

Modular Invariant Holomorphic Observables Xueqi Li

arXiv: 2401.04738 Mu-Chun Chen, Xiang-Gan Liu, Xueqi Li, Omar Medina, Michael Ratz

The 10th Workshop on FLASY2024Flavor Symmetries and Consequences in Accelerators and Cosmology

Flavor Puzzle The origin of the parameters in the flavor sector

For example, in SUSY, the lepton masses can be generated via superpotential

 $\mathscr{W} = Y_e^{ij}L_iH_d\bar{E}_j + \frac{1}{2}\kappa^{ij}L_iH_uL_jH_u$

Flavor Puzzle The origin of the parameters in the flavor sector

For example, in SUSY, the lepton masses can be generated via superpotential

$$\mathscr{W} = Y_e^{ij}L_iH_d\bar{E}_j + \frac{1}{2}\kappa^{ij}L_iH_uL_jH_u$$

As Higgs obtained a vacuum expectation value (vev), in the basis in which Y_e^{ij} is diagonal, this then gives a mass matrix for neutrino

 $\Rightarrow n$

What is the origin to the structure of κ^{ij} ?

$$n_{\nu}^{ij} = \kappa^{ij} v_u^2$$

Flavor + Modular **One Possibile Solution**

One solution is to apply <u>modular symmetry</u> in <u>flavor physics</u>.

A theory in modular symmetry content

- a modulus τ takes values in the upper half of the complex plane
- regular matter fields,
- and a <u>modular group</u> in which the theory is invariant under.

[arXiv:1706.08749 Ferruccio Feruglio]

Will be explained later...

Flavor + Modular **One Possibile Solution**

strong and the couplings are almost unique.

- 1. Modular invariance / covariance (), required by the modular symmetry
 - Invariant under modular transformations
- 2. <u>Meromorphic</u> (\hbar) , required by SUSY
 - The coupling depends only on modulus τ but not on its conjugate $\overline{\tau}$
- **Finite** (∞)

Impose following 3 requirement to the coupling, then these conditions are so

• The coupling are finite for all values of τ in the upper half of the complex plane, including at $i\infty$.

- 1. Modular invariance / covariance (\odot), required by the modular symmetry
 - Invariant under modular transformations
- 2. <u>Meromorphic</u> (\hbar) , required by SUSY
 - The coupling depends only on modulus au but not on its conjugate $\overline{ au}$
- 3. Finite (∞)

Question answered in our work:

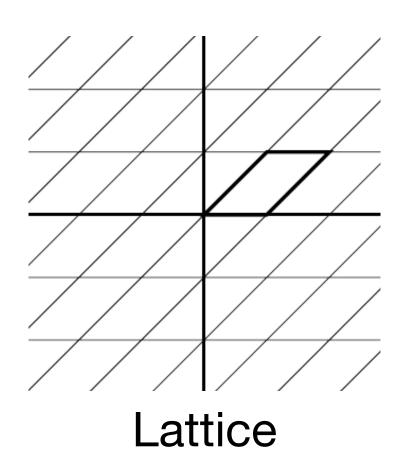
Can observables have these features?

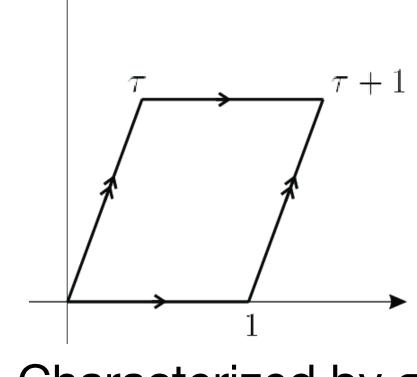
• The coupling are finite for all values of τ in the upper half of the complex plane, including at $i\infty$.

Introduction to

Modular Flavor Theory Framework

What is <u>Modular symmetry</u> **Modular symmetry presenting a geometry structure of extra dimension**



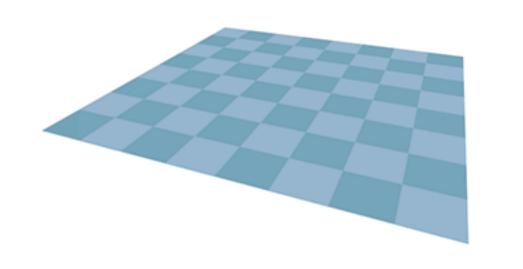


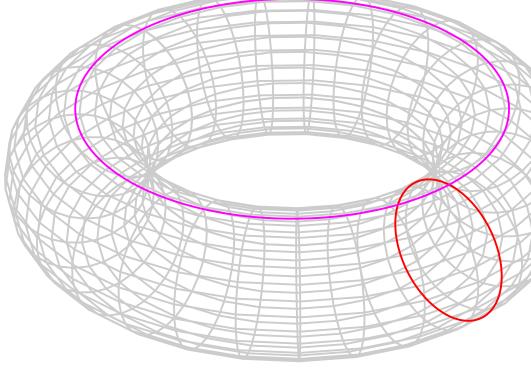
Characterized by au

Torus: $T^2 = S^1 \times S^1$

Characterized by τ

Symmetry: $SL(2,\mathbb{Z})$

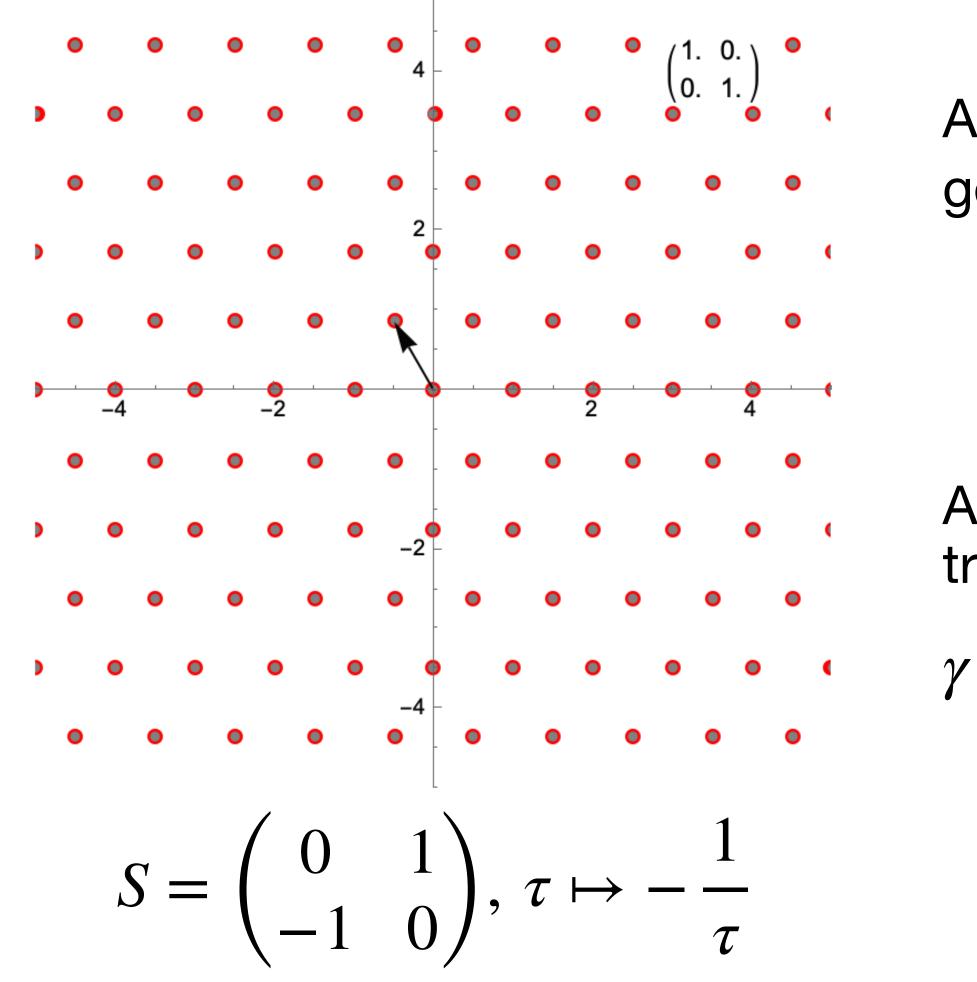




Torus

Wikipedia

What is <u>Modular symmetry</u> Modular transformation changes the basis on lattice



A modular symmetry $SL(2,\mathbb{Z})$ are generated via two generator of $SL(2,\mathbb{Z})$:

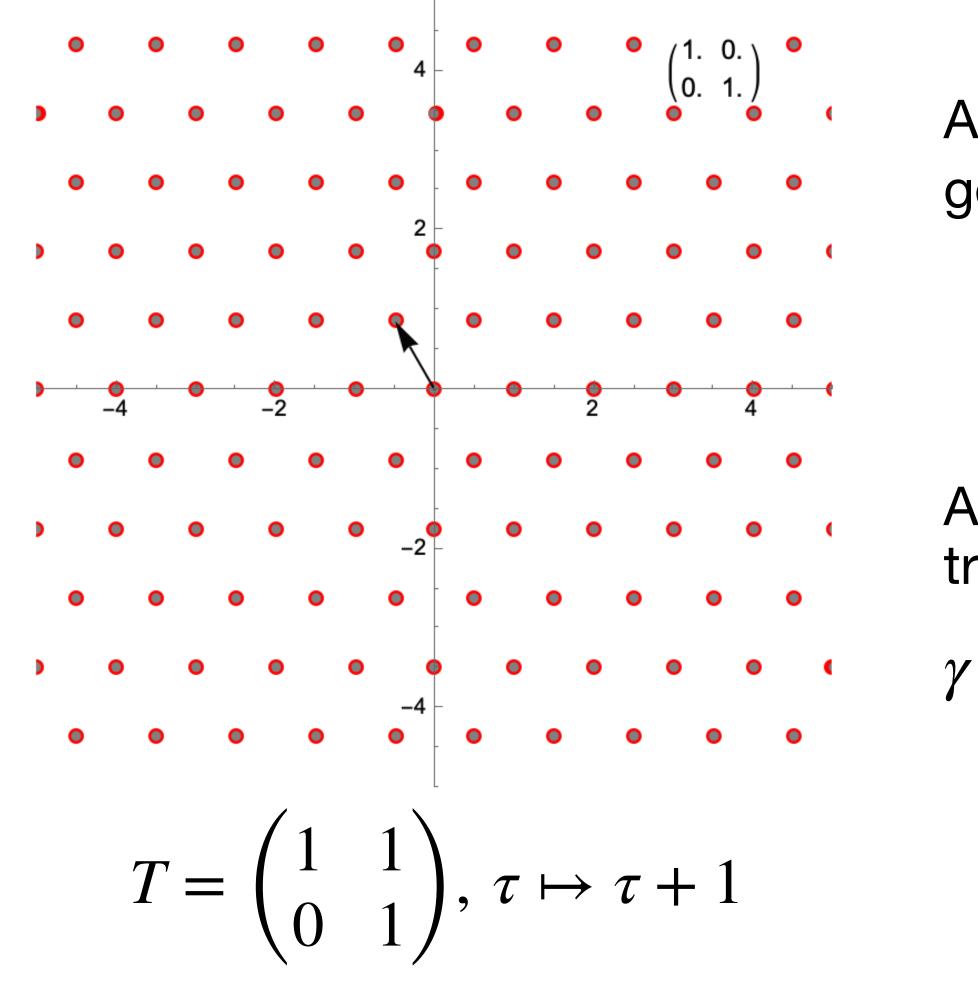
$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

A chiral supermultiplet τ , known as modulus, transform under an element

$$= \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z}) \text{ as}$$

$$\tau \xrightarrow{\gamma} \frac{a\tau + b}{c\tau + d}$$

What is <u>Modular symmetry</u> Modular transformation changes the basis on lattice



A modular symmetry $SL(2,\mathbb{Z})$ are generated via two generator of $SL(2,\mathbb{Z})$:

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

A chiral supermultiplet τ , known as modulus, transform under an element

$$= \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z}) \text{ as}$$

$$\tau \xrightarrow{\gamma} \frac{a\tau + b}{c\tau + d}$$

What is <u>Modular symmetry</u> <u>Modular symmetry presenting a geometry structure of extra dimension</u>

Regular matter fields Φ transform unc

where ρ_{Φ} is the representation of SL(2, \mathbb{Z}) and k_{Φ} is known as the modular weight of Φ .

der
$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z})$$
 as

 $\Phi \xrightarrow{\gamma} (c\tau + d)^{-k_{\Phi}} \rho_{\Phi}(\gamma) \Phi$

A Theory with <u>Modular Symmetry</u> **Kahler potential**

A Lagrangian in SUSY

$$\mathscr{L} = \int \mathrm{d}^2\theta \mathrm{d}^2\bar{\theta} \ \mathscr{K}(\Phi_i, \Phi_i^{\dagger}) + \left(\int \mathrm{d}^2\theta \mathscr{W}(\Phi_i) + \mathrm{h.c.}\right)$$

where \mathscr{K} is the Kahler potential and \mathscr{W} is the superpotential.

In general, a modular invariance Kahler potential can are of the form

$$\mathscr{K} = \sum_{i}^{i}$$

where the term presented are the minimal modular invariance Kahler potential.

$$\frac{\Phi_i^{\dagger}\Phi_i}{(-i\tau+i\bar{\tau})^{k_i}}+\cdots$$

A Theory with <u>Modular Symmetry</u> **Superpotential**

Now we move on the the superpotential, in general, the superpotential have Yukawa terms like

 $\mathcal{M} \supset g Y$

we then require Yukawa coupling transform as

 $Y^{ijk}(\tau) \xrightarrow{\gamma} Y^{ijk}(\gamma(\tau))$

$$Y^{ijk}(\tau)\Phi_i\Phi_j\Phi_k$$

by requiring the theory to be modular invariant, recall $\Phi \xrightarrow{\gamma} (c\tau + d)^{-k_{\Phi}} \rho_{\Phi}(\gamma) \Phi$,

$$= (c\tau + d)^{k_Y} \rho_Y(\gamma) Y^{ijk}(\tau)$$

$$k_Y = k_{\Phi_i} + k_{\Phi_j} + k_{\Phi_k}$$

Flavor + Modular

Now we apply <u>modular symmetry</u> in <u>flavor physics</u>. To do so, we impose 3 requirements to the coupling

- 1. Modular invariance / covariance (), required by the modular symmetry
 - Invariant under modular transformations
- 2. <u>Meromorphic</u> (\hbar) , required by SUSY
 - The coupling depends only on modulus τ but not on its conjugate $\overline{\tau}$
- 3. Finite (∞)

• The coupling are finite for all values of τ in the upper half of the complex plane, including at $i\infty$.

 $\begin{cases} Meromorphic(\hbar) \\ Finiteness(\infty) \end{cases}$ Holomorphic <

3 Requirements

- <u>Modular invariance / covariance (\odot), required by the modular symmetry</u>
 - Invariant under modular transformations
- <u>Meromorphic</u> (\hbar), required by SUSY
 - The coupling depends only on modulus au but not on its conjugate $\overline{ au}$
- **<u>Finite</u>** (∞) 3.
 - The coupling are finite for all values of τ in the upper half of the complex plane, including at $i\infty$.

Recall the coupling in superpotential

where under a modular transformation,

$$Y^{ijk}(\tau) \xrightarrow{\gamma} Y^{ijk} \left(\gamma(\tau)\right)$$

These 3 requirements and above transformation then uniquely determine $Y^{ijk}(\tau)$ to be **vector-valued modular forms**.

 $\mathscr{M} \supset gY^{ijk}(\tau)\Phi_i\Phi_i\Phi_k$

 $)) = (c\tau + d)^{k_Y} \rho_Y(\gamma) Y^{ijk}(\tau)$

3 Requirements

- Modular invariance / covariance (\odot), required by the modular symmetry
 - Invariant under modular transformations
- <u>Meromorphic</u> (\hbar), required by SUSY 2.
 - The coupling depends only on modulus τ but not on its conjugate $\overline{\tau}$
- **<u>Finite</u>** (∞) 3.
 - The coupling are finite for all values of τ in the upper half of the complex plane, including at $i\infty$.

Can we impose the same restriction on the observable?

Naive Attempt Usual physical observables?

The usual observables, say m, the mass, are <u>finite</u> (∞) and <u>modular invariant</u> (\odot) in a theory with modular symmetry.

Therefore we only need to check meromorphy (\hbar).

Naive Attempt Usual physical observables?

Consider a toy model

 $\mathcal{M} = \frac{1}{2}\mathcal{M}(\tau)\Phi^2$

To find the physical mass, we look into the scalar potential

$$V(\phi) \stackrel{?}{=} \left| \begin{array}{c} \partial \mathcal{W} \\ - \partial \phi \end{array} \right|^{2}$$

²,
$$\mathscr{K} = \frac{\Phi^{\dagger}\Phi}{(-i\tau + i\bar{\tau})^{k_{\Phi}}}$$

$$2 = \left| \mathscr{M}(\tau) \right|^2 \left| \phi \right|^2$$

Naive Attempt Usual physical observables?

$$\mathcal{W} = \frac{1}{2} \mathscr{M}(\tau) \Phi^2, \ \mathscr{K} = \frac{\Phi^{\dagger} \Phi}{(-i\tau + i\bar{\tau})^{k_{\Phi}}}$$

However, notice we need to canonically normalize Kahler potential, therefore we must introduce the Kahler metric:

$$V(\phi) = \frac{\partial \mathscr{W}^{\dagger}}{\partial \phi^{\dagger}} K^{\Phi^{\dagger}\Phi} \frac{\partial \mathscr{W}}{\partial \phi}, \text{ where } K^{\Phi^{\dagger}\Phi} = (-i\tau + i\bar{\tau})^{k_{\Phi}}$$

which gives rise an additional terms in the mass

$$m^2 = |\mathscr{M}(\tau)|^2 (-i\tau + i\bar{\tau})^{k_{\Phi}}$$

which depends on $\overline{\tau}$.

Naive Attempt Non-holomorphic observables

Physical mass is not meromorphic (\hbar) (thus also not holomorphic).

Problem:

Therefore we cannot use the nice uniqueness argument here.

- Actually, one can show in general all observables discussed before our paper were <u>non-holomorphic</u>.

Kahler metric enter into the mass, which is in general not meromorphic (\hbar).

Modular Invariant Holomorphic Observables

Modular Invariant Holomorphic Observables Idea: Remove the non-holomorphic terms coming from the Kahler metric

Recall the support of lepton sector

$$\mathscr{W} = Y_e^{ij} L_i H_d \bar{E}$$

where now we add the modular (τ) dependence.

In the simplest setting, let's say we are in the basis in which charge lepton Yukawa is diagonal.

And we make use of the minimal Kahler potential.

 $\bar{E}_j + \frac{1}{2} \kappa^{ij}(\tau) L_i H_u L_j H_u$

Modular Invariant Holomorphic Observables Idea: Remove the non-holomorphic terms coming from the Kahler metric

Consider

$$f_{ij}(\tau) := \frac{\kappa_{ii}(\tau)\kappa_{jj}(\tau)}{(\kappa_{ij}(\tau))^2} = \frac{m_{ii}(\tau,\bar{\tau})m_{jj}(\tau,\bar{\tau})}{(m_{ij}(\tau,\bar{\tau}))^2}$$

where $m_{ii}(\tau, \bar{\tau}) := (-i\tau + i\bar{\tau})^{(k_{L_j} + k_{L_j})/2} \kappa_{ii}(\tau) v_u^2$ is the neutrino mass matrix we obtained after Kahler potential are canonically normalized.

We see now that by doing ratio of the mass matrix entries, we cancel the non-holomorphic terms from the Kahler metric, we therefore obtained $I_{ii}(\tau)$ is now meromorphic (\hbar).

object is therefore $\underline{\text{modular invariant}}$ (\bigcirc).

After a modular transformation, the automorphic factor $(c\tau + d)^{k_{L_i}}$ is also canceled. This

Modular Invariant Holomorphic Observables Invariant in terms of physical observables

We can write the mass matrix m_{ν} in terms of observables:

- Neutrino masses $\{m_1, m_2, m_3\}$, and
- where δ_{CP} is the CP violation phase, and φ_1 and φ_2 are two Majorana phases.

$$m_{
u} = U^* {
m dia}$$

• PMNS matrix U, depends on mixing and phase $\{\theta_{12}, \theta_{13}, \theta_{23}, \delta_{CP}, \varphi_1, \varphi_2\}$,

 $ag(m_1, m_2, m_3)U^{\dagger}$

Modular Invariant Holomorphic Observables Invariant in terms of physical observables

Plug in, we obtained the invariants are

$$\begin{split} I_{12} &= \frac{a_0 \left[\widetilde{m}_1 \left(e^{i\delta_{\rm CP}} c_{23} s_{12} + c_{12} s_{13} s_{23} \right)^2 + \widetilde{m}_2 \left(e^{i\delta_{\rm CP}} c_{12} c_{23} - s_{12} s_{13} s_{23} \right)^2 + e^{2i\delta_{\rm CP}} m_3 c_{13}^2 s_{23}^2 \right]}{c_{13}^2 [\widetilde{m}_1 c_{12} \left(e^{i\delta_{\rm CP}} c_{23} s_{12} + c_{12} s_{13} s_{23} \right) + \widetilde{m}_2 s_{12} \left(s_{12} s_{13} s_{23} - e^{i\delta_{\rm CP}} c_{12} c_{23} \right) - e^{2i\delta_{\rm CP}} m_3 s_{13} s_{23}]^2} \right]^2} \right], \\ I_{13} &= \frac{a_0 \left[\widetilde{m}_1 \left(c_{12} c_{23} s_{13} - e^{i\delta_{\rm CP}} s_{12} s_{23} \right)^2 + \widetilde{m}_2 \left(c_{23} s_{12} s_{13} + e^{i\delta_{\rm CP}} c_{12} s_{23} \right)^2 + e^{2i\delta_{\rm CP}} m_3 c_{13}^2 c_{23}^2 \right]}{c_{13}^2 [\widetilde{m}_1 c_{12} \left(c_{12} c_{23} s_{13} - e^{i\delta_{\rm CP}} s_{12} s_{23} \right) + \widetilde{m}_2 s_{12} \left(c_{23} s_{12} s_{13} + e^{i\delta_{\rm CP}} c_{12} s_{23} \right) - e^{2i\delta_{\rm CP}} m_3 c_{13}^2 c_{23}^2 \right]} \right] \\ I_{23} &= \left[e^{2i\delta_{\rm CP}} m_3 c_{13}^2 s_{23}^2 + \widetilde{m}_1 \left(e^{i\delta_{\rm CP}} c_{23} s_{12} + c_{12} s_{13} s_{23} \right)^2 + \widetilde{m}_2 \left(e^{i\delta_{\rm CP}} c_{12} c_{23} - s_{12} s_{13} s_{23} \right)^2 \right] \\ \times \frac{4 \left[e^{2i\delta_{\rm CP}} m_3 c_{13}^2 c_{23}^2 + \widetilde{m}_2 \left(c_{23} s_{12} s_{13} + e^{i\delta_{\rm CP}} c_{12} s_{23} \right)^2 + \widetilde{m}_1 \left(c_{12} c_{23} s_{13} - e^{i\delta_{\rm CP}} s_{12} s_{23} \right)^2 \right] \\ \left[\widetilde{m}_1 a_1 + \widetilde{m}_2 a_2 - e^{2i\delta_{\rm CP}} m_3 \sin(2\theta_{23}) c_{13}^2 \right]^2 \right] \right] \\ \end{split}$$

$$egin{aligned} &a_0 = ig(\widetilde{m}_1 c_{12}^2 + \widetilde{m}_2 s_{12}^2ig) c_{13}^2 + e^{2i\delta_{ ext{CP}}} m_3 s_{13}^2 \ , \ &a_1 = \Big[ig(e^{2i\delta_{ ext{CP}}} s_{12}^2 - c_{12}^2 s_{13}^2ig) \sin(2 heta_{23}) - e^{i\delta_{ ext{CP}}} \cos(2 heta_{23}) \sin(2 heta_{12}) \ &a_2 = \Big[e^{i\delta_{ ext{CP}}} \cos(2 heta_{23}) \sin(2 heta_{12}) s_{13} + ig(e^{2i\delta_{ ext{CP}}} c_{12}^2 - s_{12}^2 s_{13}^2ig) \sin(2 heta_{12}) \ &a_1 = \Big[e^{i\delta_{ ext{CP}}} \cos(2 heta_{23}) \sin(2 heta_{12}) s_{13} + ig(e^{2i\delta_{ ext{CP}}} c_{12}^2 - s_{12}^2 s_{13}^2ig) \sin(2 heta_{12}) \ &a_2 = \Big[e^{i\delta_{ ext{CP}}} \cos(2 heta_{23}) \sin(2 heta_{12}) s_{13} + ig(e^{2i\delta_{ ext{CP}}} c_{12}^2 - s_{12}^2 s_{13}^2ig) \sin(2 heta_{12}) \ &a_1 = \Big[e^{i\delta_{ ext{CP}}} \cos(2 heta_{23}) \sin(2 heta_{12}) s_{13} + ig(e^{2i\delta_{ ext{CP}}} c_{12}^2 - s_{12}^2 s_{13}^2ig) \sin(2 heta_{12}) \ &a_2 = \Big[e^{i\delta_{ ext{CP}}} \cos(2 heta_{23}) \sin(2 heta_{12}) s_{13} + ig(e^{2i\delta_{ ext{CP}}} c_{12}^2 - s_{12}^2 s_{13}^2ig) \sin(2 heta_{12}) \ &a_1 = \Big[e^{i\delta_{ ext{CP}}} \cos(2 heta_{23}) \sin(2 heta_{12}) s_{13} + ig(e^{2i\delta_{ ext{CP}}} c_{12}^2 - s_{12}^2 s_{13}^2ig) \sin(2 heta_{12}) \ &a_2 = \Big[e^{i\delta_{ ext{CP}}} \cos(2 heta_{23}) \sin(2 heta_{12}) s_{13} + ig(e^{2i\delta_{ ext{CP}}} c_{12}^2 - s_{12}^2 s_{13}^2ig) \sin(2 heta_{12}) \ &a_1 = \Big[e^{i\delta_{ ext{CP}}} \cos(2 heta_{23}) \sin(2 heta_{23}) \sin(2$$

$$s_{ij}=\sin heta_{ij},\ c_{ij}=\cos heta_{ij},\ \widetilde{m}_i=m_ie^{iarphi_2}$$

Modular Invariant Holomorphic Observables

 $I_{ij}(\tau) := \frac{\kappa_{ii}(\tau)\kappa_{jj}(\tau)}{(\kappa_{ii}(\tau))^2} = \frac{m_{ii}(\tau,\bar{\tau})m_{jj}(\tau,\bar{\tau})}{(m_{ii}(\tau,\bar{\tau}))^2}$

Remark

- 1. They are modular invariant ()
- 2. They are meromorphic (\hbar)
- 3. Not necessary <u>finite</u> everywhere (∞)

Additionally

- 4. These invariant only depend on the observables
- 5. They are actually renormalization group invariant [arXiv:hep-ph/0205147 Sanghyeon Chang, T. K. Kuo]

Apply it in an Example Model

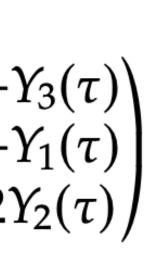
A Model in modular group A_4 [arXiv:1706.08749 Ferruccio Feruglio]

field/coupling	(E_1^c, E_2^c, E_3^c)	L	$H_{u/d}$	$arphi_T$	$Y^{(2)}_{3}(\tau)$
$SU(2)_L \times U(1)_Y$	(1,1)	(2 , −1/2)	$(2, \pm 1/2)$	(1,0)	(1,0)
$\Gamma_3 \cong A_4$	(1, 1", 1')	3	1	3	3
k_I	(2, 2, 2)	1	0	-3	-2

$$M_{e} = u v_{d} \operatorname{diag}(\alpha, \beta, \gamma) ,$$

$$m_{\nu}(\tau, \bar{\tau}) = (-i\tau + i\bar{\tau}) \frac{v_{u}^{2}}{\Lambda} \begin{pmatrix} 2Y_{1}(\tau) & -Y_{2}(\tau) & -$$

$$\begin{aligned} \mathscr{W}_e &= \alpha E_1^c H_d (L\varphi_T)_1 + \beta E_2^c H_d (L\varphi_T)_{1'} + \gamma E_3^c H_d (L\varphi_T)_{1''} , \\ \mathscr{W}_v &= \frac{1}{\Lambda} \Big(H_u \cdot L H_u \cdot L Y_3^{(2)} \Big)_1 . \qquad \langle \varphi_T \rangle = (u, 0, 0) \end{aligned}$$



Modular weight k and their representation uniquely fixed Yukawa as modular forms

$$Y_{\mathbf{3}}^{(2)} := \begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \end{pmatrix}$$

A Model in modular group A_4 Invariant

The invariants are then given as

$$I_{12}(\tau) = 4 \frac{Y_1(\tau) Y_3(\tau)}{\left(Y_2(\tau)\right)^2}, \ I_{13}(\tau) = 4 \frac{Y_1(\tau) Y_2(\tau)}{\left(Y_3(\tau)\right)^2}, \ I_{23}(\tau) = 4 \frac{Y_2(\tau) Y_3(\tau)}{\left(Y_1(\tau)\right)^2}$$

A modular invariant meromorphic (\odot, \hbar) function are either

- τ independent constant (which are <u>finite</u> (∞), thus <u>holomorphic</u>)
- or it has pole

(There is no modular invariant holomorphic function except constant functions)

A Model in modular group A_4 Invariant

$$I_{12}(\tau) = 4 \frac{Y_1(\tau) Y_3(\tau)}{(Y_2(\tau))^2}, I_{13}(\tau) = 4 \frac{Y_1(\tau) Y_2(\tau)}{(Y_3(\tau))^2}, I_{23}(\tau) = 4 \frac{Y_2(\tau) Y_3(\tau)}{(Y_1(\tau))^2}$$

at $\tau = i\infty$; I_{23} has a singularity at $\tau = \frac{-3 + i\sqrt{3}}{6}$, and vanishes at $\tau = i\infty$.

1. I_{13} has a singularity

2. Y_i satisfy $Y_2^2 + 2Y_1Y_3 = 0$, therefore $I_{12}(\tau) = -2$, a constraint that is independent of τ

3. One can also showed $I_{13}I_{23} = -32$, a constraint that is independent of τ In addition

• Mass matrix has a sum rule: $m_3 = \begin{cases} m_2 + m_1 & \text{for normal ordering (NO)}, \\ m_2 - m_1 & \text{for inverted ordering (IO)}. \end{cases}$

Use relation $I_{12}(\tau) = -2$ I_{12} is a Modular Invariant Holomorphic Observables (\bigcirc , \hbar , ∞)

we can fixed all the mass. We also know the mixing angles from oscillation experiments. We therefore look into the phases

and therefore determine the neutrinoless double beta decay matrix element

$$\langle m_{ee} \rangle$$

Using the sum rule and the known mass square difference Δm_{sol}^2 and Δm_{atm}^2 ,

 $\{\delta_{CP}, \varphi_1, \varphi_2\}$

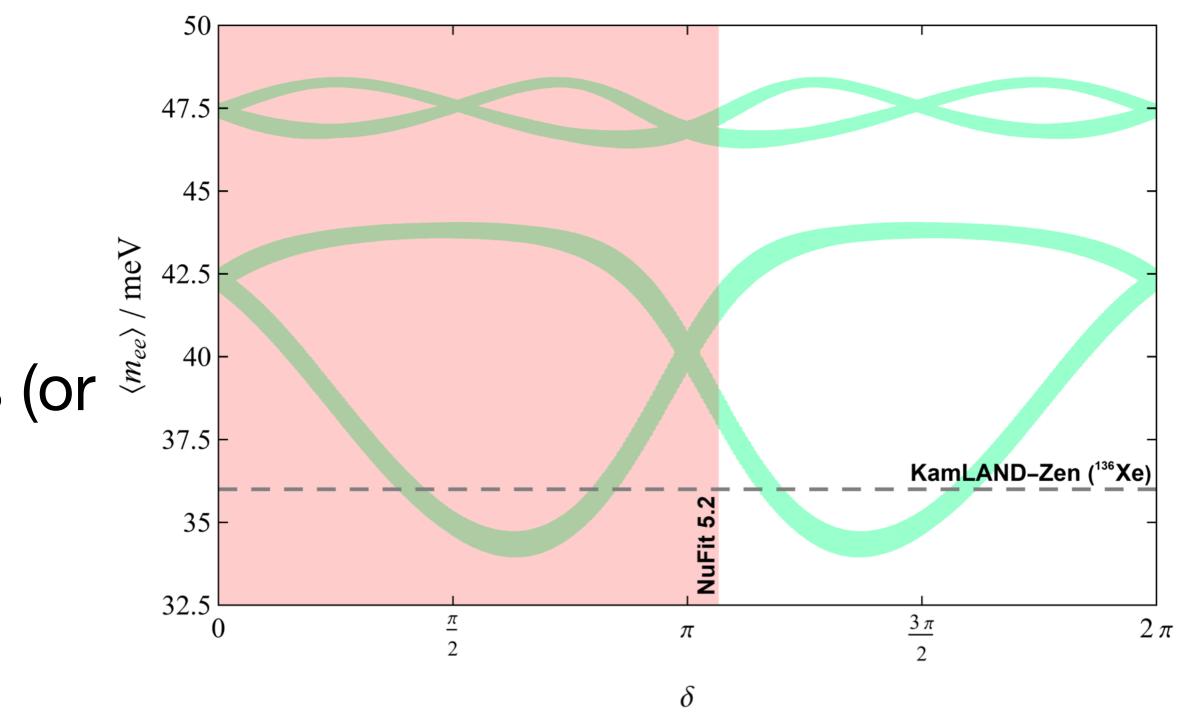
$$= \sum_{i} U_{ei}^2 m_i$$

Use relation $I_{12}(\tau) = -2$ I_{12} is a Modular Invariant Holomorphic Observables (\odot, \hbar, ∞)

Once we impose $I_{12}(\tau) = -2$, the allowed $\langle m_{ee} \rangle$ are shown in the plot

Notice this result

- Independent of the value of τ
- We only impose 1 out of 3 relations (or 2 out of 6 real relations)



Use relation $I_{13}I_{23} = -32$ $I_{13}I_{23}$ is a Modular Invariant Holomorphic Observables (\bigcirc, \hbar, ∞)

We can now use the relation, $I_{13}I_{23} = -32$. This gives 2 more real constraint and the systems is **over-constrained**.

We have verified that **cannot** satisfy relations while still being consistent with data. Therefore this model is **ruled out**. Agree with analyses done by previous work.

We arrive at this conclusion without doing any fit nor a scan over τ .

Conclusion

Conclusion Modular Invariant Holomorphic Observables

$$I_{ij}(\tau) := \frac{\kappa_{ii}(\tau)\kappa_{jj}(\tau)}{(\kappa_{ij}(\tau))^2} = \frac{m_{ii}(\tau,\bar{\tau})m_{jj}(\tau,\bar{\tau})}{(m_{ij}(\tau,\bar{\tau}))^2}$$

There exist observables that are

- 1. Modular invariant ()
- 2. Meromorphic (\hbar)
- 3. Some are <u>finite</u> everywhere (ϕ)

Moreover...

4. Usually, we can use I_{ij} to construct observables that are also finite (∞), which lead to a modular invariant holomorphic observables (\odot , \hbar , ∞).

and...

5. They are also independent of renormalization scale.

Conclusion Modular Invariant Holomorphic Observables

- They are highly constrained by their symmetries and properties
- Composed solely of quantities that can be measured experimentally
- Gives rise robust, important, immediate useful information and phenomenological constraints without need to perform a scan of the parameter space

Open question Modular Invariant Holomorphic Observables

- Apply the same idea to quark sector?
- In the case in which the charge lepton mass matrix is not diagonal?
- Do these invariants have more physical meaning or even can be directly measured?
- In the case where Kahler potential is not minimal?

Thank you!

Modular Invariant Holomorphic Observables **RG** Invariant

RG Equation for κ : $16\pi^2 \frac{d}{dt}\kappa = P^T \kappa + \kappa P$ at one

If *P* is diagonal, then $\Delta \kappa_{ij} = \frac{\Delta t}{16\pi^2} \kappa_{ij} (P_{ii})$

Therefore I_{ij} is RG Invariant $I_{ij}(\tau) := -$

$$P + \alpha \kappa$$

e-loop $P = C_e Y_e^{\dagger} Y_e$ $C_e = 1$ in the MSSM
 $C_e = -3/2$ in the SM

$$+P_{jj}+\alpha)$$

$$\frac{\kappa_{ii}(\tau)\kappa_{jj}(\tau)}{(\kappa_{ij}(\tau))^2} = \frac{m_{ii}(\tau,\bar{\tau})m_{jj}(\tau,\bar{\tau})}{(m_{ij}(\tau,\bar{\tau}))^2}$$

Modular Invariant Holomorphic Observables RG Invariant

$$\frac{\mathrm{d}}{\mathrm{d}t}\kappa = \widetilde{P} \kappa \widetilde{Q}^{\mathsf{T}} + \widetilde{Q} \kappa \widetilde{P}^{\mathsf{T}} + \widetilde{\alpha} \kappa ,$$

where $\widetilde{P}, \widetilde{Q}$ and $\widetilde{\alpha}$ are composed of the renormaliz
 $\widetilde{P} = \mathrm{diag}(\widetilde{P}_1, \widetilde{P}_2, \widetilde{P}_3) ,$
 $\widetilde{Q} = \mathrm{diag}(\widetilde{Q}_1, \widetilde{Q}_2, \widetilde{Q}_3) .$
At 1-loop, $\widetilde{P} = \frac{1}{16\pi^2} P, \widetilde{Q} = \mathbb{1}$, and $\widetilde{\alpha} = \frac{1}{16\pi^2} \alpha$. Equa
 $\dot{\kappa}_{ij} = \kappa_{ij} (\widetilde{P}_i \widetilde{Q}_j + \widetilde{P}_j \widetilde{Q}_i + \widetilde{\alpha}) ,$

where no summation over i or j is implied. This r

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}I_{ij} &= \frac{\dot{\kappa}_{ii}\,\kappa_{jj}}{\kappa_{ij}^2} + \frac{\kappa_{ii}\,\dot{\kappa}_{jj}}{\kappa_{ij}^2} - 2\frac{\kappa_{ii}\,\kappa_{jj}}{\kappa_{ij}^3}\,\dot{\kappa}_{ij} \\ &= 2\big(\widetilde{P}_i - \widetilde{P}_j\big)\,\big(\widetilde{Q}_i - \widetilde{Q}_j\big)\,I_{ij}\,. \end{aligned}$$

This has two immediate consequences:

- 1. At 1-loop, where $\tilde{Q}_i = 1$ for all i, I_{ij} are RG invariant.
- 2. Zeros and poles of I_{ij} remain zeros and poles at *all orders*.

	(61)
rmalizable couplings of the theory and diagonal,	·
	(62a)
	(62b)
Equation (61) implies that	
	(63)
This means that	

(64)

A Model in modular group A_4 Invariant

$$I_{12}(\tau) = 4 \frac{Y_1(\tau) Y_3(\tau)}{(Y_2(\tau))^2}, I_{13}(\tau) = 4 \frac{Y_1(\tau) Y_2(\tau)}{(Y_3(\tau))^2}, I_{23}(\tau) = 4 \frac{Y_2(\tau) Y_3(\tau)}{(Y_1(\tau))^2}$$

$$i\infty; I_{23} \text{ has a singularity at } \tau = \frac{-3 + i\sqrt{3}}{6}, \text{ and vanishes at } \tau = i\infty.$$

1. I_{13} has a singularity at $\tau =$ 2. Y_i satisfy $Y_2^2 + 2Y_1Y_3 = 0$, therefore $I_{12}(\tau) = -2$, a constraint that is independent of τ 3. One can also showed $I_{13}I_{23} = -32$, a constraint that is independent of τ $I_{12}(\tau) = -2$, I_1 $I_{13}(\tau) = -2\left(1 + \frac{1}{3}j_3(\tau)\right)^3,$ I_2

$$I_{23}(\tau) = -\frac{32}{I_{13}} = \frac{16}{\left(1 + \frac{1}{3}j_3(\tau)\right)^3} \cdot j_3(\tau) := \eta(\tau/3)^3/\eta(3\tau)^3$$

$${}_{3} = -\frac{2}{27}q^{-1} - \frac{10}{9} - 4q + \frac{152}{27}q^2 + 18q^3 - 88q^4 + \frac{2768}{27}q^5 + 216q^6 + \dots ,$$

$${}_{3} = 432q - 6480q^2 + 73872q^3 - 725328q^4 + 6503328q^5 - 54855792q^6 + \dots ,$$

$$q = e^{2\pi i \tau}$$

41

A Model in modular group A_5 [arXiv:1903.12588 Gui-Jun Ding, Stephen F.King, Xiang-Gan Liu]

field/coupling	E ^c	L	$H_{u/d}$	χ	φ	$Y_{5}^{(2)}(\tau)$	We
$SU(2)_{L} \times U(1)_{Y}$ $\Gamma_{5} \cong A_{5}$ k_{I}	(1,1) 3 2	(2 , -1/2) 3 1	(2 , ±1/2) 1 0	1	(1,0) 3 -3/2	(1,0) 5 -2	\mathcal{W}_{v}

$$\begin{split} M_{e} &= v_{d} \begin{pmatrix} \mu_{e} + 4\gamma v_{\varphi}^{2} & 0 & 0 \\ 0 & 0 & \mu_{e} - 2\gamma v_{\varphi}^{2} + \zeta v_{\chi} v_{\varphi} \\ 0 & \mu_{e} - 2\gamma v_{\varphi}^{2} - \zeta v_{\chi} v_{\varphi} & 0 \end{pmatrix}, \\ m_{\nu}(\tau, \bar{\tau}) &= (-i\tau + i\bar{\tau}) \frac{v_{u}^{2}}{\Lambda} \begin{pmatrix} 2Y_{1}(\tau) & -\sqrt{3}Y_{5}(\tau) & -\sqrt{3}Y_{2}(\tau) \\ -\sqrt{3}Y_{5}(\tau) & \sqrt{6}Y_{4}(\tau) & -Y_{1}(\tau) \\ -\sqrt{3}Y_{2}(\tau) & -Y_{1}(\tau) & \sqrt{6}Y_{3}(\tau) \end{pmatrix} \\ &=: (-i\tau + i\bar{\tau}) v_{u}^{2} \begin{pmatrix} \kappa_{11} & \kappa_{12} & \kappa_{13} \\ \kappa_{12} & \kappa_{22} & \kappa_{23} \\ \kappa_{13} & \kappa_{23} & \kappa_{33} \end{pmatrix}, \end{split}$$

$$= \left[\alpha (E^{c}L)_{1} \chi^{2} + \beta (E^{c}L)_{1} (\varphi^{2})_{1} + \gamma (E^{c}L)_{5} (\varphi^{2})_{5} + \zeta (E^{c}L)_{3} (\chi\varphi)_{3} \right]_{1} H_{d} ,$$

$$= \frac{1}{\Lambda} \left(H_{u} \cdot L H_{u} \cdot L Y_{5}^{(2)} \right)_{1} . \qquad \qquad \langle \chi \rangle = v_{\chi} ,$$

$$\langle \varphi \rangle = v_{\varphi} (1, 0, 0) .$$

Modular weight k and their representation uniquely fixed Yukawa as modular forms

$$Y_{5}^{(2)}(\tau) := \begin{pmatrix} Y_{1}(\tau) \\ Y_{2}(\tau) \\ Y_{3}(\tau) \\ Y_{4}(\tau) \\ Y_{5}(\tau) \end{pmatrix}$$

A Model in modular group A_5 Invariant

$$I_{12} = \frac{2\sqrt{6}}{3} \frac{Y_1(\tau)Y_4(\tau)}{Y_5^2(\tau)}, \ I_{13} = \frac{2\sqrt{6}}{3} \frac{Y_1(\tau)Y_3(\tau)}{Y_2^2(\tau)}, \ I_{23} = 6 \frac{Y_3(\tau)Y_4(\tau)}{Y_1^2(\tau)}$$

- 1. All of them have poles

$$\begin{split} -4 &= 18I_{12} + 18I_{13} + 9I_{12}I_{13} + I_{12}I_{13}I_{23}$$

2. We can still make combination of them which is Modular Invariant Holomorphic (\bigcirc, \hbar, ϕ) 23, $_{2}I_{13} + 108I_{12}^{2}I_{13} - 108I_{13}^{2} + 108I_{12}I_{13}^{2} + 81I_{12}^{2}I_{13}^{2}$

A Model in modular group A_5 Invariant

 $-4 = 18I_{12} + 18I_{13} + 9I_{12}I_{13} + I_{12}I_{13}I_{23},$ $-I_{12}^2I_{23}-I_{13}^2I_{23}$.

 $-8 = 12I_{12} - 108I_{12}^{2} + 12I_{13} + 414I_{12}I_{13} + 108I_{12}^{2}I_{13} - 108I_{13}^{2} + 108I_{12}I_{13}^{2} + 81I_{12}^{2}I_{13}^{2}$

- Invariant under exchange $I_{12} \leftrightarrow I_{13}$ At the level of observables, this is $\theta_{23} \mapsto \theta_{23} + \frac{\pi}{2}$
 - Know as $\mu \leftrightarrow \tau$ symmetry

