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Flavor Puzzle
The origin of the parameters in the flavor sector

For example, in SUSY, the lepton masses can be generated via superpotential

𝒲 = Yij
e LiHdĒj +

1
2

κijLiHuLjHu
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Flavor Puzzle
The origin of the parameters in the flavor sector

For example, in SUSY, the lepton masses can be generated via superpotential

As Higgs obtained a vacuum expectation value (vev), in the basis in which  is 
diagonal, this then gives a mass matrix for neutrino





What is the origin to the structure of ?

Yij
e

⇒ mij
ν = κijv2

u

κij

𝒲 = Yij
e LiHdĒj +

1
2

κijLiHuLjHu
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Flavor + Modular
One Possibile Solution

One solution is to apply modular symmetry in flavor physics. 


A theory in modular symmetry content 


• a modulus  takes values in the upper half of the complex plane 


• regular matter fields, 


• and a modular group in which the theory is invariant under.

τ
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Will be explained later…

[arXiv:1706.08749 Ferruccio Feruglio]



Flavor + Modular
One Possibile Solution

Impose following 3 requirement to the coupling, then these conditions are so 
strong and the couplings are almost unique.
1. Modular invariance / covariance , required by the modular symmetry


• Invariant under modular transformations


2. Meromorphic , required by SUSY


• The coupling depends only on modulus  but not on its conjugate 


3. Finite 


• The coupling are finite for all values of  in the upper half of the complex plane, including at .

( ⊚ )

(τ̄/ )

τ τ̄

(∞/ )

τ i∞
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Question answered in our work: 


Can observables have these features?

1. Modular invariance / covariance , required by the modular symmetry


• Invariant under modular transformations


2. Meromorphic , required by SUSY


• The coupling depends only on modulus  but not on its conjugate 


3. Finite 


• The coupling are finite for all values of  in the upper half of the complex plane, including at .

( ⊚ )

(τ̄/ )

τ τ̄

(∞/ )

τ i∞
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Introduction to  
Modular Flavor Theory Framework
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What is  Modular symmetry
Modular symmetry presenting a geometry structure of extra dimension

Torus: 

Characterized by 


Symmetry: 

T2 = S1 × S1

τ

SL(2,ℤ)

WikipediaLattice Characterized by τ Torus
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What is  Modular symmetry
Modular transformation changes the basis on lattice

A modular symmetry  are generated via two 
generator of :





A chiral supermultiplet , known as modulus, 
transform under an element 

 as


SL(2,ℤ)
SL(2,ℤ)

S = ( 0 1
−1 0), T = (1 1

0 1)
τ

γ = (a b
c d) ∈ SL(2,ℤ)

τ γ aτ + b
cτ + d
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S = ( 0 1
−1 0), τ ↦ −

1
τ



What is  Modular symmetry
Modular transformation changes the basis on lattice

A modular symmetry  are generated via two 
generator of :





A chiral supermultiplet , known as modulus, 
transform under an element 

 as


SL(2,ℤ)
SL(2,ℤ)

S = ( 0 1
−1 0), T = (1 1

0 1)
τ

γ = (a b
c d) ∈ SL(2,ℤ)

τ γ aτ + b
cτ + d

10

T = (1 1
0 1), τ ↦ τ + 1



What is  Modular symmetry
Modular symmetry presenting a geometry structure of extra dimension

Regular matter fields  transform under  as





where  is the representation of  and  is known as the modular 
weight of .

Φ γ = (a b
c d) ∈ SL(2,ℤ)

Φ γ (cτ + d)−kΦρΦ(γ)Φ

ρΦ SL(2,ℤ) kΦ
Φ
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A Theory with Modular Symmetry
Kahler potential

A Lagrangian in SUSY





where  is the Kahler potential and  is the superpotential.


In general, a modular invariance Kahler potential can are of the form





where the term presented are the minimal modular invariance Kahler potential.

ℒ = ∫ d2θd2θ̄ 𝒦(Φi, Φ†
i ) + (∫ d2θ𝒲(Φi) + h.c.)

𝒦 𝒲

𝒦 = ∑
i

Φ†
i Φi

(−iτ + iτ̄)ki
+ ⋯
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A Theory with Modular Symmetry
Superpotential

Now we move on the the superpotential, in general, the superpotential have 
Yukawa terms like





by requiring the theory to be modular invariant, recall , 
we then require Yukawa coupling transform as


𝒲 ⊃ gYijk(τ)ΦiΦjΦk

Φ γ (cτ + d)−kΦρΦ(γ)Φ

Yijk(τ) γ Yijk (γ(τ)) = (cτ + d)kYρY(γ)Yijk(τ)

13

kY = kΦi
+ kΦj

+ kΦk



Flavor + Modular
Now we apply modular symmetry in flavor physics. To do so, we impose 3 
requirements to the coupling 
1. Modular invariance / covariance , required by the modular symmetry


• Invariant under modular transformations


2. Meromorphic , required by SUSY


• The coupling depends only on modulus  but not on its conjugate 


3. Finite 


• The coupling are finite for all values of  in the upper half of the complex plane, including at .

( ⊚ )

(τ̄/ )

τ τ̄

(∞/ )

τ i∞

Holomorphic {Meromorphic(τ̄/ )
Finiteness(∞/ )
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3 Requirements

Recall the coupling in superpotential





where under a modular transformation,





These 3 requirements and above transformation then uniquely determine  to be vector-valued modular forms.

𝒲 ⊃ gYijk(τ)ΦiΦjΦk

Yijk(τ) γ Yijk (γ(τ)) = (cτ + d)kY ρY(γ)Yijk(τ)

Yijk(τ)

1. Modular invariance / covariance , required by the modular symmetry


• Invariant under modular transformations


2. Meromorphic , required by SUSY


• The coupling depends only on modulus  but not on its conjugate 


3. Finite 


• The coupling are finite for all values of  in the upper half of the complex plane, including at .

( ⊚ )

(τ̄/ )

τ τ̄

(∞/ )

τ i∞
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3 Requirements

Can we impose the same restriction on the observable?

1. Modular invariance / covariance , required by the modular symmetry


• Invariant under modular transformations


2. Meromorphic , required by SUSY


• The coupling depends only on modulus  but not on its conjugate 


3. Finite 


• The coupling are finite for all values of  in the upper half of the complex plane, including at .

( ⊚ )

(τ̄/ )

τ τ̄

(∞/ )

τ i∞
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Naive Attempt
Usual physical observables?

The usual observables, say , the mass, are finite  and modular invariant 
 in a theory with modular symmetry. 


Therefore we only need to check meromorphy .

m (∞/ )
( ⊚ )

(τ̄/ )
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Naive Attempt
Usual physical observables?

Consider a toy model





To find the physical mass, we look into the scalar potential


𝒲 =
1
2

ℳ(τ)Φ2, 𝒦 =
Φ†Φ

(−iτ + iτ̄)kΦ

V(ϕ) =
∂𝒲
∂ϕ

2

= |ℳ(τ) |2 |ϕ |2?
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Naive Attempt
Usual physical observables?




However, notice we need to canonically normalize Kahler potential, therefore we must introduce 
the Kahler metric:





which gives rise an additional terms in the mass





which depends on .

𝒲 =
1
2

ℳ(τ)Φ2, 𝒦 =
Φ†Φ

(−iτ + iτ̄)kΦ

V(ϕ) =
∂𝒲†

∂ϕ†
KΦ†Φ ∂𝒲

∂ϕ
,  where KΦ†Φ = (−iτ + iτ̄)kΦ

m2 = |ℳ(τ) |2 (−iτ + iτ̄)kΦ

τ̄
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Naive Attempt
Non-holomorphic observables

Physical mass is not meromorphic  (thus also not holomorphic).


Actually, one can show in general all observables discussed before our paper were non-holomorphic.

(τ̄/ )

Problem: 


Kahler metric enter into the mass, which is in general not meromorphic   . 


Therefore we cannot use the nice uniqueness argument here.

(τ̄/ )
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Modular Invariant Holomorphic 
Observables

21



Modular Invariant Holomorphic Observables
Idea: Remove the non-holomorphic terms coming from the Kahler metric

Recall the supoerpotential of lepton sector





where now we add the modular ( ) dependence.


In the simplest setting, let’s say we are in the basis in which charge lepton 
Yukawa is diagonal. 


And we make use of the minimal Kahler potential.

𝒲 = Yij
e LiHdĒj +

1
2

κij(τ)LiHuLjHu

τ
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Modular Invariant Holomorphic Observables
Idea: Remove the non-holomorphic terms coming from the Kahler metric

Consider





where  is the neutrino mass matrix we obtained after 
Kahler potential are canonically normalized.


We see now that by doing ratio of the mass matrix entries, we cancel the non-holomorphic 
terms from the Kahler metric, we therefore obtained  is now meromorphic .


After a modular transformation, the automorphic factor  is also canceled. This 
object is therefore modular invariant .

Iij(τ) :=
κii(τ)κjj(τ)
(κij(τ))2

=
mii(τ, τ̄)mjj(τ, τ̄)

(mij(τ, τ̄))2

mij(τ, τ̄) := (−iτ + iτ̄)(kLj+kLj)/2κij(τ)v2
u

Iij(τ) (τ̄/ )

(cτ + d)kLi

( ⊚ )
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Modular Invariant Holomorphic Observables
Invariant in terms of physical observables

We can write the mass matrix  in terms of observables:


• Neutrino masses , and


• PMNS matrix , depends on mixing and phase , 
where  is the CP violation phase, and  and  are two Majorana 
phases.


mν

{m1, m2, m3}

U {θ12, θ13, θ23, δCP, φ1, φ2}
δCP φ1 φ2

mν = U*diag(m1, m2, m3)U†
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Modular Invariant Holomorphic Observables
Invariant in terms of physical observables

Plug in, we obtained the invariants are

25



Modular Invariant Holomorphic Observables




Remark 

1. They are modular invariant 


2. They are meromorphic 


3. Not necessary finite everywhere 


Additionally


4. These invariant only depend on the observables


5. They are actually renormalization group invariant

Iij(τ) :=
κii(τ)κjj(τ)
(κij(τ))2

=
mii(τ, τ̄)mjj(τ, τ̄)

(mij(τ, τ̄))2

( ⊚ )

(τ̄/ )

(∞/ )
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 [arXiv:hep-ph/0205147 Sanghyeon Chang, T. K. Kuo]



Apply it in an Example Model
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A Model in modular group A4
[arXiv:1706.08749 Ferruccio Feruglio]

Modular weight  and their 
representation uniquely fixed Yukawa as 
modular forms

k

28



A Model in modular group A4
Invariant

The invariants are then given as 


I12(τ) = 4
Y1(τ) Y3(τ)

(Y2(τ))2
, I13(τ) = 4

Y1(τ) Y2(τ)

(Y3(τ))2
, I23(τ) = 4

Y2(τ) Y3(τ)

(Y1(τ))2

A modular invariant meromorphic  function are either


•  independent constant (which are finite , thus holomorphic)


• or it has pole


(There is no modular invariant holomorphic function except constant functions)

( ⊚ , τ̄/ )

τ (∞/ )
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A Model in modular group A4
Invariant




1.  has a singularity at ;  has a singularity at , and vanishes at .


2.  satisfy , therefore , a constraint that is independent of  

3. One can also showed , a constraint that is independent of 


In addition


• Mass matrix has a sum rule: 


I12(τ) = 4
Y1(τ) Y3(τ)

(Y2(τ))2
, I13(τ) = 4

Y1(τ) Y2(τ)

(Y3(τ))2
, I23(τ) = 4

Y2(τ) Y3(τ)

(Y1(τ))2

I13 τ = i∞ I23 τ =
−3 + i 3

6
τ = i∞

Yi Y2
2 + 2Y1Y3 = 0 I12(τ) = − 2 τ

I13I23 = − 32 τ

m3 = {m2 + m1 for normal ordering (NO) ,
m2 − m1 for inverted ordering (IO) .
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Use relation  I12(τ) = − 2
 is a Modular Invariant Holomorphic Observables I12 ( ⊚ , τ̄/ , ∞/ )

Using the sum rule and the known mass square difference  and , 
we can fixed all the mass. We also know the mixing angles from oscillation 
experiments. We therefore look into the phases





and therefore determine the neutrinoless double beta decay matrix element 





Δm2
sol Δm2

atm

{δCP, φ1, φ2}

⟨mee⟩ = ∑
i

U2
eimi
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Use relation  I12(τ) = − 2
 is a Modular Invariant Holomorphic Observables I12 ( ⊚ , τ̄/ , ∞/ )

Once we impose , the allowed  are shown in the plotI12(τ) = − 2 ⟨mee⟩

Notice this result


• Independent of the value of 


• We only impose 1 out of 3 relations (or 
2 out of 6 real relations)

τ
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Use relation  I13I23 = − 32
 is a Modular Invariant Holomorphic Observables I13I23 ( ⊚ , τ̄/ , ∞/ )

We can now use the relation, .


This gives 2 more real constraint and the systems is over-constrained.


We have verified that cannot satisfy relations while still being consistent with data.


Therefore this model is ruled out. Agree with analyses done by previous work.


We arrive at this conclusion without doing any fit nor a scan over .

I13I23 = − 32

τ
33



Conclusion 
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Conclusion 
Modular Invariant Holomorphic Observables

There exist observables that are


1. Modular invariant 


2. Meromorphic 


3. Some are finite everywhere 


( ⊚ )

(τ̄/ )

(∞/ )

Moreover...


4. Usually, we can use  to construct observables 
that are also finite , which lead to a modular 
invariant holomorphic observables .


and...


5. They are also independent of renormalization 
scale.

Iij
(∞/ )

( ⊚ , τ̄/ , ∞/ )

Iij(τ) :=
κii(τ)κjj(τ)
(κij(τ))2

=
mii(τ, τ̄)mjj(τ, τ̄)

(mij(τ, τ̄))2
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Conclusion
Modular Invariant Holomorphic Observables

• They are highly constrained by their symmetries and properties


• Composed solely of quantities that can be measured experimentally


• Gives rise robust, important, immediate useful information and 
phenomenological constraints without need to perform a scan of the 
parameter space

36



Open question
Modular Invariant Holomorphic Observables

• Apply the same idea to quark sector?


• In the case in which the charge lepton mass matrix is not diagonal?


• Do these invariants have more physical meaning or even can be directly 
measured?


• In the case where Kahler potential is not minimal?


• …

37



Thank you!



Modular Invariant Holomorphic Observables
RG Invariant

39

RG Equation for :κ

If  is diagonal, thenP

Iij(τ) :=
κii(τ)κjj(τ)
(κij(τ))2

=
mii(τ, τ̄)mjj(τ, τ̄)

(mij(τ, τ̄))2Therefore  is RG InvariantIij



Modular Invariant Holomorphic Observables
RG Invariant

40



A Model in modular group A4
Invariant




1.  has a singularity at ;  has a singularity at , and vanishes at .


2.  satisfy , therefore , a constraint that is independent of  

3. One can also showed , a constraint that is independent of 


I12(τ) = 4
Y1(τ) Y3(τ)

(Y2(τ))2
, I13(τ) = 4

Y1(τ) Y2(τ)

(Y3(τ))2
, I23(τ) = 4

Y2(τ) Y3(τ)

(Y1(τ))2

I13 τ = i∞ I23 τ =
−3 + i 3

6
τ = i∞

Yi Y2
2 + 2Y1Y3 = 0 I12(τ) = − 2 τ

I13I23 = − 32 τ
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A Model in modular group A5
[arXiv:1903.12588 Gui-Jun Ding, Stephen F.King, Xiang-Gan Liu]

Modular weight  and their 
representation uniquely fixed Yukawa as 
modular forms

k
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A Model in modular group A5
Invariant




1. All of them have poles


2. We can still make combination of them which is Modular Invariant Holomorphic 


I12 =
2 6

3
Y1(τ)Y4(τ)

Y2
5(τ)

, I13 =
2 6

3
Y1(τ)Y3(τ)

Y2
2(τ)

, I23 = 6
Y3(τ)Y4(τ)

Y2
1(τ)

( ⊚ , τ̄/ , ∞/ )
−4 = 18I12 + 18I13 + 9I12I13 + I12I13I23 ,
−8 = 12I12 − 108I2

12 + 12I13 + 414I12I13 + 108I2
12I13 − 108I2

13 + 108I12I2
13 + 81I2

12I2
13

−I2
12I23 − I2

13I23 .
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A Model in modular group A5
Invariant




Invariant under exchange 


At the level of observables, this is 


Know as  symmetry

−4 = 18I12 + 18I13 + 9I12I13 + I12I13I23 ,
−8 = 12I12 − 108I2

12 + 12I13 + 414I12I13 + 108I2
12I13 − 108I2

13 + 108I12I2
13 + 81I2

12I2
13

−I2
12I23 − I2

13I23 .

I12 ↔ I13

θ23 ↦ θ23 +
π
2

μ ↔ τ
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