$t\bar{t}$ photoproduction in proton-proton colissions Workshop on Medical and High Energy Physics

M.C. Antonio Cota Rodríguez

Departamento de Investigación en Física Universidad de Sonora

May 22, 2024

Table of contents

- **2** The photoproduction $\gamma p \rightarrow t\bar{t}X$
- **③** Simulation and Background Modelling
- 4 Event Reconstruction
- **5** Machine Learning for signal/background discrimination
- 6 Likelihood statistics
- Conclusions

 $t \bar{t}$ photoproduction in proton-proton colissions

M.C. Antonio Cota Rodrígu<u>ez</u>

Foundations

The photoprodution $\gamma p \rightarrow t \bar{t} X$ process

Simulation and Background Modelling

Event reconstruction

Machine learning for signal/background

- The Standard Model (SM) of particle physics is a theory that includes all known fundamental particles.
 - Currently have open issues:
 - Dark matter candidate.
 - Mass hierarchy.
 - W boson mass deviations ¹.
 - It is a successful but incomplete theoretical model.

¹ K.S. Babu, et. al. Phys. Rev. Lett. 129, 121803. 2022

Standard Model of Elementary Particles

 $t\overline{t}$ photoproduction in proton-proton colission<u>s</u>

M.C. Antonio Cota Rodríguez

Foundations

The photoprodution $\gamma p \rightarrow t \bar{t} X$ process

Simulation and Background Modelling

Event reconstruction

Machine learning for signal/background 3/27

The particle of interest for this work is the top quark.

- Its existence has been theorized since 1973.
- Its existence was predicted when its partner, the bottom quark, was discovered (1977).
- The top quark was discovered in 1995. ² (CDF and DØ).
- It is the most massive quark in SM.
- It decays before hadronizing.
 - $t \longrightarrow Wb$ (99%).
- Provides an environment for testing of the SM and for new Physics searches beyond SM.
- ² Phys.Rev.Lett.74:2626-2631,1995.

 $t\bar{t}$ photoproduction in proton-proton colissions

M.C. Antonio Cota Rodríguez

Foundations

The photoprodution $\gamma p \rightarrow t \bar{t} X$ process

Simulation and Background Modelling

Event reconstruction

Machine learning for signal/background 4/27

M.C. Antonio Cota Rodríguez – $t\bar{t}$ photoproduction in proton-proton colission

- How do we quantify/measure production of particles? \longrightarrow Cross section ([σ] = L^2).
 - Probability of occurrence in quantum mechanics.
 - The observation of the top-quak pair was made based on quark annihilation interactions (10%);

$$q+\bar{q}\longrightarrow t\bar{t}$$

• More recently production has been dominated by gluon fusion (90%)

$$g + g \longrightarrow t\bar{t}$$

Precise knowledge of the top-quark mass is of paramount importance to understand our world at the smallest scale

19 APRIL, 2022 | By CMS cullaboratio

Figure: Pair production modes of the top-antitop system already observed and known as "gluon fusion" and "quark annihilation".

 $t \bar{t}$ photoproduction in proton-proton colissions

M.C. Antonio Cota Rodríguez

Foundations

The photoprodution $\gamma p \rightarrow t \bar{t} X$ process

Simulation and Background Modelling

Event reconstruction

Machine learning for signal/background 5/27

- The cross section σ or production rate has been measured for different final states of $particles^4$
- By analyzing the final state particles, we can accurately determine the production . mechanisms and decay channels, enhancing our understanding of $t\bar{t}$ events.

$t\bar{t}$ photoproduction in proton-proton colissions

nio

 Within the category of top quark pair production is the subcategory of photoproduction in ultraperipheral collisions.

Figure: Theoretical and experimental results of the cross section with photon-photon mechanism. 5

⁵ arXiv:2310.11231v1 [hep-ex], 2023.

$tar{t}$ photoproduction in proton-proton colissions

M.C. Antonio Cota Rodríguez

Foundations

The photoprodution $\gamma p \rightarrow t \bar{t} X$ process

Simulation and Background Modelling

Event reconstruction

Machine learning for signal/background 7/27

Evidence of photo induced process with intact protons and Pb

 Detection of intact protons at the LHC / Production of lepton pairs.

JHEP07 (2018) 153

- Exclusive (two intact protons) and semi exclusive production of lepton pairs.
- Observed for the first time at the LHC in pp collisions at $\sqrt{s} = 13$ TeV.

 Evidence of light-by-light scattering. CMS-FSQ-16-012.

 $t\bar{t}$ photoproduction in proton-proton colissions

M.C. Antonio Cota Rodríguez

The photopro-

Simulation and Background Modelling

Event

Machine learning for nal/background

The photoprodution $\gamma p \to t \bar{t} X$ process

- Production of tt
 in association with an elastic proton via photon-gluon interaction (semi leptonic channel.
- Observing deviations from expected results in this process could signal new physics beyond the Standard Model.
- Studying this process helps probe the internal structure of the proton, revealing how quarks and gluons interact with photons at a fundamental level.

 $t\bar{t}$ photoproduction in proton-proton colissions

M.C. Antonio Cota Rodríguez

Foundations

The photoprodution $\gamma p \rightarrow t \bar{t} X$ process

Simulation and Background Modelling

Event reconstruction

Machine learning for signal/background 9/27

The photoprodution $\gamma p \rightarrow t \bar{t} X$ process

Motivations

- First semi-exclusive search of $t\bar{t}$ via photon-gluon interaction.
- SM $\sigma_{p\gamma \to t\bar{t}p}$ is 10^4 times higher than $\sigma_{\gamma\gamma \to pt\bar{t}p}$ exclusive analysis
- Sensitive to electroweak top-photon coupling $t\bar{t}\gamma$.
- Goal: Set limits on cross section and compare it with Standard Model prediction.

 $tar{t}$ photoproduction in proton-proton colissions

M.C. Antonio Cota Rodríguez

Foundations

The photoprodution $\gamma p \rightarrow t \bar{t} X$ process

Simulation and Background Modelling

Event reconstruction

Machine learning for signal/background 10/27

CMS detector

- The CMS detector captures resulting particles from interactions, except for intact protons.

- The LHC provides a proton beam at a center-of-mass energy of 13 TeV

- Data from Run 2 (2017) with an integrated luminosity of 29.4 fb^{-1} .

• In the case of the measurement of the intact proton, we are using the CT-PPS detector (CMS TOTEM Precision Proton Spectrometer)

- CT-PPS detector
 - Localized at \sim 200 m from the interaction point on both sides of CMS
 - It is possible to tag protons and measure fraction of momentum loss

$$\xi = rac{|\overrightarrow{p_f}| - |\overrightarrow{p_i}|}{|\overrightarrow{p_i}|}$$

• Can measure protons that lost $\sim 2-20\%$ of their momentum

 $t\overline{t}$ photoproduction in proton-proton colissions

M.C. Antonio Cota Rodríguez

Foundations

The photoprodution $\gamma p \rightarrow t \bar{t} X$ process

Simulation and Background Modelling

Event reconstruction

nal/background

Machine learning for

(1)

Analysis Workflow

Simulation and Background Modelling

- Collision events are simulated using software such as MadGraph at generator level.
- Besides simulating the photoproduction of the top quark (signal), it is necessary to simulate other processes that produce top quarks. The main background is gluon fusion $\sigma_{t\bar{t}}$

 $t\overline{t}$ photoproduction in proton-proton colissions

M.C. Antonio Cota Rodríguez

Foundations

The photoprodution $\gamma p \rightarrow t \bar{t} X$ process

Simulation and Background Modelling

Event reconstruction

Machine learning for signal/background 14/27

<□><□
<□><□
<□><□
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□

- Using the equivalent photon approximation method, photons and gluons achieve the high energies necessary for top quark pair creation.
- Particle ID shows the dominance of hadronic over leptonic parts in top quark decays.
- η distribution of muons in positive and negative directions indicates dependence on the direction of the intact proton.

 $t \overline{t}$ photoproduction in proton-proton colissions

M.C. Antonio Cota Rodríguez

Foundations

The photoprodution $\gamma p \rightarrow t \bar{t} X$ process

Simulation and Background Modelling

Event reconstruction

Machine learning for signal/background 15/27

M.C. Antonio Cota Rodríguez $- tar{t}$ photoproduction in proton-proton colission

▲□▶▲□▶▲三▶▲三▶ 三 少요(

 $tar{t}$ photoproduction in proton-proton colissions

M.C. Antonio Cota Rodríguez

Foundations

The photopro dution $\gamma p \rightarrow t \bar{t} X$ process

Simulation and Background Modelling

Event reconstruction

Machine learning for signal/background 16/27

• The NLO cross section for $t\bar{t}$ photoproduction has been determined for both directions

 $t\bar{t}$ photopro-

Variable	Left	Right	Both directions
$\sigma_{\gamma p \to t\bar{t}}$	$0.7079 \pm 0.0054~{\rm pb}$	$0.7002 \pm 0.0079~\rm{pb}$	$1.4081 \pm 0.0096 \ \mathrm{pb}$
$N_{\gamma p \to t\bar{t}}$	1.0×10^6	1.0×10^6	2.0×10^6
$\sigma_{\gamma p \rightarrow tW}$	$0.5143 \pm 0.004 \; \rm pb$	$0.5105 \pm 0.0023~{\rm pb}$	$1.0248 \pm 0.0046 \; \rm pb$
$N_{\gamma p \to tW}$	1.0×10^6	1.0×10^6	2.0×10^6

• The theoretical cross section can be projected as a function of the center-of-mass energy, for example, for an FCC collider at 100 TeV.

proton-proton colissions M.C. Antonio Cota Rodríguez

Foundations

The photoprodution $\gamma p \rightarrow t \bar{t} X$ process

Simulation and Background Modelling

Event reconstruction

Machine learning for signal/background 17/27

1.C. Antonio Cota Rodríguez $-tar{t}$ photoproduction in proton-proton colissior

$\xrightarrow{p_1}$	Pi 722, W+		and a star		
Generator Level Parton Sh MadGraph5_aMC@NLO			ower and F PYTHI	ladronization A8	Detector Level GEANT 4
		Fu	Objects	Selection	
Objects	Selection		Electrons	$ \eta < 2.1$ $p_{\rm TC} > 30 \ {\rm GeV}$	
$egin{array}{c} b, ar b\ q, ar q\ b, ar b, a, ar q \end{array}$	$\geq 2 b$ -jets $\geq 2 light$ -jets $\geq 4 jets$		Muons Muons	$ \eta < 2.4$ $p_T > 30 \text{ GeV}$	Event
Leptons Neutrinos Protons	= 1 = Lost Energy = 1		Jets Jets Jets	$ \eta < 2.4$ $p_T > 25 \text{ GeV}$ $\Delta R > 0.4$	reconstruction
Tabla 5-3	Object Selection		Protons	$\xi \in [0.02, 0.13]$	

m 1

 $t\bar{t}$ photoproduction in proton-proton colissions

M.C. Antonio Cota Rodríguez

Foundations

The photoprodution $\gamma p \rightarrow t \bar{t} X$ process

Simulation and Background Modelling

Event reconstruction

Machine learning for signal/backgroun 18/27

1.C. Antonio Cota Rodríguez $- tar{t}$ photoproduction in proton-proton colissions

↓□▶<
□▶
↓≡▶
↓≡▶
↓
□▶
↓
□
↓
□
↓
□
↓
□
↓
□
↓
□
↓
□
↓
□
↓
□
↓
□
↓
□
↓
□
↓
□
↓
□
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
<

Event reconstruction

- **Particle Reconstruction:** Essential for deducing properties of undetectable particles, like the top quark.
- Hadronic Top Quark Mass: Calculated using a b-tagged jet and two light jets.

$$m(t_{\rm had}) = \sqrt{(E_b + E_{q1} + E_{q2})^2 - (\vec{p_b} + \vec{p}_{q1} + \vec{p}_{q2})^2}$$

• Leptonic Top Quark Mass: Determined from a b-tagged jet, a lepton, and a neutrino.

$$m(t_{\mathsf{lep}}) = \sqrt{(E_b + E_l + E_{\nu})^2 - (\vec{p_b} + \vec{p_l} + \vec{p_{\nu}})^2}$$

 $t\bar{t}$ photopro-

proton-proton colissions M.C. Antonio Cota

Rodríguez

Event reconstruction

nio Cota Rodríguez – *tt* photoproduction in proton-proton colissions

20/27

Event reconstruction

CT-PPS Proton reconstruction

- Momentum loss of the protons in range $\xi \in [0.02, 0.13].$
 - First events case: $\checkmark \leftarrow \rightarrow \times \implies \\ \xi_1 \neq 0 \text{ and } \xi_2 = 0$
 - Second events case: $\times \leftrightarrow \to \checkmark \implies \xi_1 = 0$ and $\xi_2 \neq 0$
 - These events are the semi-exclusive nature of the signal process.

 $tar{t}$ photoproduction in proton-proton colissions

M.C. Antonio Cota Rodríguez

Foundations

The photoprodution $\gamma p \rightarrow t \bar{t} X$ process

Simulation and Background Modelling

Event reconstruction

Machine learning for signal/background 21/27

Event Reconstruction

- Reconstruct N kinematic variables from both simulation and data to compare their agreement, assessing how well our model simulates real-world data.
- Use the standard model equation for expected events

$$N_{exp} = L\sigma$$

to scale MC according to cross sections and event counts.

 $t\bar{t}$ photopro-

proton-proton colissions M.C. Antonio Cota

Machine learning for signal/background discrmination

- Machine learning can model complex non-linear relationships between variables, which is often required for accurate signal-background discrimination.
- Boosted decision trees are a type of ensemble learning method that combines multiple weak classifiers to form a strong classifier, improving prediction accuracy.

M.C. Antonio Cota Rodríguez

Foundations

The photoprodution $\gamma p \rightarrow t \bar{t} X$ process

Simulation and Background Modelling

Event reconstruction

Machine learning for signal/background 23/27

M.C. Antonio Cota Rodríguez $- tar{t}$ photoproduction in proton-proton colission

▲□▶▲□▶▲三▶▲三▶ 三 りへで

Machine learning for signal/background discrmination

- Use statistical tests like the Kolmogorov-Smirnov test or the Chi-squared test to evaluate the discrimination power of kinematic variables.
- Use the BDT score distribution as an input to further statistical methods or likelihood fits to extract the cross-section

 $t\overline{t}$ photoproduction in

colissions

M.C. Antonio

Cota

Rodríguez

The photoprodution $\gamma p \rightarrow t \bar{t} X$ process

Simulation and Background Modelling

Event reconstruction

Machine learning for signal/backgroun 24/27

Likelihood statistics

- We then utilize this BDT output to perform a profile likelihood fit. The key parameter here is the signal strength, denoted as μ , which is the ratio of the observed cross-section to the expected cross-section ($\mu = \frac{\sigma_{obs}}{\sigma_{exp}}$).
- A signal strength of $\mu = 1$ indicates that the observed data matches the expected number of events from the new phenomenon based on the theory.

 $t \bar{t}$ photoproduction in proton-proton colissions

M.C. Antonio Cota Rodríguez

Foundations

The photoprodution $\gamma p \rightarrow t \bar{t} X$ process

Simulation and Background Modelling

Event reconstruction

Machine learning for signal/background 25/27

▲□▶▲□▶▲三▶▲三▶ 三 りへで

- In cases where the observed data lacks enough events to reach a statistically significant discovery (low sigma), a likelihood fit can still be informative.
- By analyzing the likelihood function, we can establish an upper limit for the possible cross section of a theorized process. This provides valuable constraints on the theory, even without a definitive discovery.

Likelihood statistics

29.4 fb⁻¹ (13 TeV)

CMS-TOTEM

 $t \bar{t}$ photoproduction in proton-proton colissions

M.C. Antonio Cota Rodríguez

Foundations

The photoprodution $\gamma p \rightarrow t \bar{t} X$ process

Simulation and Background Modelling

Event reconstruction

Machine learning for signal/background 26/27 Conclusions

- Measuring the cross section reveals details about particle production, like top quark photoproduction.
- Top quark photoproduction is an interesting process because its peripheral nature leads to a rich particle signature.
- Good agreement between data and simulation indicates a good modelling of the signal and background processes.
- Discovery or Upper Limit: Analysis can lead to a discovery (5 σ), evidence (3 σ), or an upper limit.

M.C. Antonio Cota Rodríguez

Foundations

The photoprodution $\gamma p \rightarrow t \bar{t} X$ process

Simulation and Background Modelling

Event reconstruction

Machine learning for signal/background 27/27

< □ > < 同 > < 三 > < 三 >