

Pinning down top-quark-pair and single top-quark production with low-pileup data in ATLAS

Dr. Leonid Serkin

Departamento de Física de Altas Energías Instituto de Ciencias Nucleares (ICN-UNAM), México

21-24 May 2024, Workshop on medical and high energy physics at Sonora, Mexico

Top quark in the SM

• The top quark is the heaviest known elementary particle described by SM and has a mass of **172.5** GeV (ATLAS+CMS)

2

• Due to its large mass, the predicted top quark lifetime (~ 5×10^{-25} s) implies that it **decays before forming hadrons**

The top quark production and decay

• The top quark decays almost 100% to a W-boson and b-quark ($V_{tb} \sim 1$), and the final state topology is given W-boson decays:

Decay mode	Branching fraction [%]
$W \to q \bar{q}$	$67.41 \pm 0.27 \; (6/9)$
$W \to e \bar{\nu}_e$	$10.71\pm0.16(1/9)$
$W \to \mu \bar{\nu}_{\mu}$	$10.63\pm0.15(1/9)$
$W \to \tau \bar{\nu}_{\tau}$	$11.38 \pm 0.21 \; (1/9)$

Top Pair Branching Fractions

Producing top quarks at the LHC

Top quark production cross-section at the LHC

Top quark production cross-section at the LHC

The production of a W boson in association with jets has a similar final state (Wbb) but a cross-section which is **three orders of magnitude higher**!

Low pile-up data at the LHC

In Nov. 2017, ATLAS recorded one week of protonproton collisions at √s=5.02 TeV

• Main motivation is bridging the energy gap and understand better the fundamental physics behind different operating conditions, as well as providing a proton reference sample for heavy-ion analyses

It had very low number of additional interactions per bunch crossing (pileup): $<\mu> \approx 2$

• In-situ correction needed as we have lower noise thresholds compared to the "usual" high pile-up ($<\mu> \approx 38$) data!

Measuring σ (ttbar) at $\sqrt{s}=5.02$ TeV with ATLAS

Jet re-calibration at $\sqrt{s}=5.02$ TeV

- Dedicated jet-energy scale and resolution calibration performed.
- The technique called "**Z+jet balance**" exploits the transverse momentum balance between the jet recoiling a Z-boson (that decays to electrons or muons)
- To first order, the sum of all transverse momenta in an event at ATLAS should be zero. A non-zero sum of pT in an event from a process containing jets could indicate a flaw with the jet energy calibration.

Jet re-calibration at $\sqrt{s}=5.02$ TeV

 Select same-flavour opposite-sign lepton pair such as the dilepton mass is between 81 < m(II) < 101 GeV (the Z-boson candidates)

• Look for a **recoiling jet**, i.e. events with a back-to-back topology of jet wrt. to the Z-boson (azimuth $\Delta \phi > 2.8$)

 Measure pT(reference) and pT(jet) / pT(reference) in data and in MC simulations: must be balanced in the transverse plane! Unique opportunity to study top-quark production at a previously unexplored energy in ATLAS:

✓ 25% of qqbar-initiated events (at LO), compared to 11% at 13 TeV

Finding top quarks in the single-lepton channel

ttbar at $\sqrt{s}=5.02$ TeV: single-lepton channel

	REGION NAME	Jet multiplicity	b-jet multiplicity
Events passing the selection	<i>ℓ</i> +2j≥1b	2	≥ 1
requirements were further split into	ℓ+3j 1b	3	1
six orthogonal regions based on	ℓ+3j 2b	3	2
number of jets and b-tagged jets	ℓ+≥4j 1b	≥ 4	1
	ℓ+4j 2b	4	2
	<i>ℓ</i> +≥5j 2b	≥ 5	2

	$\ell+2j\geq\!\!1b$	$\ell+3j\;1b$	$\ell+3j\;2b$	$\ell + {\geq} 4j \; 1b$	$\ell + 4j \; 2b$	$\ell + {\geq} 5j \; 2b$
tī	194 ± 27	310 ± 33	199 ± 24	690 ± 60	318 ± 32	380 ± 60
Single top	195 ± 22	98 ± 12	38 ± 5	67 ± 9	22 ± 4	15.9 ± 2.7
W+ jets	1700 ± 400	690 ± 210	58 ± 23	350 ± 120	30 ± 14	19 ± 10
Other bkg.	110 ± 40	55 ± 23	7.2 ± 3.0	29 ± 12	3.5 ± 1.5	3.7 ± 1.7
Misidentified leptons	250 ± 130	110 ± 60	10 ± 5	60 ± 30	6 ± 3	8 ± 5
Total	2500 ± 400	1260 ± 210	312 ± 34	1200 ± 160	380 ± 40	430 ± 70
Data	2411	1214	293	1135	375	444

ttbar at $\sqrt{s}=5.02$ TeV: single-lepton channel

 Events passing the selection requirements were further split into six orthogonal regions based on number of jets and b-tagged jets

 This created subsamples with different levels of signal and background, each having an excellent agreement of rates and shapes

REGION NAME	Jet multiplicity	b-jet multiplicity
ℓ+2j≥1b	2	≥ 1
<i>ℓ</i> +3j 1b	3	1
ℓ+3j 2b	3	2
<i>ℓ</i> +≥4j 1b	≥ 4	1
ℓ+4j 2b	4	2
ℓ+≥5j 2b	≥ 5	2

ttbar at $\sqrt{s}=5.02$ TeV: signal vs background

• Boosted Decision Trees (BDT) are used **to separate the signal from background** events and extract the ttbar production cross-section

16

 6 variables chosen to have good signal-to-background separation and in combination provided greater separation than other choices

ttbar at $\sqrt{s}=5.02$ TeV: BDT in single-lepton channel

- Compare the shapes of the BDT outputs in each region with data
- Interpreted by a statistical model that employs the expected distributions for both the background and signal contributions in the six regions.

Category		$\delta\sigma_{t\bar{t}}$ [%]
	Dilepton	Single lepton
$t\bar{t}$ generator [†]	1.2	1.0
<i>tī</i> hadronisation ^{*,†}	0.3	0.9
$t\bar{t} h_{\text{damp}}$ and scale variations [†]	1.0	1.1
$t\bar{t}$ parton-distribution functions [†]	0.2	0.2
Single-top background	1.1	0.8
W/Z+jets background*	0.8	2.4
Diboson background	0.3	0.1
Misidentified leptons*	0.7	0.3
Electron identification/isolation	0.8	1.2
Electron energy scale/resolution	0.1	0.1
Muon identification/isolation	0.6	0.2
Muon momentum scale/resolution	0.1	0.1
Lepton-trigger efficiency	0.2	0.9
Jet-energy scale/resolution	0.1	1.1
$\sqrt{s} = 5.02 \text{ TeV}$ JES correction	0.1	0.6
Jet-vertex tagging	< 0.1	0.2
Flavour tagging	0.1	1.1
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.1	0.4
Simulation statistical uncertainty*	0.2	0.6
Data statistical uncertainty*	6.8	1.3
Total systematic uncertainty	3.1	4.2
Integrated luminosity	1.8	1.6
Beam energy	0.3	0.3
Total uncertainty	7.5	4.5

• Largest uncertainties: luminosity (1.6%), signal and background modelling, object reconstruction

Dilepton measurement:
6.8% data statistical uncertainty

Single-lepton: 4.2% total systematic uncertainty and 1.3% data statistical

Category	$\delta\sigma_{t\bar{t}}$ [%]				
	Dilepton	Single lepton	Combination	• C	
$t\bar{t}$ generator [†]	1.2	1.0	0.8	dile	
$t\bar{t}$ hadronisation ^{*,†}	0.3	0.9	0.7	in s	
$t\bar{t} h_{\text{damp}}$ and scale variations [†]	1.0	1.1	0.8		
$t\bar{t}$ parton-distribution functions [†]	0.2	0.2	0.2		
Single-top background	1.1	0.8	0.6	-	
W/Z+jets background*	0.8	2.4	1.8		
Diboson background	0.3	0.1	< 0.1		
Misidentified leptons*	0.7	0.3	0.3		
Electron identification/isolation	0.8	1.2	0.8	-	
Electron energy scale/resolution	0.1	0.1	< 0.1		
Muon identification/isolation	0.6	0.2	0.3		
Muon momentum scale/resolution	0.1	0.1	0.1		
Lepton-trigger efficiency	0.2	0.9	0.7	2	
Jet-energy scale/resolution	0.1	1.1	0.8	χ-	
$\sqrt{s} = 5.02 \text{ TeV}$ JES correction	0.1	0.6	0.5		
Jet-vertex tagging	< 0.1	0.2	0.2		
Flavour tagging	0.1	1.1	0.8	\mathbf{v}^2	
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.1	0.4	0.3	$\Lambda_{S,\alpha}$	
Simulation statistical uncertainty*	0.2	0.6	0.5	2	
Data statistical uncertainty*	6.8	1.3	1.3	$\chi^2_{u.o}$	
Total systematic uncertainty	3.1	4.2	3.7	,-	
Integrated luminosity	1.8	1.6	1.6		
Beam energy	0.3	0.3	0.3	χ^2	
Total uncertainty	7.5	4.5	3.9	$\sim p$	

• **Combination** of a cut-and-count dilepton result with a binned PLL fit in single-lepton channel:

> ✓ Traditional methods like BLUE do not consider post-fit correlations

19

✓ Using Convino tool (Eur. Phys. J. C(2017) 77 792)

✓ Minimising a χ^2 with 3 terms:

$$\chi^2 = \sum_{\alpha} \left(\chi^2_{s,\alpha} + \chi^2_{u,\alpha} \right) + \chi^2_p$$

- the result of each measurement α and its statistical uncertainty

- correlations between syst. $u.\alpha$ uncert, and constraints on them from the data for each α

- correlation assumptions between uncertainties of two measurements

Category		$\delta\sigma_{t\bar{t}}$ [%]		
	Dilepton	Single lepton	Combination	
$t\bar{t}$ generator	1.2	1.0	0.8	 Post-fit uncertainty
$t\bar{t}$ hadronisation*, [†]	0.3	0.9	0.7	
$t\bar{t} h_{damp}$ and scale variations [†]	1.0	1.1	0.8	correlations accounted for
$t\bar{t}$ parton-distribution functions [†]	0.2	0.2	0.2	in the combination
Single-top background	1.1	0.8	0.6	
W/Z+jets background*	0.8	2.4	1.8	
Diboson background	0.3	0.1	< 0.1	
Misidentified leptons*	0.7	0.3	0.3	
Electron identification/isolation	0.8	1.2	0.8	• Priors for the correlations
Electron energy scale/resolution	0.1	0.1	< 0.1	split in 3 categories.
Muon identification/isolation	0.6	0.2	0.3	split in 5 categories.
Muon momentum scale/resolution	0.1	0.1	0.1	
Lepton-trigger efficiency	0.2	0.9	0.7	• unique* (uncorrelated),
Jet-energy scale/resolution	0.1	1.1	0.8	
$\sqrt{s} = 5.02 \text{ TeV}$ JES correction	0.1	0.6	0.5	^{••} 1-to-1 (fully correlated)
Jet-vertex tagging	< 0.1	0.2	0.2	
Flavour tagging	0.1	1.1	0.8	1-to-many [†] (i e separate
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.1	0.4	0.3	NDs in one channel)
Simulation statistical uncertainty*	0.2	0.6	0.5	NPS In one channel),
Data statistical uncertainty*	6.8	1.3	1.3	investigated using different
Total systematic uncertainty	3.1	4.2	3.7	correlations
Integrated luminosity	1.8	1.6	1.6	
Beam energy	0.3	0.3	0.3	
Total uncertainty	7.5	4.5	3.9	

Category	$\delta \sigma_{t\bar{t}}$ [%]			
	Dilepton	Single lepton	Combination	•
$t\bar{t}$ generator [†]	1.2	1.0	0.8	
$t\bar{t}$ hadronisation ^{*,†}	0.3	0.9	0.7	ł
$t\bar{t} h_{damp}$ and scale variations [†]	1.0	1.1	0.8	, K
$t\bar{t}$ parton-distribution functions [†]	0.2	0.2	0.2	r
Single-top background	1.1	0.8	0.6	-
W/Z+jets background*	0.8	2.4	1.8	•
Diboson background	0.3	0.1	< 0.1	
Misidentified leptons*	0.7	0.3	0.3	5
Electron identification/isolation	0.8	1.2	0.8	
Electron energy scale/resolution	0.1	0.1	< 0.1	
Muon identification/isolation	0.6	0.2	0.3	
Muon momentum scale/resolution	0.1	0.1	0.1	•
Lepton-trigger efficiency	0.2	0.9	0.7	6
Jet-energy scale/resolution	0.1	1.1	0.8	1
$\sqrt{s} = 5.02 \text{ TeV JES correction}$	0.1	0.6	0.5	
Jet-vertex tagging	< 0.1	0.2	0.2	
Flavour tagging	0.1	1.1	0.8	
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.1	0.4	0.3	•
Simulation statistical uncertainty*	0.2	0.6	0.5	
Data statistical uncertainty*	6.8	1.3	1.3	
Total systematic uncertainty	3.1	4.2	3.7	i
Integrated luminosity	1.8	1.6	1.6	J
Beam energy	0.3	0.3	0.3	
Total uncertainty	7.5	4.5	3.9	-

• Largest uncertainties: luminosity (1.6%), signal and background modelling, object reconstruction

Single-lepton: 4.2% total systematic uncertainty and 1.3% data statistical

Dilepton measurement:
 6.8% data statistical
 uncertainty

• Combination of both singlelepton and dilepton channels leads to a final uncertainty of just 3.9%.

ttbar at $\sqrt{s}=5.02$ TeV: result

 $\sigma_{t\bar{t}} = 67.5 \pm 0.9 (\text{stat.}) \pm 2.3 (\text{syst.}) \pm 1.1 (\text{lumi.}) \pm 0.2 (\text{beam}) \text{ pb}$

(3.9% precision)

• Result is consistent with the NNLO+NNLL QCD prediction of 68.2 ± 5.2 pb, and exceed the relative precision of theoretical calculations (7.6%)

• Most precise single-lepton result in ATLAS, even more precise than the 13 TeV result that used ~500 more data

Uncertainty (%)	698 pb⁻¹ @ 7 TeV	20.2 fb ⁻¹ @ 8 TeV	139 fb ⁻¹ @ 13 TeV	257 pb⁻¹ @ 5.02TeV
Electrons	1.6	1.4	0.6	1.2
Muons	2.3	1.4	0.5	0.2
Jets	2.0	1.1	2.6	1.1
Flavour tagging	-	0.7	1.3	1.1
Generator	3.0 ^{*)}	1.1	-	1.0
Parton shower	0.5 ^{*)}	1.3	2.9	0.9
W+jets bgd	0.5	1.1	2.0	2.4
Total systematic	5.0	5.7	4.6	4.2

*) evaluated outside the fit

698 pb⁻¹ @ 7 TeV: <u>ATLAS-CONF-2011-121 (2011)</u>

- 20.2 fb⁻¹ @ 8 TeV: <u>Eur. Phys. J. C 78 (2018) 487</u>
- 139 fb⁻¹ @ 13 TeV: <u>Phys. Lett. B 810 (2020) 135797</u>

Uncertainty (%)	698 pb⁻¹ @ 7 TeV	20.2 fb ⁻¹ @ 8 TeV	139 fb ⁻¹ @ 13 TeV	257 pb⁻¹ @ 5.02TeV
Electrons	1.6	1.4	0.6	1.2
Muons	2.3	1.4	0.5	0.2
Jets	2.0	1.1	2.6	1.1
Flavour tagging	-	0.7	1.3	1.1
Generator	3.0 ^{*)}	1.1	-	1.0
Parton shower	0.5 *)	1.3	2.9	0.9
W+jets bgd	0.5	1.1	2.0	2.4
Total systematic	5.0	5.7	4.6	4.2

ttbar at \sqrt{s} =5.02 TeV: PDF reduction

25

 The measured value is compatible with the predictions of several parton distribution functions (PDF) considered, except ABMP16 (expected since has softer gluon PDF and predicts lower cross-section)

Addition of new data shows a 5%
 reduction in the gluon PDF uncert.
 in the region of Bjorken-x of 0.1

ttbar at $\sqrt{s}=5.02$ TeV: new results from CMS!

26

• CMS just released (**Abril 2024**) a <u>new result</u> in the single-lepton channel, and a combination with previous dilepton result

• Also using a multivariate analysis technique and applying a jet energy scale correction!

• CMS measures a combined $\sigma(tt)$ of 61.2 ± 3.2 pb (**5.2% precision**)

 In agreement with the SM prediction and with previous measurements from CMS and ATLAS!

CMS Preliminary	σ _{.=} summ	ary,√s = 5.02	2 TeV Ma	rch 2024
$\begin{array}{c} \qquad \qquad$	252004 18±0.001	⊢ total σ±	▼ stat (stat)± (syst)±	
		π	. , . , ,	
CMS, e+jets CMS-PAS-TOP-23-005, L _{int} = 302 pb ⁻¹	⊦+ ●++	61.	$0 \pm 2.7 \pm 3.3$	3± 1.2 pb
CMS, μ +jets CMS-PAS-TOP-23-005, $L_{int} = 302 \text{ pb}^{-1}$	H●H	61.	9±2.1±2.8	8± 1.2 pb
CMS, I+jets CMS-PAS-TOP-23-005, L _{int} = 302 pb ⁻¹	H●H	61.	$4 \pm 1.6 \pm 2.7$	7±1.2 pb
CMS, eμ JHEP 04 (2022) 144, L _{int} = 302 pb ⁻¹	⊬ -•	60.	$7 \pm 5.0 \pm 2.8$	3± 1.1 pb
CMS, combined CMS-PAS-TOP-23-005, $L_{int} = 302 \text{ pb}^{-1}$	H●H	61.	2±1.6±2.	5±1.2 pb
ATLAS, (ee, μμ, eμ) JHEP 06 (2023) 138, L _{int} = 257 pb ⁻¹	┡╼╴╢	65.	7±4.5±1.6	6± 1.2 pb
ATLAS, I+jets JHEP 06 (2023) 138, L _{int} = 257 pb ⁻¹	⊢⊨	68.	$2 \pm 0.9 \pm 2.9$	9±1.1 pb
ATLAS combined	HH	67.	$5 \pm 0.9 \pm 2.3$	3± 1.1 pb
int 100 (2023) 130, L = 237 pb		PDF4LHC2	21 J.Phys.G 49	(2022) 080501
		NNPDF4.0	EPJC 82 (202	2) 428
		MSHT20	EPJC 81 (2021)	341
		CT18 PRD	103 (2021) 014	013
20 40	60	80	100	120
	$\sigma_{_{t\overline{t}}}$ [pb]			

First ever σ (single top) at $\sqrt{s}=5.02$ TeV

Single top quark production cross-section at the LHC

Single top quark via Electro-Weak production!

Finding single-top quarks in the single-lepton channel

single top quark at $\sqrt{s}=5.02$ TeV: BDT

30

• Profile maximum-likelihood fit to the BDT discriminant distributions in two channels: lepton with positive and negative charges (single-top-quark and single-top-antiquark).

Source	Number of events ℓ^+ +jets ℓ^- +jets		
$tq + \bar{t}q$	49 ± 9	17 ± 8	
W + jets	23 ± 5	12 ± 3	
Misidentified leptons	7 ± 3	7 ± 3	
tī	3 ± 0.5	3 ± 0.5	
Z + jets and diboson	2 ± 1	2 ± 1	
Other single-top-quark production	1 ± 0.2	1 ± 0.5	
Total predicted	85 ± 9	42 ± 7	
Data	85	42	

• We are observing the single-top production with a 6.1σ significance!

single top quark at $\sqrt{s}=5.02$ TeV: result

 $\sigma(tq + \bar{t}q) = 26.6^{+4.3}_{-4.0}$ (stat) $^{+4.4}_{-3.6}$ (syst) pb

- Result is consistent with the NNLO QCD prediction of 30.3
 ± 0.6 pb
- First ever measurement of the single-top production at this energy!
- Provides another independent test of the SM predictions!

^{(22%} precision)

• Inclusive $\sigma(tt)$ is a standard candle at LHC, allows us to test QCD predictions and constrain parameters such as top mass, α_s and PDFs.

• Large statistics is not a guarantee of high precision - we are limited by systematic uncertainties, both experimental and theoretical.

• High precision measurements require the use of different decay channels, optimisation of the analysis strategy, application of multivariate techniques and **careful assessment of systematic uncertainties** through detected object calibration.

• With just a **single week of data**, one can obtain results even more precise than those **using 3 years of data**.

• 5 TeV measurements of top quarks **bridge the gap** between the energy regime explored at the **Tevatron** (2 TeV) and the nominal **LHC** collision energies (7, 8, 13, 13,6 TeV), thereby testing the SM predictions in an intermediate regime.

• The good (or bad depending on your opinion): so far all the measurements are consistent with the SM prediction.

CMS Experiment at the LHC, CERN Data recorded: 2017-Nov-16 07:55:39.432128 GMT Run / Event / LS: 306709 / 945959176 / 487

Muchas gracias por su atención!

