Top quark effective couplings from associate tW photoproduction at the LHC

Antonio O. Bouzas

Departamento de Física Aplicada, CINVESTAV Mérida abouzas@cinvestav.mx

May 22, 2024

Antonio O. Bouzas (Departamento de Física Aplicada, CTop quark effective couplings from associate tW photopr

May 22, 2024 1 / 22

[1] M. Aldana Franco, "Associate *tW* photoproduction at the LHC," Masters Thesis, Depto. de Física Aplicada, Cinvestav Mérida, Nov. (2018).

[2] A. B., F. Larios, "Top quark effective couplings from top-pair tagged photoproduction in pe^- collisions," Phys. Rev. D **105** (2022) 115002 [arXiv:2111.04723 [hep-ph]].

Antonio O. Bouzas (Departamento de Física Aplicada, CTop quark effective couplings from associate tW photopr

May 22, 2024 3 / 22

We use FeynRules [1] to add $p_{\rm ntct}$ to the SM in MG5:

$$\begin{split} L_{\rm free} &= \overline{\Psi}_{\rm ntct} i \partial \!\!\!/ \Psi_{\rm ntct} - M \overline{\Psi}_{\rm ntct} \Psi_{\rm ntct} \\ L_{\rm int} &= e F_1(0) \overline{\Psi}_{\rm ntct} \gamma^{\mu} \Psi_{\rm ntct} A_{\mu} + \frac{e}{4M} F_2(0) \overline{\Psi}_{\rm ntct} \sigma^{\mu\nu} \Psi_{\rm ntct} F_{\mu\nu} \end{split}$$

 A. Alloul et al., "FeynRules2.0—A complete toolbox for tree-level phenomenology," Comput. Phys. Commun. 185 (2014) 2250

We use FeynRules [1] to add $p_{\rm ntct}$ to the SM in MG5:

$$\begin{split} L_{\rm free} &= \overline{\Psi}_{\rm ntct} i \partial \!\!\!/ \Psi_{\rm ntct} - M \overline{\Psi}_{\rm ntct} \Psi_{\rm ntct} \\ L_{\rm int} &= e F_1(0) \overline{\Psi}_{\rm ntct} \gamma^{\mu} \Psi_{\rm ntct} A_{\mu} + \frac{e}{4M} F_2(0) \overline{\Psi}_{\rm ntct} \sigma^{\mu\nu} \Psi_{\rm ntct} F_{\mu\nu} \end{split}$$

This leads to the elastic $pe^- \rightarrow pe^-$ cross section [2]:

$$\begin{aligned} \frac{d\sigma}{dQ^2} &= \pi \alpha^2 \frac{M^2}{E^2 Q^4} \left[F_1^2(Q^2) \left(4 \frac{E^2}{M^2} - 2 \frac{E}{M} \frac{Q^2}{M^2} + \left(\frac{1}{2} \frac{Q^2}{M^2} - 1 \right) \frac{Q^2}{M^2} \right) \right. \\ &+ F_2^2(Q^2) \frac{Q^2}{M^2} \left(\frac{E^2}{M^2} + \frac{1}{4} \frac{Q^2}{M^2} - \frac{1}{2} \frac{E}{M} \frac{Q^2}{M^2} \right) + F_1(Q^2) F_2(Q^2) \frac{Q^4}{M^2} \end{aligned}$$

 A. Alloul et al., "FeynRules2.0—A complete toolbox for tree-level phenomenology," Comput. Phys. Commun. 185 (2014) 2250
 M. N. Rosenbluth, "High Energy Elastic Scattering of Electrons on Protons," Phys. Rev. 79 (1950) 615

イロト 不得下 イヨト イヨト

Proton form factors & Rosenbluth cross section Sachs form factors:

$$egin{aligned} &F_1(Q^2) = rac{1}{1+rac{Q^2}{4M^2}} \left(G_E(Q^2) + rac{Q^2}{4M^2} G_M(Q^2)
ight), \ &F_2(Q^2) = rac{1}{1+rac{Q^2}{4M^2}} \left(G_M(Q^2) - G_E(Q^2)
ight) \end{aligned}$$

[3] C. F. Perdrisat, V. Punjabi, M. Vanderhaeghen, "Nucleon Electromagnetic Form Factors," Prog. Part. Nucl. Phys. **59** (2007) 694.

[4] S. Pacetti, R. Baldini Ferroli, E. Tomasi-Gustafsson, "Proton electromagnetic form factors: Basic notions, present achievements and future perspectives," Phys. Rept. 550-551 (2015) 1.

Antonio O. Bouzas (Departamento de Física Aplicada, CTop quark effective couplings from associate tW photopr

May 22, 2024 4 / 22

Proton form factors & Rosenbluth cross section Sachs form factors:

$$egin{aligned} &F_1(Q^2) = rac{1}{1+rac{Q^2}{4M^2}} \left(G_E(Q^2) + rac{Q^2}{4M^2} G_M(Q^2)
ight), \ &F_2(Q^2) = rac{1}{1+rac{Q^2}{4M^2}} \left(G_M(Q^2) - G_E(Q^2)
ight) \end{aligned}$$

Dipolar form factors ($Q^2 \lesssim 3 \text{ GeV}^2$):

$$egin{aligned} G_D(Q^2) &= rac{1}{(1+rac{Q^2}{0.71\,{
m GeV}^2})^2}, \ G_E(Q^2) &= G_D(Q^2), \quad G_M(Q^2) = \mu_p G_D(Q^2), \end{aligned}$$

[3] C. F. Perdrisat, V. Punjabi, M. Vanderhaeghen, "Nucleon Electromagnetic Form Factors," Prog. Part. Nucl. Phys. **59** (2007) 694.

[4] S. Pacetti, R. Baldini Ferroli, E. Tomasi-Gustafsson, "Proton electromagnetic form factors: Basic notions, present achievements and future perspectives," Phys. Rept. **550-551** (2015) 1.

 $p_{
m ntct}e^-
ightarrow p_{
m ntct}e^-$, $E_e=7$ TeV, $E_p=m_p$:

Associate tW photoproduction in semileptonic mode in SM

May 22, 2024 6 / 22

Associate tW photoproduction in semileptonic mode in SM

May 22, 2024 6 / 22

Irreducible background: *bWW* production

May 22, 2024 7 / 22

Phase-space cuts. SM cross sections

$$bp_{
m ntct}
ightarrow tW^- p_{
m ntct}
ightarrow bq_u \overline{q}_d \ell^- \overline{
u}_\ell p_{
m ntct} + b \overline{q}_u q_d \ell^+
u_\ell p_{
m ntct}, \qquad \ell = e^-, \ \mu^-$$

Antonio O. Bouzas (Departamento de Física Aplicada, CTop quark effective couplings from associate tW photopr

May 22, 2024 8 / 22

Image: A math a math

Phase-space cuts. SM cross sections

$$bp_{
m ntct}
ightarrow tW^- p_{
m ntct}
ightarrow bq_u \overline{q}_d \ell^- \overline{
u}_\ell p_{
m ntct} + b \overline{q}_u q_d \ell^+
u_\ell p_{
m ntct}, \qquad \ell = e^-, \ \mu^-$$

$$4 \times \sigma(bp_{\text{ntct}}) = \sigma(bp_{\text{ntct}}) + \sigma(p_{\text{ntct}}b) + \sigma(\overline{b}p_{\text{ntct}}) + \sigma(p_{\text{ntct}}\overline{b})$$

Image: A math a math

Phase-space cuts. SM cross sections

$$bp_{\rm ntct} \rightarrow tW^- p_{\rm ntct} \rightarrow bq_u \overline{q}_d \ell^- \overline{\nu}_\ell p_{\rm ntct} + b \overline{q}_u q_d \ell^+ \nu_\ell p_{\rm ntct}, \qquad \ell = e^-, \ \mu^-$$

$$4 \times \sigma(bp_{\rm ntct}) = \sigma(bp_{\rm ntct}) + \sigma(p_{\rm ntct}b) + \sigma(\overline{b}p_{\rm ntct}) + \sigma(p_{\rm ntct}\overline{b})$$

	σ [pb]	
cut	sgnl	bckg
$0.003 < \xi < 0.15$	34.87	2.955
$p_T(b) > 30, \ p_T(j) > 20 \ { m GeV}$	24.50	1.757
$ y(b) , y(j) , y(\ell) < 2.5$	16.50	1.389
$ m_{bjj}-m_t < 30 { m GeV}$	9.86	0.067

Effective Lagrangian

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\rm SM} + \sum_{\substack{\mathcal{O} \\ \text{Herm}}} \frac{\mathcal{C}_{\mathcal{O}}}{\Lambda^2} \mathcal{O} + \sum_{\substack{\mathcal{O} \\ \text{Jerm}}} \left(\frac{\mathcal{C}_{\mathcal{O}}}{\Lambda^2} \mathcal{O} + \frac{\mathcal{C}_{\mathcal{O}}^*}{\Lambda^2} \mathcal{O}^{\dagger} \right) + \cdots \\ &= \mathcal{L}_{\rm SM} + \sum_{\substack{\mathcal{O} \\ \text{Herm}}} \frac{\overline{\mathcal{C}}_{\mathcal{O}}}{v^2} \mathcal{O} + \sum_{\substack{\mathcal{O} \\ \text{Jerm}}} \left(\frac{\overline{\mathcal{C}}_{\mathcal{O}}}{v^2} \mathcal{O} + \frac{\overline{\mathcal{C}}_{\mathcal{O}}^*}{v^2} \mathcal{O}^{\dagger} \right) + \cdots \\ \overline{\mathcal{C}}_{\mathcal{O}} &= \frac{v^2}{\Lambda^2} \mathcal{C}_{\mathcal{O}}, \quad \Lambda = 1 \text{ TeV}, \quad v = 246 \text{ GeV} \end{split}$$

Antonio O. Bouzas (Departamento de Física Aplicada, CTop quark effective couplings from associate tW photopr

Effective d6 operators: ttA and tbW, unitary gauge

$$\begin{split} O^{33}_{\mu B} &= \sqrt{2} y_t g'(\nu+h) (\cos \theta_W \partial_\mu A_\nu - \sin \theta_W \partial_\mu Z_\nu) \ \overline{t}_L \sigma^{\mu\nu} t_R \ , \\ O^{(-)33}_{\varphi q} &= -y_t^2 \frac{g}{\sqrt{2}} (\nu+h)^2 \left(W^+_\mu \ \overline{t}_L \gamma^\mu b_L + W^-_\mu \ \overline{b}_L \gamma^\mu t_L \right) - y_t^2 \frac{g}{c_W} (\nu+h)^2 Z_\mu \ \overline{t}_L \gamma^\mu t_L \ , \leftarrow b Z_\mu \$$

[5] B. Grzadkowski, M. Iskrzynski, M. Misiak, J. Rosiek, "Dimension-six terms in the Standard Model Lagrangian," JHEP **10** (2010) 085.

 [6] C. Zhang, "Effective field theory approach to top-quark decay at next-to-leading order in QCD," Phys. Rev.

 D 90 (2014) 014008.

Antonio O. Bouzas (Departamento de Física Aplicada, CTop quark effective couplings from associate tW photopr

May 22, 2024 10 / 22

Effective d6 operators: ttA and tbW, unitary gauge

$$\begin{split} O_{\mu B}^{33} &= \sqrt{2} y_t g'(v+h) (\cos \theta_W \partial_\mu A_\nu - \sin \theta_W \partial_\mu Z_\nu) \ \bar{t}_L \sigma^{\mu\nu} t_R \ , \\ O_{\varphi q}^{(-)33} &= -y_t^2 \frac{g}{\sqrt{2}} (v+h)^2 \left(W_\mu^+ \, \bar{t}_L \gamma^\mu b_L + W_\mu^- \, \bar{b}_L \gamma^\mu t_L \right) - y_t^2 \frac{g}{c_W} (v+h)^2 Z_\mu \, \bar{t}_L \gamma^\mu t_L \ , \leftarrow bbZ \\ O_{\varphi ud}^{33} &= \frac{y_t^2}{2\sqrt{2}} g(v+h)^2 W_\mu^+ \bar{t}_R \gamma^\mu b_R \ , \\ O_{\mu W}^{33} &= 2y_t g(v+h) \left(\partial_\mu W_\nu^- + i g W_\mu^3 W_\nu^- \right) \bar{b}_L \sigma^{\mu\nu} t_R \\ &+ \sqrt{2} y_t g(v+h) \left(c_W \partial_\mu Z_\nu + s_W \partial_\mu A_\nu + i g W_\mu^- W_\nu^+ \right) \bar{t}_L \sigma^{\mu\nu} t_R \ , \\ O_{dW}^{33} &= 2y_t g(v+h) \left(\partial_\mu W_\nu^+ + i g W_\mu^+ W_\nu^3 \right) \bar{t}_L \sigma^{\mu\nu} b_R \\ &- \sqrt{2} y_t g(v+h) \left(c_W \partial_\mu Z_\nu + s_W \partial_\mu A_\nu + i g W_\mu^- W_\nu^+ \right) \bar{b}_L \sigma^{\mu\nu} b_R \ . \end{split}$$

[5] B. Grzadkowski, M. Iskrzynski, M. Misiak, J. Rosiek, "Dimension-six terms in the Standard Model Lagrangian," JHEP **10** (2010) 085.

[6] C. Zhang, "Effective field theory approach to top-quark decay at next-to-leading order in QCD," Phys. Rev. D 90 (2014) 014008.

Antonio O. Bouzas (Departamento de Física Aplicada, CTop quark effective couplings from associate tW photopr

$$\mathcal{L}_{anom} = \mathcal{L}_{anom,em} + \mathcal{L}_{anom,CC}$$

Antonio O. Bouzas (Departamento de Física Aplicada, CTop quark effective couplings from associate tW photopr

イロト 不得 トイヨト イヨト

$$egin{aligned} \mathcal{L}_{\mathrm{anom}} &= \mathcal{L}_{\mathrm{anom},\mathrm{em}} + \mathcal{L}_{\mathrm{anom},\mathrm{CC}} \ \mathcal{L}_{\mathrm{anom},\mathrm{em}} &= rac{\mathrm{e}}{4m_t} \overline{t} \, \sigma^{\mu
u} (\kappa + i \widetilde{\kappa} \gamma_5) \, t \, F_{\mu
u} \end{aligned}$$

b < ≣ > ≣ ∽ ९.० May 22, 2024 11 / 22

< □ > < 同

$$\mathcal{L}_{\mathrm{anom}} = \mathcal{L}_{\mathrm{anom,em}} + \mathcal{L}_{\mathrm{anom,CC}}$$

 $\mathcal{L}_{\mathrm{anom,em}} = rac{\mathrm{e}}{4m_t} \overline{t} \, \sigma^{\mu
u} (\kappa + i\widetilde{\kappa}\gamma_5) \, t \, F_{\mu
u}$

$$\kappa + i\widetilde{\kappa} = 2y_t^2(\overline{C}_{uB} + \overline{C}_{uW}),$$

Antonio O. Bouzas (Departamento de Física Aplicada, CTop quark effective couplings from associate tW photopr

b < ≣ > ≣ ∽ ९.० May 22, 2024 11 / 22

< □ > < 同

$$\begin{split} \mathcal{L}_{\text{anom}} &= \mathcal{L}_{\text{anom,em}} + \mathcal{L}_{\text{anom,CC}} \\ \mathcal{L}_{\text{anom,em}} &= \frac{e}{4m_t} \overline{t} \, \sigma^{\mu\nu} (\kappa + i \widetilde{\kappa} \gamma_5) \, t \, F_{\mu\nu} \\ \mathcal{L}_{\text{SM+anom,CC}} &= \frac{g}{\sqrt{2}} f_V^L \left(W_\mu^+ (\overline{t}_L \gamma^\mu b_L) + W_\mu^- (\overline{b}_L \gamma^\mu t_L) \right) \\ f_V^L &= V_{tb} + \delta f_V^L \end{split}$$

$$\kappa + i\widetilde{\kappa} = 2y_t^2(\overline{C}_{uB} + \overline{C}_{uW}),$$

Antonio O. Bouzas (Departamento de Física Aplicada, CTop quark effective couplings from associate tW photopr

< □ > < 同

$$\begin{split} \mathcal{L}_{\text{anom}} &= \mathcal{L}_{\text{anom,em}} + \mathcal{L}_{\text{anom,CC}} \\ \mathcal{L}_{\text{anom,em}} &= \frac{e}{4m_t} \overline{t} \, \sigma^{\mu\nu} (\kappa + i \widetilde{\kappa} \gamma_5) \, t \, F_{\mu\nu} \\ \mathcal{L}_{\text{SM+anom,CC}} &= \frac{g}{\sqrt{2}} f_V^L \left(W_\mu^+ (\overline{t}_L \gamma^\mu b_L) + W_\mu^- (\overline{b}_L \gamma^\mu t_L) \right) \\ f_V^L &= V_{tb} + \delta f_V^L \end{split}$$

$$\kappa + i\widetilde{\kappa} = 2y_t^2(\overline{C}_{uB} + \overline{C}_{uW}),$$

$$\delta f_V^L = -y_t^2\overline{C}_{\varphi q}^{(-)33}$$

Antonio O. Bouzas (Departamento de Física Aplicada, CTop quark effective couplings from associate tW photopr

• • • • • • • • • •

Anomalous tW production

э 12/22 May 22, 2024

э

Anomalous tW production

イロト 人間ト イヨト イヨト

Limits on effective couplings (68% CL)

$\varepsilon_{\rm exp}$	10 %	15 %	20 %
\overline{C}_{uBr}	-6.16, 6.10	-7.54, 7.47	-8.70, 8.64
$\overline{C}_{\varphi q}^{(-)}$	$-3.90\times10^{-2}, 3.58\times10^{-2}$	$-5.99\times10^{-2}, 5.28\times10^{-2}$	$-8.18\times10^{-2}, 6.91\times10^{-2}$
$\overline{C}_{\varphi ud r}$	-0.65, 0.79	-0.81, 0.95	-0.95, 1.08
\overline{C}_{uWr}	-0.49, 0.47	-0.74, 0.70	-1.0, 0.96
\overline{C}_{dWr}	-0.38, 0.41	-0.47, 0.50	-0.54, 0.58

Antonio O. Bouzas (Departamento de Física Aplicada, CTop quark effective couplings from associate tW photopr

イロト イヨト イヨト イヨ

$\varepsilon_{\mathrm{exp}}$:	10%	15%	20%
		68% C.L.	
δf_V^L	-0.039, 0.036	-0.060,0.053	-0.082,0.069
		95% C.L.	
δf_V^L	-0.082, 0.069	-0.13,0.10	-0.19,0.13

Image: A math a math

[7] CMS Coll., JHEP 02 (2017) 028 [arXiv:1610.03545 [hep-ex]] (fig. 6).

$\varepsilon_{\mathrm{exp}}$:	10%	15%	20%	
		68% C.L.		
δf_V^L	-0.039, 0.036	-0.060, 0.053	$0.15 \\ -0.082, 0.069$	
		95% C.L.		
δf_V^L	-0.082, 0.069	0.23 -0.13, 0.10	-0.19, 0.13	
68% 95%				
$[7]: \delta f_V^L = -0.024, 0.094 = -0.062, 0.13$				
	$[8]: \overline{C}_{\varphi q}^{(3)} -0.1$	16, 0.020 -0.2	<mark>0.27</mark> 23, 0.04	

[7] CMS Coll., JHEP 02 (2017) 028 [arXiv:1610.03545 [hep-ex]] (fig. 6).
 [8] CMS Coll., Eur. Phys. J. C 79 (2019) 886 [arXiv:1903.11144 [hep-ex]].

ヘロト 人間ト ヘヨト ヘヨト

Limits on effective couplings: \overline{C}_{uB}

$\varepsilon_{\mathrm{exp}}$:	10%	15%	20%
		68% C.L.	
\overline{C}_{uBr}	-6.16, 6.10	-7.54, 7.47	-8.70, 8.64

Antonio O. Bouzas (Departamento de Física Aplicada, CTop quark effective couplings from associate tW photopr

Limits on effective couplings: \overline{C}_{uB}

$\varepsilon_{\mathrm{exp}}$:	10%	15%	20%
		68% C.L.	
\overline{C}_{uBr}	-6.16, 6.10	-7.54, 7.47	-8.70, 8.64

$$[9]B \rightarrow X_s \gamma: \qquad -1.0 < \overline{C}_{uBr} < 0.15 \quad (68\% \, \mathrm{C.L.})$$

[9] A.B., F. Larios, "Electromagnetic dipole moments of the top quark," Phys. Rev. D 87 (2013) 074015

Limits on effective couplings: \overline{C}_{uB}

$\varepsilon_{\mathrm{exp}}$:	10%	15%	20%
		68% C.L.	
\overline{C}_{uBr}	-6.16, 6.10	-7.54, 7.47	-8.70, 8.64

$$\begin{split} [9] B \to X_s \gamma : & -1.0 < \overline{C}_{uBr} < 0.15 & (68\% \, \text{C.L.}) \\ [10] \ell \ell : & -0.065 < \overline{C}_{uBr} < 0.045 & (95\% \, \text{C.L.}) \end{split}$$

[9] A.B., F. Larios, "Electromagnetic dipole moments of the top quark," Phys. Rev. D **87** (2013) 074015 [10] CMS Coll., "Measurement of the inclusive and differential $t\bar{t}\gamma$ cross section ... at $\sqrt{s} = 13$ TeV," JHEP **05** (2022) 091.

Associate tW photoproduction in semileptonic mode in SM

Associate tW photoproduction in semileptonic mode in SM

May 22, 2024 17 / 22

Photoproduction regions [2]

► < ≣ ► ≡ ∽९० May 22, 2024 18/22

Image: A math a math

Photoproduction regions [2]

[2] A. B., F. Larios, "Top quark effective couplings from top-pair tagged photoproduction in *pe*⁻ collisions," Phys. Rev. D **105** (2022) 115002 [arXiv:2111.04723 [hep-ph]]

 $d\sigma/dQ^2$: -0.003 < ξ < 0.15

Conclusions

• We obtained the cross section for tW associated photoproduction in semileptonic mode in full tree-level QED, without EPA [12]. With the cuts shown above we obtain $\sigma \simeq 40$ pb.

[12] V. M. Budnev, I. F. Ginzburg, G. V. Meledin, V. G. Serbo, "The Two-Photon Particle Production Mechanism. Physical Problems. Applications. Equivalent Photon Approx- imation," Phys. Rep. 15 (1975) 181.

Conclusions

- We obtained the cross section for tW associated photoproduction in semileptonic mode in full tree-level QED, without EPA [12]. With the cuts shown above we obtain $\sigma \simeq 40$ pb.
- In the photoproduction region considered here we find high sensitivity to the *tbW* anomalous coupling $\overline{C}_{\varphi q}^{(-)} = \delta f_V^L$. The limits obtained at the parton level are similar or better than the current ones, and the ones projected at the HL-LHC, if the measurement uncertainty is $\leq 20\%$.

[12] V. M. Budnev, I. F. Ginzburg, G. V. Meledin, V. G. Serbo, "The Two-Photon Particle Production Mechanism. Physical Problems. Applications. Equivalent Photon Approx- imation," Phys. Rep. 15 (1975) 181.

Conclusions

- We obtained the cross section for tW associated photoproduction in semileptonic mode in full tree-level QED, without EPA [12]. With the cuts shown above we obtain $\sigma \simeq 40$ pb.
- In the photoproduction region considered here we find high sensitivity to the *tbW* anomalous coupling $\overline{C}_{\varphi q}^{(-)} = \delta f_V^L$. The limits obtained at the parton level are similar or better than the current ones, and the ones projected at the HL-LHC, if the measurement uncertainty is $\leq 20\%$.
- Other photoproduction phase-space regions, with moderate Q^2_{\min} , should yield good sensitivity to the top e.m. dipole moments. With cross sections of $\mathcal{O}(1-10)$ pb, statistics should be enough to measure differential cross sections.

[12] V. M. Budnev, I. F. Ginzburg, G. V. Meledin, V. G. Serbo, "The Two-Photon Particle Production Mechanism. Physical Problems. Applications. Equivalent Photon Approx- imation," Phys. Rep. 15 (1975) 181.

Thanks!

Antonio O. Bouzas (Departamento de Física Aplicada, CTop quark effective couplings from associate tW photopr

・ロト ・四ト ・ヨト ・ヨト

Parametrization of cross section

$$R = \frac{\sigma(\{\overline{C}_{\mathcal{O}}\})}{\sigma_{\mathrm{SM}}} = 1 + a\overline{C}_{\mathcal{O}} + b\overline{C}_{\mathcal{O}}^2 + \cdots$$

May 22, 2024 22 / 22

Parametrization of cross section

$$R = \frac{\sigma(\{\overline{C}_{\mathcal{O}}\})}{\sigma_{\rm SM}} = 1 + a\overline{C}_{\mathcal{O}} + b\overline{C}_{\mathcal{O}}^2 + \cdots$$

 $R \leqslant 1 + \varepsilon_{
m exp}$

Antonio O. Bouzas (Departamento de Física Aplicada, CTop quark effective couplings from associate tW photopr

▶ ◀ 볼 ▶ 볼 ∽ 즉 May 22, 2024 22 / 22