covariant c
- Jacobi identities $D_{\alpha}F_{\mu\nu} + D_{\mu\nu}$
- Spinor double derivative D^2
- Commutation of gamma ma
- Index symmetries e.g. $\epsilon^{ij}H_iI$
- Product of epsilon $\epsilon_{i_1i_2...}\epsilon_{j_1j_2}$
- Fierz identities

Julie Pagès — UCSD — Cutting operators with MATCHETE

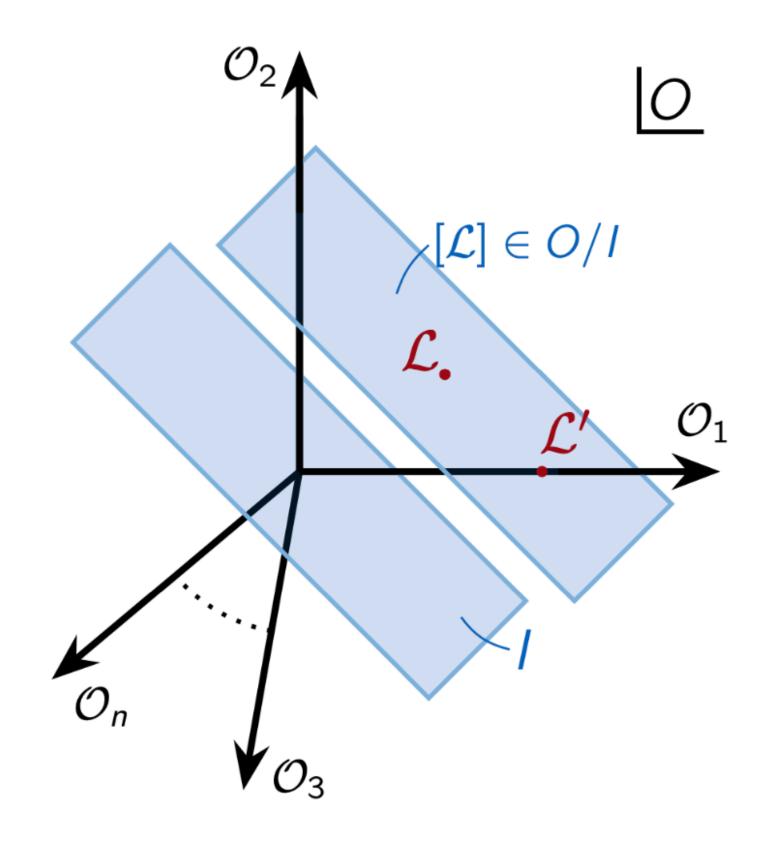
es e.g.
$$A^{\mu\nu}D^2A_{\mu\nu} = -(D_{\rho}A_{\mu\nu})^2$$

derivatives $[D_{\mu}, D_{\nu}] = F_{\mu\nu}$
 $\partial_{\mu}F_{\nu\alpha} + D_{\nu}F_{\alpha\mu} = 0$
 $\partial^2\psi = DD\psi - F^{\mu\nu}\sigma_{\mu\nu}\psi$
atrices $\gamma_{\mu}\gamma_{\nu} = -\gamma_{\nu}\gamma_{\mu} + 2g_{\mu\nu}$
 $H_j = 0$
 $\dots = \sum_{\sigma} \delta_{\sigma(i_1)\sigma(j_1)}\delta_{\sigma(i_2)\sigma(j_2)}$

Projection to a 4D Dirac basis: Levi-Civita relations and Gamma reduction



GreensSimplify

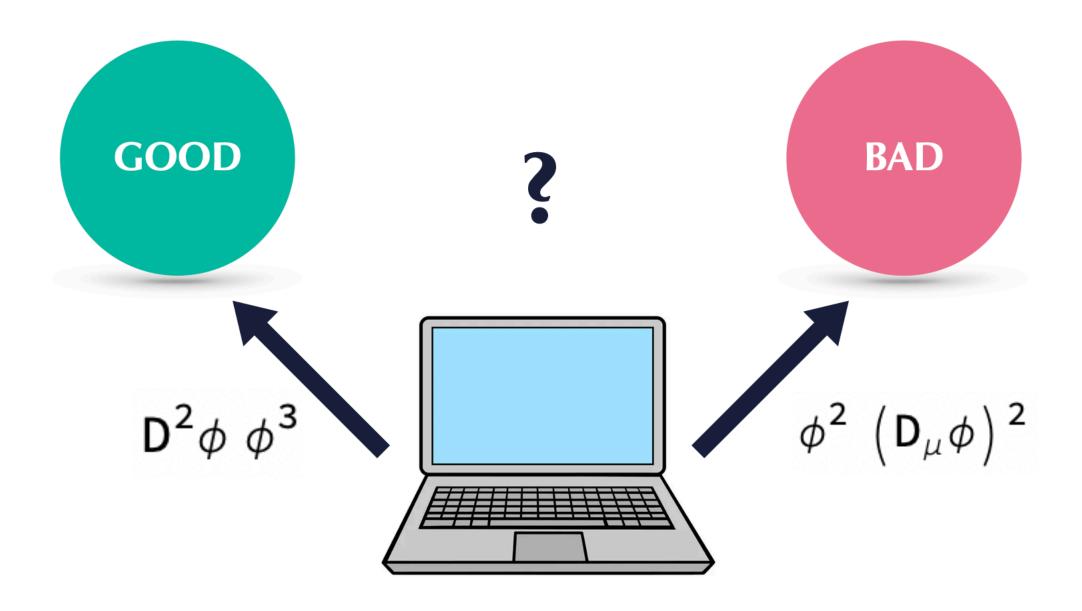

Define $I \subseteq O$ as the space of all operator identities

e.g. $O_1 + 2O_2 = 0$ interpreted as $O_1 + 2O_2 \in I$.

Applying row reduction, we select a representative element for $[\mathscr{L}_{EFT}] \in O/I$ as our Green's basis.

GreensSimplify

Teach computer our taste: assign a score to each operator.


Scoring criteria:

- Includes equation of motion kinetic term +++
- Field strength tensors ++
- Sandwiched indices in covariant derivatives -
- Self-conjugate operator +
- Group epsilon in operator -
- Same fermion fields in bilinears ++
- Dirac structure not in Dirac basis -
- Group indices contracted in bilinears +
- Many transpose in bilinears -
- Double tensor Dirac structure -

Order them before row reduce

 $\begin{pmatrix}
O_{--} \\
O_{-} \\
O_{+} \\
O_{++}
\end{pmatrix}$

Julie Pagès — UCSD — Cutting operators with MATCHETE

Demo - GreensSimplify

One-loop matching to the effective Lagrangian

 $\ln[17] := \text{LEFT} = \text{Match}[\text{LUV}, \text{LoopOrder} \rightarrow 1, \text{EFTOrder} \rightarrow 6] / \cdot \epsilon^{-1} \rightarrow 0;$ LEFT - Llight // CollectOperators // NiceForm

Out[18]//NiceForm=

Julie Pagès — UCSD — Cutting operators with MATCHETE

32 operators

Demo - GreensSimplify

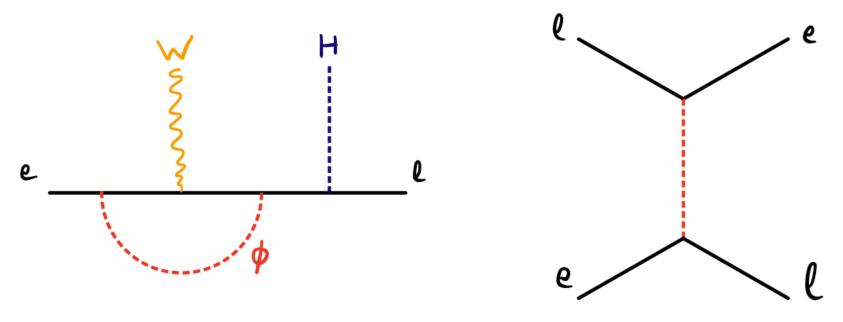
Reduction to Green's basis

In[19]:= LEFTOffShell = LEFT // GreensSimplify; LEFTOffShell - Llight // HcSimplify // NiceForm

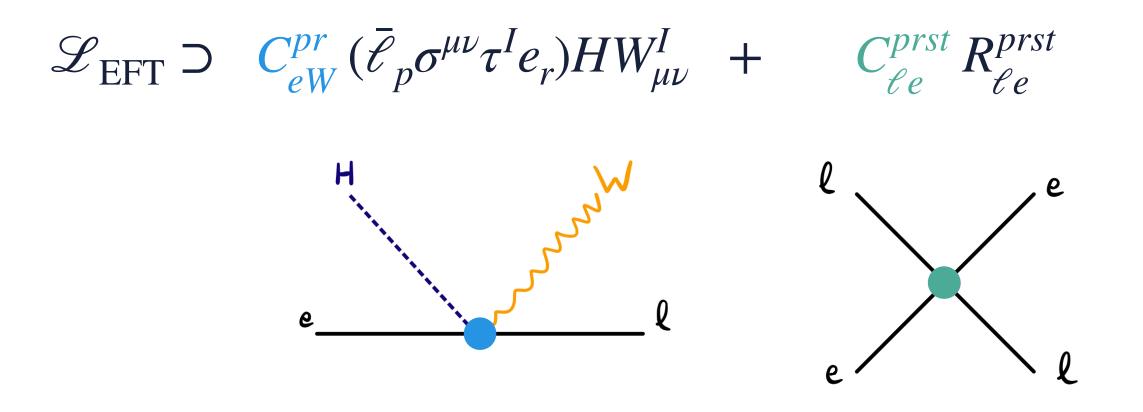
Out[20]//NiceForm=

$$\begin{aligned} &-\frac{1}{3} \hbar e^2 A^{\mu\nu2} \text{Log} \left[\frac{\overline{\mu}^2}{M^2} \right] + \frac{1}{2} \hbar y y \left(1 + 2 \text{Log} \left[\frac{\overline{\mu}^2}{M^2} \right] \right) \left(D_{\mu} \phi \right)^2 - 2 \hbar y y M^2 \left(1 + \text{Log} \left[\frac{\overline{\mu}^2}{M^2} \right] \right) \phi^2 + \\ &\frac{i}{4} \hbar y y \left(3 + 2 \text{Log} \left[\frac{\overline{\mu}^2}{M^2} \right] \right) \left(\overline{\psi} \cdot \gamma_{\mu} P_{L} \cdot D_{\mu} \psi \right) + \frac{1}{3} \hbar y y \frac{1}{M^2} D^2 \phi D^2 \phi - \frac{2}{15} \hbar e^2 \frac{1}{M^2} D_{\nu} A^{\mu\nu} D_{\rho} A^{\mu\rho} - \\ &\hbar y^2 y^2 \phi^4 \text{Log} \left[\frac{\overline{\mu}^2}{M^2} \right] + \frac{1}{3} \hbar y^3 y^3 \frac{1}{M^2} \phi^6 + \frac{13}{18} \hbar y^2 y^2 \frac{1}{M^2} D^2 \phi \phi^3 + \frac{1}{3} \hbar y y e^2 \frac{1}{M^2} \phi^2 A^{\mu\nu2} + \\ &\frac{7}{36} \hbar e y y \frac{1}{M^2} D_{\nu} A^{\mu\nu} \left(\overline{\psi} \cdot \gamma_{\mu} P_{L} \cdot \psi \right) + \frac{1}{8} \hbar e y y \frac{1}{M^2} \left(A^{\mu\nu} \left(\overline{\psi} \cdot \Gamma_{\nu\mu} \gamma_{\rho} P_{L} \cdot D_{\rho} \psi \right) + A^{\mu\nu} \left(D_{\rho} \overline{\psi} \cdot \gamma_{\rho} \Gamma_{\mu\nu} P_{L} \cdot \psi \right) \right) \\ &\left(\frac{i}{2} y y \frac{1}{M^2} - \frac{i}{4} \hbar y^2 y^2 \frac{1}{M^2} \left(5 + 4 \text{Log} \left[\frac{\overline{\mu}^2}{M^2} \right] \right) \right) \left(\phi^2 \left(\overline{\psi} \cdot \gamma_{\mu} P_{L} \cdot D_{\mu} \psi \right) - \phi^2 \left(D_{\mu} \overline{\psi} \cdot \gamma_{\mu} P_{L} \cdot \psi \right) \right) + \\ &\frac{i}{6} \hbar y y \frac{1}{M^2} \left(\left(D_{\mu} \overline{\psi} \cdot \gamma_{\mu} P_{L} \cdot D^2 \psi \right) - \left(D^2 \overline{\psi} \cdot \gamma_{\nu} P_{L} \cdot D_{\nu} \psi \right) \right) \end{aligned}$$

14 operators

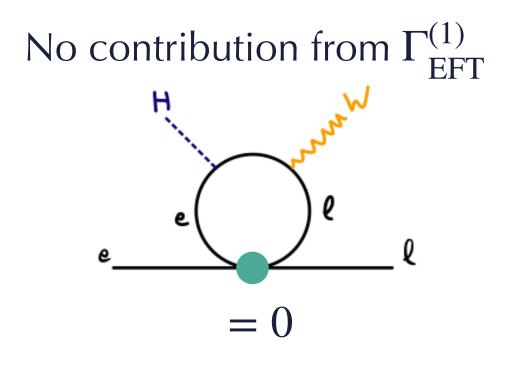

Evanescent operators

Evanescent operators: 2HDM example


Two-Higgs doublet model:

$$\mathscr{L} = \mathscr{L}_{\rm SM} + D_{\mu}\phi^{\dagger}D^{\mu}\phi -$$

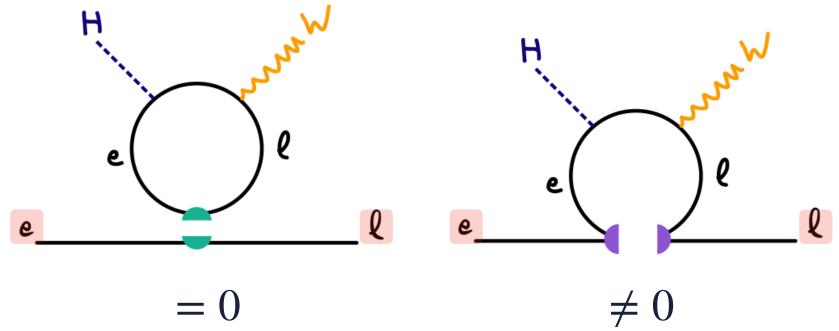
Let us focus on the dipole contribution to $\mathscr{A}_{e_r \to \ell_p W}$. In the full theory



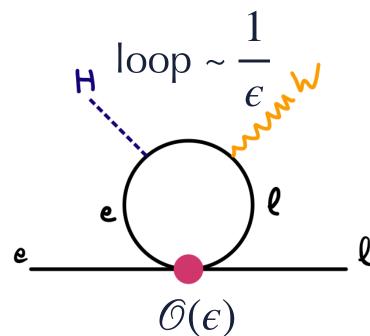
In the EFT, match to

Julie Pagès — UCSD — Cutting operators with MATCHETE

 $-M_{\phi}^{2}\phi^{\dagger}\phi - \left(y^{pr}\bar{\ell}_{p}\phi e_{r} + \text{h.c.}\right)$



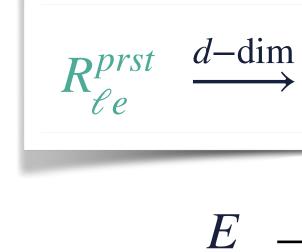
Evanescent operators: 2HDM example


Using Fierz identies we can go from the redundant operator $R_{\ell e}$ to the Warsaw basis operator $Q_{\ell e}$

$$R_{\ell e} = (\bar{\ell} e)(\bar{e}\ell) Q_{\ell e} = (\bar{\ell} \gamma_{\mu} \ell)(\bar{e}\gamma^{\mu} e)$$
$$R_{\ell e}^{prst}$$

but their contribution to the dipole amplitude is not the same!

In dimensional regularization, *d*-dimensional Fierz relations must include evanescent operators (of rank ϵ) $R_{\ell e}^{prst} \xrightarrow{d-\dim} -\frac{1}{2}Q_{\ell e}^{pstr} + E_{\ell e}^{prst}$


gives a finite contribution to the dipole amplitude, cancelling the one from $Q_{\ell e}$.

Julie Pagès — UCSD — Cutting operators with MATCHETE

 $\sum_{e}^{rst} \stackrel{4d}{=} -\frac{1}{2}Q_{\ell e}^{pstr}$

Evanescent operators: 2HDM example

Since, by definition,

the only physical contributions from evanescent operators are finite and local. In the EFT of the 2HDM, the change of basis is equivalent to

$$R_{\ell e}^{prst}$$

 C_{eW}

Evanescence-free scheme: compute all evanescent contributions to all one-loop diagrams,

Julie Pagès — UCSD — Cutting operators with MATCHETE

$$-\frac{1}{2}Q_{\ell e}^{pstr} + E_{\ell e}^{prst}$$

$$d \rightarrow 4$$

$$\rightarrow \frac{1}{2} Q_{\ell e}^{pstr}$$

$$\rightarrow C_{eW} + \Delta C_{eW}$$

- where ΔC_{eW} is generated from E_{ρ}^{prst} insertion \Rightarrow trade evanescent operator for a shift in the Wilson coefficient.
 - then drop completely the evanescent operators in the physical basis.
 - ← Evanescence-free SMEFT computed in [Fuentes-Martín, König, JP, Thomsen, Wilsch, 2211.09144]

Evanescent treatment in Matchete

3 sources of evanescent operators from 4D identities:

fierzing

- $(X_1) \otimes [X_2] = \frac{1}{4} \operatorname{Tr}_4[\Gamma_n X_1 \tilde{\Gamma}_m X_2] (\tilde{\Gamma}_n] \otimes [\Gamma_m) + E_{\operatorname{Fierz}}(X_1, X_2)$
- gamma reduction

 $X_1 \otimes X_2 = \sum_{i} b_i(X_1, X_2) \Gamma_i \otimes \tilde{\Gamma}_i + E_{\gamma \text{red}}(X_1, X_2)$

Levi-Civita identities

 $\epsilon_{\mu\nu\rho\sigma}\sigma^{\rho\sigma} = \epsilon^{\mu_1\mu_2\mu_3\mu_4}\epsilon_{\mu_1\mu_2\mu_3\mu_4} =$

Julie Pagès — UCSD — Cutting operators with MATCHETE

$$\Gamma_n = \{P_R, P_L, \gamma^{\mu} P_R, \gamma^{\mu} P_L, \sigma_{\mu\nu}\}$$

with
$$\operatorname{Tr}_{d}[\Gamma_{j}X_{1}\tilde{\Gamma}_{j}X_{2}] = \sum_{i} b_{i}(X_{1},X_{2})\operatorname{Tr}_{d}[\Gamma_{j}\Gamma_{i}\tilde{\Gamma}_{j}\tilde{\Gamma}_{i}] + \mathcal{O}(\epsilon^{2})$$

$$= -2i\sigma_{\mu\nu}\gamma_5 + E^{\epsilon}_{\mu\nu}$$

= -24 $\delta^{\mu_1}{}_{[\nu_1}\delta^{\mu_2}{}_{\nu_2}\delta^{\mu_3}{}_{\nu_3}\delta^{\mu_4}{}_{\nu_4]} + (E^{\epsilon})^{\mu_1\mu_2\mu_3\mu_4}_{\nu_1\nu_2\nu_3\nu_4}$

All 3 already included in simplification routines. ↔ Compute one-loop EFT diagrams with evanescent insertions to go to the Evanescence-free scheme.

Minimal basis

EOMSimplify

On-shell equivalence:

S-matrix is unchanged by field redefinition [Chisholm, Nucl. Phys. 26 (1961) 3]

 \hookrightarrow equivalent to adding an equation of motion (EOM) term to the Lagrangian at leading order

In Matchete: determine shift to perform by identifying "EOM kinetic term"

Field type	Redundant operator	Field redefinition
Real Scalar ϕ	$\chi D^2 \phi$	$\phi \rightarrow \phi + \chi$
Dirac Fermion ψ	$\chi D \psi + \psi D \Delta$	$\psi \rightarrow \psi - \frac{i}{2}(\bar{\chi} + \Delta)$
Real vector A	$D_{\mu}A^{\mu u}\chi_{ u}$	$A_{\mu} \to A_{\mu} - \chi_{\mu}$

Julie Pagès — UCSD — Cutting operators with MATCHETE

Field redefinition

If working with higher-dimension operators (than 6), field redefinition order by order:

$$\eta \rightarrow \eta' = \eta + \frac{\delta \eta^{(1)}}{\Lambda^2} + \frac{\delta \eta^{(2)}}{\Lambda^4} + O(\Lambda^{-6})$$

The shifted EFT Lagrangian is

$$\mathscr{L}[\eta'] = \mathscr{L}[\eta] + \frac{1}{\Lambda^2} \frac{\delta \mathscr{L}[\eta']}{\delta \eta'} \bigg|_{\eta'=\eta} \delta \eta^{(1)} + \frac{1}{\Lambda^4} \left(\frac{\delta \mathscr{L}[\eta']}{\delta \eta'} \bigg|_{\eta'=\eta} \delta \eta^{(2)} + \frac{1}{2} \frac{\delta^2 \mathscr{L}[\eta']}{\delta \eta' \delta \eta'} \bigg|_{\eta'=\eta} \left(\delta \eta^{(1)} \right)^2 \right) + O(\Lambda^{-6})$$
EOM

Note 1: At leading power, applying equation of motion is equivalent to field redefinition. At sub-leading power, they are not equivalent anymore.

Note 2: Applying field redefinition after renormalization lead to

- divergent correlation functions

Julie Pagès — UCSD — Cutting operators with MATCHETE

Infinite field anomalous dimension if redundant are ignored [Manohar, JP, Nepveu, 2402.08715]

Reduction to Green's basis

In[19]:= LEFTOffShell = LEFT // GreensSimplify; LEFTOffShell - Llight // HcSimplify // NiceForm

Out[20]//NiceForm=

$$\begin{aligned} &-\frac{1}{3} \hbar e^2 A^{\mu\nu2} \text{Log} \left[\frac{\overline{\mu}^2}{M^2} \right] + \frac{1}{2} \hbar y y \left(1 + 2 \text{Log} \left[\frac{\overline{\mu}^2}{M^2} \right] \right) \left(D_{\mu} \phi \right)^2 - 2 \hbar y y M^2 \left(1 + \text{Log} \left[\frac{\overline{\mu}^2}{M^2} \right] \right) \phi^2 + \\ &\frac{i}{4} \hbar y y \left(3 + 2 \text{Log} \left[\frac{\overline{\mu}^2}{M^2} \right] \right) \left(\overline{\psi} \cdot \gamma_{\mu} P_{L} \cdot D_{\mu} \psi \right) + \frac{1}{3} \hbar y y \frac{1}{M^2} D^2 \phi D^2 \phi - \frac{2}{15} \hbar e^2 \frac{1}{M^2} D_{\nu} A^{\mu\nu} D_{\rho} A^{\mu\rho} - \\ &\hbar y^2 y^2 \phi^4 \text{Log} \left[\frac{\overline{\mu}^2}{M^2} \right] + \frac{1}{3} \hbar y^3 y^3 \frac{1}{M^2} \phi^6 + \frac{13}{18} \hbar y^2 y^2 \frac{1}{M^2} D^2 \phi \phi^3 + \frac{1}{3} \hbar y y e^2 \frac{1}{M^2} \phi^2 A^{\mu\nu2} + \\ &\frac{7}{36} \hbar e y y \frac{1}{M^2} D_{\nu} A^{\mu\nu} \left(\overline{\psi} \cdot \gamma_{\mu} P_{L} \cdot \psi \right) + \frac{1}{8} \hbar e y y \frac{1}{M^2} \left(A^{\mu\nu} \left(\overline{\psi} \cdot \Gamma_{\nu\mu} \gamma_{\rho} P_{L} \cdot D_{\rho} \psi \right) + A^{\mu\nu} \left(D_{\rho} \overline{\psi} \cdot \gamma_{\rho} \Gamma_{\mu\nu} P_{L} \cdot \psi \right) \right) \\ &\left(\frac{i}{2} y y \frac{1}{M^2} - \frac{i}{4} \hbar y^2 y^2 \frac{1}{M^2} \left(5 + 4 \text{Log} \left[\frac{\overline{\mu}^2}{M^2} \right] \right) \right) \left(\phi^2 \left(\overline{\psi} \cdot \gamma_{\mu} P_{L} \cdot D_{\mu} \psi \right) - \phi^2 \left(D_{\mu} \overline{\psi} \cdot \gamma_{\mu} P_{L} \cdot \psi \right) \right) + \\ &\frac{i}{6} \hbar y y \frac{1}{M^2} \left(\left(D_{\mu} \overline{\psi} \cdot \gamma_{\mu} P_{L} \cdot D^2 \psi \right) - \left(D^2 \overline{\psi} \cdot \gamma_{\nu} P_{L} \cdot D_{\nu} \psi \right) \right) \end{aligned}$$

Demo - EOMSimplify

14 operators

Reduction to minimal basis

In[19]:= LEFTOnShell = LEFT // EOMSimplify; LEFTOnShell - Llight // CollectOperators // NiceForm

Out[20]//NiceForm=

$$-\frac{1}{3}\hbar e^{2}A^{\mu\nu2}Log\left[\frac{\overline{\mu}^{2}}{M^{2}}\right] + \left(C_{\phi^{2}} + \frac{1}{3}\hbar\overline{y}yC_{\phi^{2}}\frac{1}{M^{2}}\left(4\right)\right)$$
$$\frac{1}{9}\hbar\overline{y}^{2}y^{2}\frac{1}{M^{2}}\left(13C_{\phi^{2}} - 9M^{2}Log\left[\frac{\overline{\mu}^{2}}{M^{2}}\right]\right)\phi^{4} + \frac{1}{3}\hbar\overline{y}^{2}$$
$$\frac{2}{15}\hbar e^{4}\frac{1}{M^{2}}\left(\overline{\psi}\cdot\gamma_{\mu}\cdot\psi\right)^{2} + \frac{7}{36}\hbar\overline{y}ye^{2}\frac{1}{M^{2}}\left(\overline{\psi}\cdot\gamma_{\mu}\psi\right)$$

Julie Pagès — UCSD — Cutting operators with MATCHETE

Demo - EOMSimplify

7 operators $C_{\phi^2} - 3 M^2 \left(1 + 2 Log \left[\frac{\overline{\mu}^2}{M^2} \right] \right) \right) \phi^2 + \phi^2$ $y^3 y^3 \frac{1}{M^2} \phi^6 + \frac{1}{3} \hbar y y e^2 \frac{1}{M^2} \phi^2 A^{\mu\nu2} \cdot \psi) \left(\overline{\psi} \cdot \gamma_{\mu} \mathsf{P}_{\mathsf{L}} \cdot \psi \right)$

Conclusion

- Additional step in the automation of the EFT approach.
- Matchete automates tree-level and one-loop matching by evaluating the supertraces from the path integral formulation.

Operators reduction also automated to a Green's basis or to a minimal basis allowing

- Output easier to read
- Interface to EFT phenomenology codes
- Comparison between different basis

Ultimate goal: direct evaluation of new physics models with one code performing

- Matching
 - Multiple steps
- RG evolution
- Connection to observables

Julie Pagès — UCSD — Cutting operators with MATCHETE

Conclusion

v0.2.0 available at: https://gitlab.com/matchete/matchete

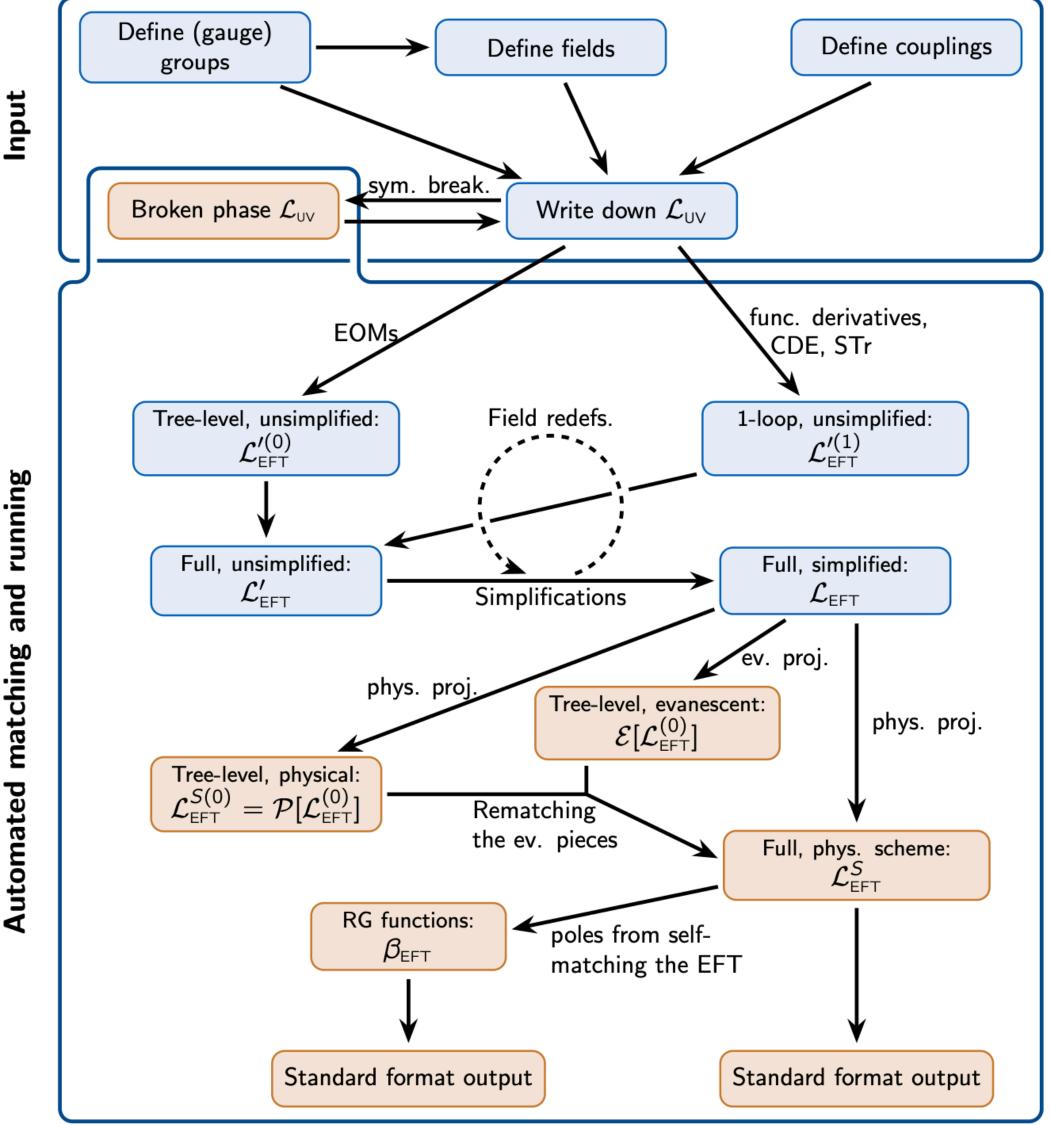
Future versions functionalities will include:

Full basis reduction in the evanescensce-free scheme

One-loop matching of heavy vectors and symmetry breaking

Interface with other EFT codes (UFO, WCxf formats)

theoretical


development

soon

wip

Matchete Roadmap

Automated matching and

