Thermometry and Biomedical Applications from Fluorescent Nanodiamond Particles

WORKSHOP ON MEDICAL AND HIGH ENERGY PHYSICS AT SONORA, MEXICO

Dr. Francisco Alejandro Pedroza Monter Universidad de Sonora

Outline

□Nanodiamonds as promising nanostructures with temperature sensing capabilities.

Thermometric characterization with different sample sizes.

Advances in highly sensitive fluorescence thermometry.

Concentration effect in fluorescence emission.

Production of nanodiamonds

5nm

Up to 500nm

<u>Top-down</u>

ND of Static Synthesis

High Pressure High Temperature (HPHT) Nanodiamond

(substitutional N 100-200ppm)

Bottom-up

ND of Dynamic Synthesis

Detonation Nanodiamond (DND)

(Nitrogen: up to 10,000ppm Optically inactive conglomerates)

CVD, laser ablation, PECVD...

Strict protocol of production, impurity doping and activation, purification, fractionation, ... RE

REF: Shenderova, O. A. & McGuire, G. E. Science and engineering of nanodiamond particle surfaces for biological applications (Review). Biointerphases 10, 030802 (2015).

REF: Basso, L., Cazzanelli, M., Orlandi, M. & Miotello, A. Nanodiamonds: Synthesis and Application in Sensing, Catalysis, and the Possible Connection with Some Processes Occurring in Space. Appl. Sci. 10, 4094 (2020).

3

Key properties of fluorescent nanodiamonds

REF: Turcheniuk, K. & Mochalin, V. N. Biomedical applications of nanodiamond (Review). Nanotechnology 28, 252001 (2017).

Nanodiamonds as fluorescent dyes for cellular tracking

365 nm and 470 nm excitation

REF: Nunn, N. et al. Brilliant blue, green, yellow, and red fluorescent diamond particles: synthesis, characterization, and multiplex imaging demonstrations. Nanoscale 11, 11584–11595 (2019).

Fluorescence spectroscopy

REF: <u>https://www.edinst.com/blog/what-are-absorption-</u> excitation-and-emission-spectra/

Luminescence nanothermometry strategies

REF: Zhou, J., del Rosal, B., Jaque, D., Uchiyama, S. & Jin, D. Advances and challenges for fluorescence nanothermometry. Nat. Methods 17, 967–980 (2020).

REF: Jaque, D. & Vetrone, F. Luminescence nanothermometry. Nanoscale 4, 4301–4326 (2012). 7

The nitrogen-vacancy (NV) color center

Other: SiV, GeV, PbV, NVN, N3, ...

Intensity quenching associated with temperture

Two electronic structures

REF: Aslam, N., Waldherr, G., Neumann, P., Jelezko, F. & Wrachtrup, J. Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection. New J. Phys. 15, 013064 (2013).

Nanodiamonds thermometric characterization

Fluorescence intensity quenching in three different sized nanodiamonds with NV color centers:

e 1. Sigma Aldrich's nanodiamonds specifications.						
Part Number	Concentration	NV Centres/Particle	Size			
900172-5 mL	1 mg/mL	≤ 4	35 nm			
798169-5 mL	1 mg/mL	>300	70 nm			
900174-5 mL	1 mg/mL	>900	100 nm			

- ✓ <u>Neutral and negative charge</u> <u>state thermometry.</u>
- ✓ Relative sensitivity values were calculated 4-6 %/°C.
- ✓ Average uncertainty values yielded 1.3 °C.
- ✓ 100 nm size best linear representation.

REF: Pedroza-Montero, F. *et al.* Thermometric Characterization of Fluorescent Nanodiamonds Suitable for Biomedical Applications. *Appl. Sci.* **11**, (2021).

Highly precise fluorescence-based temperature sensing

Normalize[0,1] -> BaselineSub -> GaussianFit[575,637] -> Relative intensity values

REF: Pedroza-Montero, F. *et al.* Commercial nanodiamonds for highly precise fluorescence–based temperature sensing. *Appl. Phys. Lett.* Under Review, (2024).

Highly precise fluorescence-based temperature sensing

REF: Pedroza-Montero, F. *et al.* Commercial nanodiamonds for highly precise fluorescence–based temperature sensing. *Appl. Phys. Lett.* **Under Review**, (2024).

Term (units)	I _{NV} o	I _{NV} -	$A_{ m NV}$ 0	$\frac{I_{\rm NV^0}}{I_{\rm NV^0} + I_{\rm NV^-}}$	$\frac{I_{NV^-}}{I_{NV^0} + I_{NV^-}}$	$\frac{I_{NV^0}}{I_{NV^-}}$
S _a (a.u./°C)	* 0.000373	* 0.000635	0.123895 (nm/°C)	0.001540	0.001540	0.005163
S _r (%/°C)	0.456716	0.579934	0.721555	* 0.339479	* 0.282022	0.621194
€ (°C)	* 0.412884	☆ 0.861714	1.313149	1.754283	1.754283	1.741153

REF: Arai, S. *et al.* Micro-thermography in millimeter-scale animals by using orally-dosed fluorescent nanoparticle thermosensors. *The Analyst* **140**, 7534–7539 (2015).

Concentration effect in fluorescence emission in 900174-5mL

REF: Pedroza-Montero, F. A. et al. Study of fluorescent nanodiamonds concentrations in aqueous solutions for biological applications. Opt. Mater. 140, 113872 (2023). 12

Concentration effect in fluorescence emission in 900174-5mL

BaselineSub -> GaussianFit[575,637] -> Intensity values

REF: Pedroza-Montero, F. A. et al. Study of fluorescent nanodiamonds concentrations in aqueous solutions for biological applications. Opt. Mater. 140, 113872 (2023).

Conclusions

- Nanodiamonds with NV color centers exhibit highly temperature sensitive fluorescence properties.
- NV emission was found to decrease linearly within 25-60 °C (three sizes) and 30-45 °C (100 nm).
- Their use in fluorescence microscopy for cell monitoring could provide of thermally-resolved images of biological events.
- The use of relative intensity measurements provided sub-1 °C uncertainties.

Thank you.

