Measurements in photo-induced and diffractive processes

Dr. Javier Murillo

Universidad de Sonora

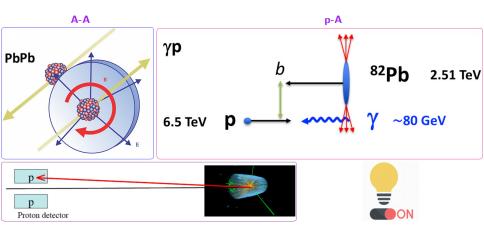
Workshop on medical and high energy physics at Sonora, Mexico

Hermosillo, Sonora, Mexico May 21-24 2024

(日) (國) (필) (필) (필) 표

1 Ultraperipheral collisions (UPCs) and the photon flux

- 2 CMS experiment and forward detectors
- 3 Top quark photoproduction search
- 4 Collectivity probes in small systems
- 5 Exclusive photoproduction
- 6 Summary and outlook

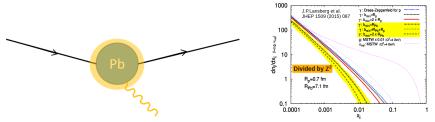

Ultraperipheral collisions (UPCs) and the photon flux

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Intact protons or lead nuclei; source of photo-induced processes

- ► Ultraperiperal collisions (UPC's) with large impact parameters; (b > 2R_A)
 - $\rightarrow \gamma \text{-proton/Pb}$ and $\gamma \gamma$ initial state processes
 - \rightarrow Photon source (Pb or p) does not dissociate



https://doi.org/10.1063/PT.3.3727

javier.murillo@cern.ch photo-induced and diffractive processes

< ロト < 同ト < ヨト < ヨト

Equivalent Photon Approximation; Intact protons or lead nuclei;

- Equivalent Photon Approximation (EPA)^{1,2}; cross-section can be factorized in terms of equivalent flux of photons with energy E_γ into colliding hadron
- ► Flux of quasireal photons, with intensity proportional to the square of its electric charge, Z²
 - \rightarrow Weizsäcker Williams power-law photon flux
 - \rightarrow Proton flux: further corrections proposed: Nucl. Phys. B 974, 115645 (2022)

► PYTHIA8

- EPA and radial parameters in Nucleus2gamma object
- Exclusive and semiexclusive processes
- Available softQCD processes to simulate MB events within photoproduction

► STARLIGHT

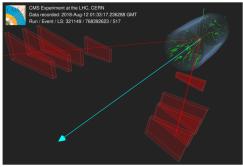
- $\gamma\gamma$ and $\gamma{\rm I\!P}$ interactions between nuclei and protons
- Variety of final states to $\mu^+\mu^-$, $\tau^+\tau^-$, e^+e^- , ρ^0 , J/ ψ , υ ...
- Madgraph
 - EPA flux for proton, with exclusive and semiexclusive production at NLO

► Gamma-UPC

- Exclusive $\gamma\gamma$ processes with variable A number of nucleons and EPA models
 - Improved Weizsaecker-Williams Approx [hep-ph/9310350]
 - Effective W/Z/A Approx [2111.02442]
 - edff [2207.03012]
 - chff [2207.03012]

イロト イポト イヨト イヨト 二日

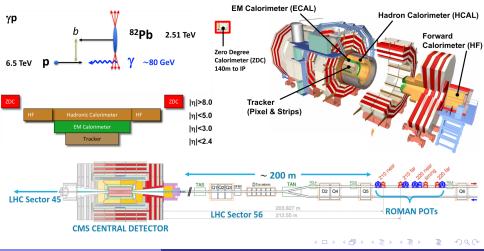
Photon from Pb nuclei with energy up to \sim 80 GeV


- Photon energies for lead ion at 2.76 TeV and proton at 7 TeV can reach values up to 80 GeV and 2.45 TeV respectively
- Photon energies at LHC, HL-LHC and FCC energies; larger reach for proton flux

System	$\sqrt{s_{_{ m NN}}}$	\mathcal{L}_{int}	$E_{\text{beam1}} + E_{\text{beam2}}$	$\gamma_{ m L}$	$R_{ m A}$	$E_{\gamma}^{ m max}$	$\sqrt{s_{\gamma\gamma}^{\max}}$
Pb-Pb	5.52 TeV	5 nb^{-1}	2.76 + 2.76 TeV	2960	7.1 fm	80 GeV	160 GeV
Xe-Xe	5.86 TeV	30 nb^{-1}	2.93 + 2.93 TeV	3150	6.1 fm	100 GeV	200 GeV
Kr-Kr	6.46 TeV	120 nb ⁻¹	3.23 + 3.23 TeV	3470	5.1 fm	136 GeV	272 GeV
Ar-Ar	6.3 TeV	1.1 pb ⁻¹	3.15 + 3.15 TeV	3390	4.1 fm	165 GeV	330 GeV
Ca-Ca	7.0 TeV	$0.8 \ pb^{-1}$	3.5 + 3.5 TeV	3760	4.1 fm	165 GeV	330 GeV
0-0	7.0 TeV	12.0 pb ⁻¹	3.5 + 3.5 TeV	3760	3.1 fm	240 GeV	490 GeV
p-Pb	8.8 TeV	1 pb^{-1}	7.0 + 2.76 TeV	7450, 2960	0.7, 7.1 fm	2.45 TeV, 130 GeV	2.6 TeV
p-p	14 TeV	150 fb ⁻¹	7.0 + 7.0 TeV	7450	0.7 fm	2.45 TeV	4.5 TeV
Pb-Pb	39.4 TeV	110 nb^{-1}	19.7 + 19.7 TeV	21 100	7.1 fm	600 GeV	1.2 TeV
p-Pb	62.8 TeV	29 pb ⁻¹	50. + 19.7 TeV	53 300, 21 100	0.7,7.1 fm	15.2 TeV, 600 GeV	15.8 TeV
p-p	100 TeV	1 ab ⁻¹	50. + 50. TeV	53 300	0.7 fm	15.2 TeV	30.5 TeV

H.-S. Shao and D. d'Enterria, JHEP 2209 (2022) 248 arXiv:2207.03012[hep-ph]

CMS experiment and forward detectors

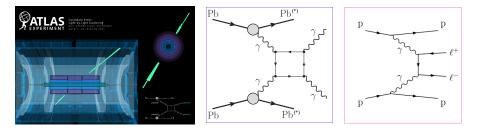


3

(日)

CMS forward detectors in Run 2

- ► Zero Degree (ZDC) and Hadronic Forward (HF) calorimeters for Pb and protons respectively
- ▶ CMS Particle Flow energies to constrain activity as a function of η
- CT-PPS spectrometer for pp runs


javier.murillo@cern.ch

6 / 25

Evidence of Photo-induced processes in PbPb / pp at the LHC

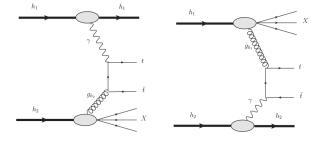
Evidence of light-by-light scattering

CMS-FSQ-16-012 Phys. Lett. B 797 (2019) 134826

- Exclusive production of lepton pairs
 - Scattered protons measured at CMS-TOTEM precision proton spectrometer (CT-PPS)
 - Observed for first time at the LHC in pp collisions at $\sqrt{s}=$ 13 TeV

JHEP07 (2018) 153

- Light-by-light with protons


Top quark photoproduction search

2

イロト イヨト イヨト イヨト

Factorization and photon flux probability distribution

- Equivalent photon flux, dN/dω, associated to one of the hadrons
 - $\mathsf{W}_{\gamma p}$ c.m.s photon-hadron energy, $\mathsf{W}_{\gamma p}^2 = 2\omega\sqrt{s}$
 - Considering and adding over all possibilities of $\omega,$ the γ energy
 - Intact recoiled hadron and rapidity gap appears in final state

$$\sigma(h_1 + h_2 \to h \otimes t\bar{t} + X) = \int d\omega \frac{dN}{d\omega} \Big|_{h_1} \sigma_{\gamma h_2 \to t\bar{t}X}(W_{\gamma h_2}) + \int d\omega \frac{dN}{d\omega} \Big|_{h_2} \sigma_{\gamma h_1 \to t\bar{t}X}(W_{\gamma h_1}),$$

PHYSICAL REVIEW D 88, 054025 (2013)

javier.murillo@cern.ch

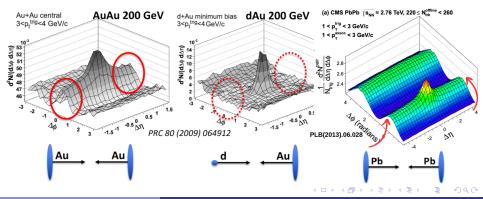
• NLO cross-sections for $t\bar{t}$ photoproduction

 $\sigma_{t\bar{t}} \approx 0.70 \text{pb} (x2) \approx 1.40 \text{pb}$ $\sigma_{tW} \approx 0.51 \text{pb} (x2) \approx 1.02 \text{pb}$

・ロト ・ 同ト ・ ヨト ・ ヨト

Anomalous couplings can be probed

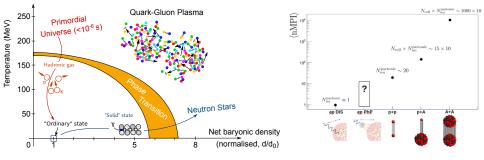
Collectivity probes in small systems


æ

イロト イヨト イヨト イヨト

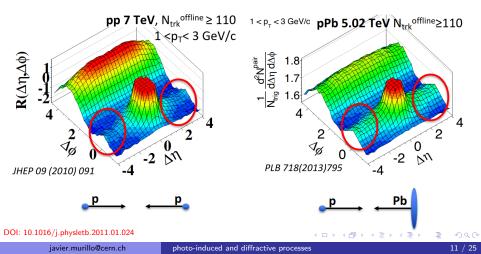
Collectivity and ridge in nuclear collisions AA

Emerges in the two-particle correlation functions

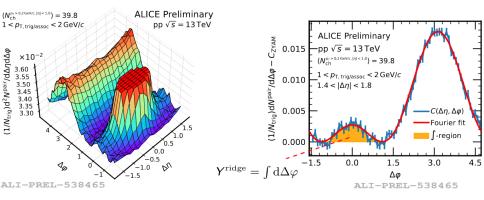

- Long-range spatial correspondence \rightarrow [collective behaviour of final-state particles]
- Observed in large collision systems (AA) $\quad \rightarrow \quad$ [ridge-like shape in data]
- First probes over smaller collision systems (dAu)
- ► Evidence of collectivity and one of the features of QGP; Relativistic fluid dynamics

Quark gluon plasma (QGP) and collectivity

- Medium properties and hydrodynamic behavior \rightarrow Look into smaller systems


- Initial and final state effects
 - Long range correlations induced by color fluctuations? (CGC)
 - gluon saturation in the initial state?

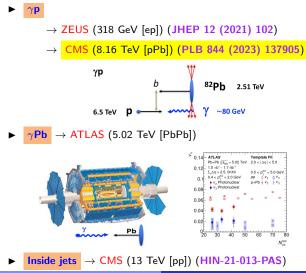
https://cds.cern.ch/record/2025215 D. Gangadharan, QM2022

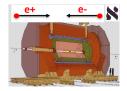

Unexpected signs of collectivity seen in pp and pPb at the LHC

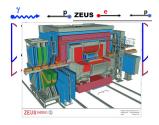
- ► Too small and simple to develop QGP-like collective behaviour? → Minimal size and conditions for collectivity to emerge
- ▶ Initial (CGC) effective model or Final (QGP) state effect?
 - how small the interaction region can be until description of soft QCD breaks down?

Collectivity signatures at low proton-proton multiplicity

- \blacktriangleright Significant near-side ridge at very low pp multiplicity \rightarrow Identify emergence mechanisms
 - Down to a range from \sim 8 to 20
 - Compatible with CMS results

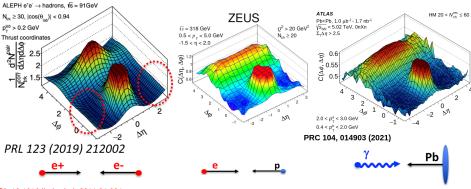



Recontres de Moriond QCD 2023, Jasper Parkkila


< □ > < □ > < □ > < □ >

Recent collectivity probes with small systems

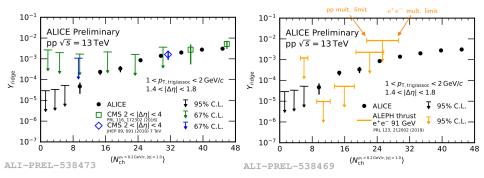
- $e^+e^- \rightarrow ALEPH$ (91 GeV, 208 GeV) and Belle (10.52 GeV)
- ep \rightarrow ZEUS and H1 at HERA (318 GeV)


Dynamics of a "single-parton" in the vacuum

javier.murillo@cern.ch

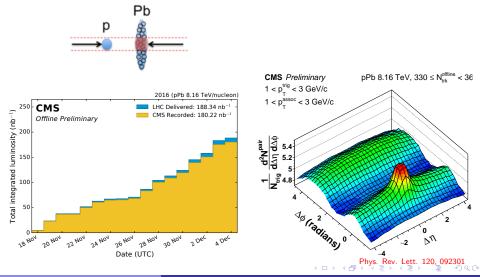
No sign of significative ridge in e^+e^- , e^- and γ -Pb

- ► No significant near side ridge so far
 - \rightarrow Very low multiplicities for ee, ep and $\gamma {\rm p}$ systems
 - \rightarrow Higher multiplicity in $\gamma {\rm Pb}$ allowing nonflow substraction

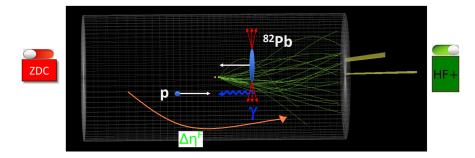

DOI: 10.1016/j.physletb.2011.01.024

< ロト < 同ト < ヨト < ヨト

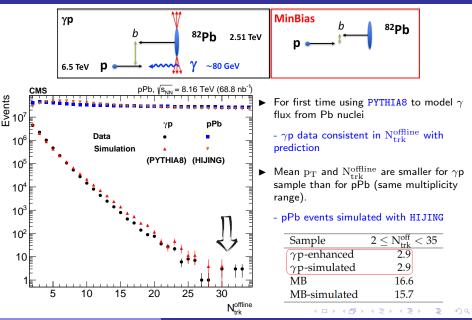
Studying ridge significance e^+e^- vs proton-proton


- First probes investigating significance of near side ridge at low multiplicity
 - \rightarrow CMS results consistent with ALICE recent observations
- First direct comparisons between ee and pp systems

 \rightarrow ee upper limits point to lower significance if any


Confirming collectivity features with proton-lead (pPb) at 8 TeV

- Most energetic pPb collisions so far at the LHC
- Consistent results at 5.02 and 8.16 TeV

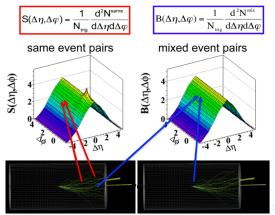

Event selection

- HF calorimeter measures activity on the proton side while no neutrons are detected by ZDC calorimeter consistent with intact Pb nucleus source of the γ flux.
- ▶ Particle flow energies and track objects used to isolate events with large forward rapidity gap $(\Delta \eta^F) \rightarrow 5.0 < \Delta \eta^F < 7.5$

< ロト < 同ト < ヨト < ヨト

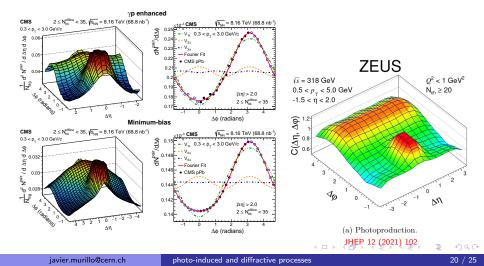
Limited multiplicity of charged particles in γp interactions

Two-dimensional (2D) angular correlation distribution

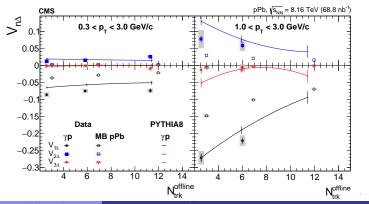

$$\frac{1}{N_{trig}}\frac{d^2N^{pair}}{d\Delta\eta d\Delta\phi} = B(0,0)\frac{S(\Delta\eta,\Delta\phi)}{B(\Delta\eta,\Delta\phi)}$$

 $\frac{B(0,0)}{B(\Delta\eta,\Delta\phi)}$ is the pair acceptance correction to the signal distribution

 \rightarrow Correction for tracking inefficiency is applied to each charged particle


Signal pair distribution:

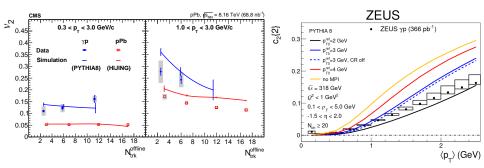
Background pair distribution:


One-dimensional (1D) projection and decomposition

- No ridge so far for γp system in CMS and ZEUS probes
- ► Fitted over the $\Delta \phi$ range $[0, \pi]$ to a Fourier decomposition series $\propto 1 + \sum_{n} 2V_{n\Delta} \cos(n\Delta \phi)$

 $ightarrow \gamma$ p data measurements are consistent with model predictions that have no collective effects

<i>p</i> _T range		$2 \le N_{trk}^{offline} < 5$	$5 \le N_{trk}^{offline} < 10$	$10 \le N_{trk}^{offline} < 35$	
	$V_{1\Delta}$	-0.086 ± 0.006	-0.075 ± 0.005	-0.074 ± 0.007	
$0.3 < p_{\rm T} < 3.0 {\rm GeV/c}$	$V_{2\Delta}$	0.012 ± 0.004	0.015 ± 0.004	0.026 ± 0.006	
	$V_{3\Delta}$	-0.002 ± 0.001	-0.002 ± 0.004	-0.010 ± 0.006	
		$2 \le N_{trk}^{offline} < 5$	$5 \le N_{trk}^{offline} < 35$		
V		-0.271 ± 0.021	-0.221 ± 0.017		
$1.0 < p_{\rm T} < 3.0 {\rm GeV/c}$	$V_{2\Delta}$	0.077 ± 0.027	0.059 ± 0.017		
$V_{3\Delta}$		-0.015 ± 0.009	-0.007 ± 0.013		



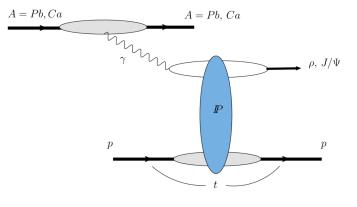
javier.murillo@cern.ch

21 / 25

v_2 elliptic anisotropy measurements with $|\eta|>2.0$

- At a given p_T and track multiplicity, v_2 is larger for γp -enhanced events than for MB pPb interactions
 - The magnitudes of both $V_{1\Delta}$ and $V_{2\Delta}(v_2)$ increase with $p_{\rm T}$
 - \rightarrow Similar response to p_T increase seen by ZEUS over $c_2\{2\}$
- Predictions from the PYTHIA8 model describe well the γp data within uncertainties

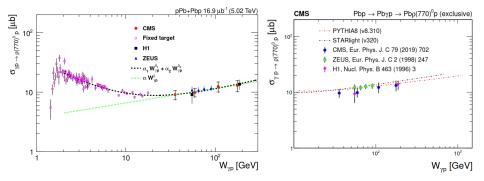
< ロト < 同ト < ヨト < ヨト


Exclusive photoproduction

2

イロト イヨト イヨト イヨト

Exclusive vector meson photoproduction in p A collisions


- $\blacktriangleright~{\rm J}/\psi$ and ρ mesons much lighter than the top quark
- Exclusive vector meson photoproduction cross section
 - Photon flux associated to A ion Nucleus
 - Driven by the gluon content of the target (proton or nucleus)

Physics Letters B 791 (2019) 299{304

Exclusive $\rho^0(770)$ photoproduction

- Extending to pPb collisions at 8.16 TeV; master student
- Evolution of $\sigma_{\gamma p}$ as a function of $W_{\gamma p}$ invariant mass
 - Extend the range for $W_{\gamma p}$ limit and precision)

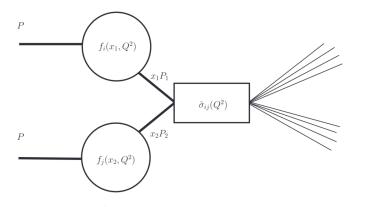
Eur. Phys. J. C 79 (2019) 702

CMS-HIN-23-011, CERN-EP-2024-057, https://arxiv.org/abs/2405.10785

Summary and Outlook

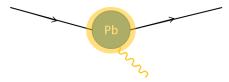
- Several phenomena in photo-induced and diffractive proccesses yet to be studied
- Predictions from the PYTHIA8 model describe well the γp system within uncertainties
 - \rightarrow This suggests the data are dominated by noncollective effects
 - \rightarrow Within the present experimental sensitivity, no significant collectivity signal is observed
 - \rightarrow Limited multiplicity and response to $p_{\rm T}$ consistent with what has been seen by ZEUS in γp and ep studies
- ► For small systems there is need to identify mechanisms responsable for observed trends and values over distinct angular coefficients
 - Confirmation over pp collective features and significant ridge down to $\mathit{N}_{\rm trk} \sim 10$
 - Significant v_2 and observed by ATLAS after non flow substraction

Thanks


・ロト ・四ト・ モン・ モン

Backup

3


Factorization method for cross-section calculation

In 'hadronic' interactions factorization method is used to obtain total σ for a process
 Considering and adding over all possibilities of x fraction of total hadron (proton) energy

$$\sigma^{t\bar{t}}(\sqrt{s}, m_t) = \sum_{i, j=q, \bar{q}, g} \int dx_i dx_j f_i(x_i, \mu^2) \bar{f}_j(x_j, \mu^2) \times \hat{\sigma}_{ij \to t\bar{t}}(\rho, m_t^2, x_i, x_j, \alpha_s(\mu^2), \mu^2)$$

Photon flux, $dN/d\omega$ from nuclei

Analytic approximation for equivalent photon flux from nuclei

$$\frac{dN}{d\omega}\Big|_{A} = \frac{2Z^{2}\alpha_{em}}{\pi\omega} \Big[\bar{\eta}K_{0}(\bar{\eta})K_{1}(\bar{\eta}) - \frac{\bar{\eta}^{2}}{2}U(\bar{\eta}) \Big]$$

where $K_0(\eta)$ and $K_1(\eta)$ are the modified Bessel functions

$$\bar{\eta} = \omega(R_{h_1} + R_{h_2})/\gamma_L$$
 and $\mathcal{U}(\bar{\eta}) = K_1^2(\bar{\eta}) - K_0^2(\bar{\eta})$

- γ_L is the lorentz boost of a single beam
 - $R_p = 0.6 \text{fm}$ and $R_A = 1.2 \text{A}^{1/3}$
 - Absortive corrections can be disregarded at b > R_{h1} + R_{h2}
 - At b $< R_{h1} + R_{h2}$ the photon flux is zero

PHYSICAL REVIEW D 88, 054025 (2013)

Photon flux, $dN/d\omega$ from proton

\bigcirc^p

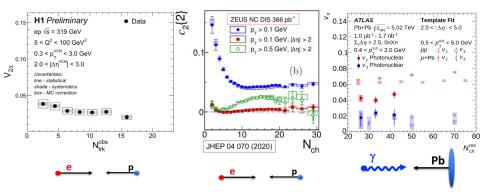
Analytic approximation for equivalent photon flux from proton

$$\begin{aligned} \frac{dN}{d\omega} \Big|_{p} &= \frac{\alpha_{\rm em}}{2\pi\omega} \bigg[1 + \bigg(1 - \frac{2\omega}{\sqrt{s}} \bigg)^{2} \bigg] \\ &\times \bigg(\ln\Omega - \frac{11}{6} + \frac{3}{\Omega} - \frac{3}{2\Omega^{2}} + \frac{1}{3\Omega^{3}} \bigg) \end{aligned}$$

with the notation $\Omega = 1 + [(0.71 \text{ GeV}^2)/Q_{\min}^2]$

$$Q_{\min}^2 = \omega^2 / [\gamma_L^2 (1 - 2\omega / \sqrt{s})] \approx (\omega / \gamma_L)^2$$

- γ_L is the lorentz boost of a single beam
 - Derived from Weizsäcker Williams method
 - Using elastic proton from factor

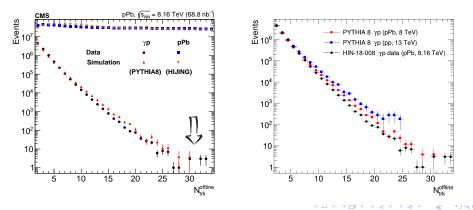

PHYSICAL REVIEW D 88, 054025 (2013)

э

(日) (同) (三) (三)

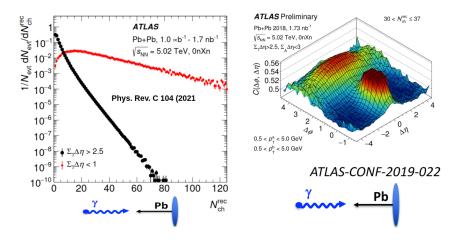
Studying azimuthal correlations ep vs γp

- Significant correlation coefficients as a function of multiplicity
 - \rightarrow Very low multiplicities for ee, ep and $\gamma {\rm p}$ systems
 - \rightarrow Higher multiplicity in $\gamma {\rm Pb}$ allowing nonflow substraction


ATLAS: PRC 104, 014903 (2021) H1: QM 2022, Chuan Sun

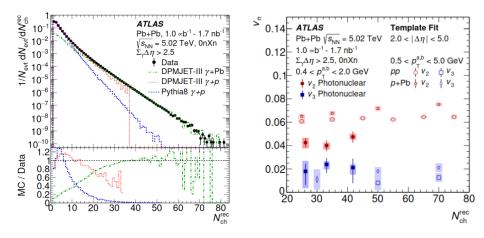
< □ > < 凸

γp from pp and pPb; is track multiplicity consistent?


- ▶ EPA flux from proton instead of Pb nuclei
- Multiplicity distribution

$$\label{eq:trk} \begin{split} &< \mathrm{N_{trk}} > \mathsf{PYTHIA8} \text{ pp sim}) = 3.026 \text{ (1.5M events)} \\ &< \mathrm{N_{trk}} > (\mathsf{PYTHIA8} \text{ pPb sim}) = 2.89 \text{ (37M Events)} \\ &< \mathrm{N_{trk}} > (\mathsf{pPb} \text{ CMS Data}) = 2.92 \end{split}$$

Significant non-zero v₂


- Substracting non-flow contribution using template fitting method

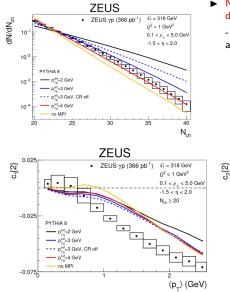
- (日)

Significant non-zero v₂

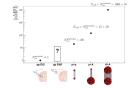
- Substracting non-flow contribution using template fitting method

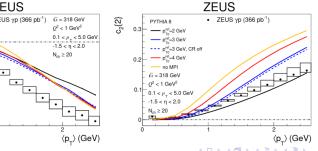
Photon flux can be modelled with gamma-UPC

 gamma-UPC: 'Automated generation of exclusive photon-photon processes in ultraperipheral proton and nuclear collisions with varying form factors'


H.-S. Shao and D. d'Enterria, JHEP 2209 (2022) 248 arXiv:2207.03012[hep-ph]

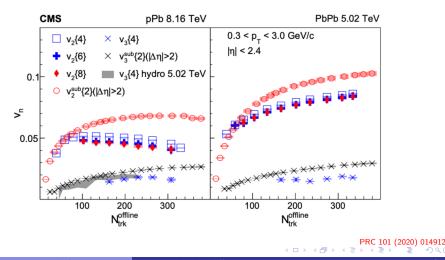
▶ Different configurations of nuclei and pp, pA and AA collisions can be set:


Nucleus	A	Ζ	<i>R</i> _A [fm]	<i>a</i> _A [fm]	WA
0	16	8	2.608	0.513	-0.051
Ar	40	18	3.766	0.586	-0.161
Ca	40	20	3.766	0.586	-0.161
Kr	78	36	4.5	0.5	0
Xe	129	54	5.36	0.59	0
Pb	208	82	6.624	0.549	0


< ロト < 同ト < ヨト < ヨト

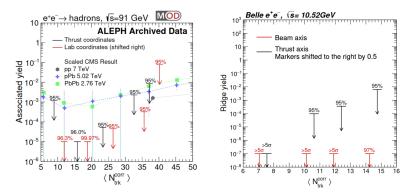
Photon-proton (γp); ZEUS within ep 318 GeV collisions

- No Multiparton Interactions (MPI) scenario disfavored
 - 4-particle cumulant positive in ep photoproduction and negative in non-central heavy-ion collisions



JHEP 12 (2021) 102

javier.murillo@cern.ch


Small vs large collision systems

- Origin of the ridge in small systems?
 - Natural question is whether such signatures persist in even smaller collision systems
 - Final state effect?, Pure fluctuations? CGC?

Recent probes in e^+e^- ; ALEPH (91 GeV) and Belle (10.52 GeV)

Confidence limits on associated yield as a function of N_{trk} have been set

Phys. Rev. Lett. 123, 212002 (2019) arXiv:2201.01694 [hep-ex]