Intrajet two particle correlations in proton-proton collisions

Jesus Velazquez, Javier Murillo Universidad de Sonora

Workshop on medical and high energy physics Sonora, Mexico May 21-24 2024

Outline

CMS 138 fb⁻¹ (pp 13 TeV) π $< N_{ch}^{i} > = 101$ Anti k. R=0.8 *= 0 $\phi^{*}=\pi$ **Collectivity features** Top 0.0023% highest-N jets $p_{-}^{jet} > 550$ $|\eta^{jet}| < 1.6$ *=π/4 and probes in small system d²N^{pair} dΔφ*dΔη* q/g $\eta^*=inf$ Elliptic anisotropies within jets Hadror Jet (z*) axis in pp collisions - N Phenomenological work Summary arXiv.2312.17103 CMS 138 fb⁻¹ (pp 13 TeV) $0.3 < j_{\tau} < 3.0 \text{ GeV}$ 0.3 < j_ < 3.0 GeV 1.2 0.3 high-multiplicity pp event CMS PbPb 2.76 TeV V²{2, l∆η*l>2} 0. 1.1 35-40% $|\Delta \eta| > 2$ 0.2 φΔb 1.0 z^{.5}0.9 DATA - PYTHIA ······ SHERPA $\sim 1 + 2(v_2^{\perp})^2 \cos(2\Delta\phi)$ 0.8 0.7 arXiv:1201.3158 $|\Delta \phi|$

Many examples in nature of collective behavior

Definition of collectivity:

- Many bodies present in the FS are the product of 1 body in the IS
- Objects in final-state (FS) far from each other are correlated by amechanism in the initial-state (IS)

Emerges in the two-particle correlation functions

- Long-range spatial correspondence → [collective behaviour of final-state particles]
- Observed long-range near-side correlations large collision systems (AA) at RHIC
 → [Ridge = Long-range near-side correlation]
 - First probes over smaller collision systems (dAu)

Ridge in dAu at RHIC!

Evidence of collectivity one of the features of QPG

Relativistic fluid dynamics \rightarrow **Quark gluon plasma (QGP) and collectivity**

Medium properties and hydrodynamic behavior \rightarrow Look into smaller systems

First collectivity probes in small systems at the LHC

- Unexpected signs of collectivity seen in **pp and pPb**
- **Too small and simple** to develop QGP-like collective behaviour?
- Breaking news in 2010 : A near-side ridge in pp at the LHC

Recent collectivity probes in small systems

- Inside jets → CMS (13 TeV [pp]) DOI:10.48550/arXiv.2312.17103
- γPb → ATLAS (5.02 TeV [PbPb])
 - γp
 ZEUS (318 GeV [ep])(JHEP 12 (2021) 102)
 CMS (8.16 TeV [pPb])(PLB 844 (2023) 137905)

- $e + e^- \rightarrow ALEPH$ (91 GeV, 208 GeV) and Belle (10.52 GeV)
- ep \rightarrow **ZEUS** and H1 at HERA (318 GeV)

Tunning

- Parameters which cannot be determined from first principles in the event generator
 - Set using data distributions **sensitive** to that specific physics aspects
 - Pythia Monash tune are the default parameters

- CP ≈ CMS Pythia
 - Which have a progressive number from 1 to 5
 - Some parameters:
 - Color reconnection range 1.8 -> 5.17
 - Multiparton Interaction: CoreRadios 0.4->0.76
 - Spaceshower: alphaSvalue 1.36 ->1.18
 - Timeshower: alphaSvalue 1.36 ->1.18

These have effects on showering and hadronization!!!

Montecarlo

pp collisions at $\sqrt{ extsf{s}}$ =13 TeV

- PYTHIA8.309 was used
 - Monash Tune [default pythia]
 - CP5 Tune [CMS Pythia Tune]

DOI: 10.1140/epjc/s10052-019-7499-4

Jet cuts,

Jet pt	> 500 GeV	
Jet η	η < 1.6	N ^j
		- cn

DOI:10.1103/PhysRevC.107.064908

Limited high-multiplicity jets

Review of angular coordinate

Long range correlations

- Expected result by MC was verify:
 - Pythia8 not include collectivity behavior

v2 elliptic anisotropy with $|\eta| > 2.0$

Summary

Lund Model

Pythia Hadronization model

- The string model takes a high-energy perspective on
- Simulate the particle production process in various collision scenarios

DOI: 10.1088/2053-2563/ab1be6

Redefining the coordinate system to Jet basis

- Define a new coordinate frame
- The new z-axis is aligned with the direction of jet momentum

