Experimental Investigation of Pontecorvo Reactions in ³He Using a Simplified Apparatus

Luca Venturelli Università di Brescia & INFN-Pavia

On behalf of the ASACUSA Collaboration

FuPhy 2024 Future Nuclear and Hadronic Physics at the CERN-AD SMI Vienna, Apr. 8-10, 2024

Pontecorvo reactions

Their existence was suggested by Pontecorvo in 1956 (only a few months after the antiproton discovery at Bevatron)

Pontecorvo reactions are (rare): antinucleon annihilations forbidden on a free nucleon but allowed on nucleons bound in nuclei

For antiproton annihilations at rest:

Interest on Pontecorvo reactions

• Pontecorvo reactions are **sensitive to the small internucleon separations** in nuclei, can provide info on **dynamics between nucleons** in nuclei

2 main theoretical approaches

Existing data

- First measurements (6 events) in bubble chambers in the 1960s
- Preliminary measurements at LEAR by Asterix
- Pontecorvo reactions were systematically measured at rest in deuterium at LEAR(CERN) by Crystal Barrel and OBELIX in 1990s
 B.R. ≈ 10⁻⁶ – 10⁻⁵

Pontecorvo reactions measured at LEAR in liquid deuterium and in gas

Reaction	Branching ratio		Experiment
$\bar{p}d \to \pi^- p$	1.46 ± 0.08	$\times 10^{-5}$	OBELIX (in gas)
$\bar{p}d \to \pi^0 n$	7.02 ± 0.72	$\times 10^{-6}$	Crystal Barrel
$\bar{p}d \to \eta n$	3.19 ± 0.48	$\times 10^{-6}$	Crystal Barrel
$\bar{p}d \rightarrow \omega n$	22.8 ± 4.1	$\times 10^{-6}$	Crystal Barrel
$\bar{p}d \to \eta' n$	8.2 ± 3.4	$\times 10^{-6}$	Crystal Barrel
$\bar{p}d \rightarrow \phi n$	$3.56 \pm 0.20^{+0.2}_{-0.1}$	$\times 10^{-6}$	OBELIX (in gas)
$\bar{p}d \to \rho^- p$	2.9 ± 0.6	$\times 10^{-5}$	OBELIX (in gas)
$\bar{p}d \to \pi^- \Delta^+ (\to \pi^0 p)$	1.01 ± 0.08	$\times 10^{-5}$	OBELIX (in gas)
$\bar{p}d \to \pi^0 \Delta^0 (\to \pi^- p)$	1.12 ± 0.20	$\times 10^{-5}$	OBELIX (in gas)
$\bar{p}d \to \pi^0 \Delta^0 (\to \pi^0 n)$	2.21 ± 0.24	$\times 10^{-5}$	Crystal Barrel
$\bar{p}d \to \Sigma^0 K^0$	2.15 ± 0.45	$\times 10^{-6}$	Crystal Barrel
$\bar{p}d \to \Lambda K^0$	2.35 ± 0.45	$\times 10^{-6}$	Crystal Barrel

• also data from KEK (Chiba et al., PRD 1997)

 $B(p\overline{d} \to \pi^{0}n) = (1.03 \pm 0.41) \times 10^{-5}, B(p\overline{d} \to \pi^{0}\Delta^{0}) = (4.67 \pm 1.66) \times 10^{-5}, B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.}), \text{ and } B(p\overline{d} \to \eta n) < 6.49 \times 10^{-5} (95\% \text{ C.L.}), B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.}), B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.}), B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.}), B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.}), B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.}), B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.}), B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.}), B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.}), B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.}), B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.}), B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.}), B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.}), B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.}), B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.}), B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.}), B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.}), B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.}), B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.}), B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.}), B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.}), B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.}), B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.}), B(p\overline{d} \to \eta n) < 8.94 \times 10^{-6} (95\% \text{ C.L.})$

More in-depth on existing data

The data from Crystal Barrel and OBELIX are in agreement

(when they can be compared)

Pontecorvo reactions measured at LEAR in liquid deuterium and in gas

More in-depth on existing data

Theoretical models are not always in agreement

Pontecorvo reactions measured at LEAR in liquid deuterium and in gas

Reaction	Branching ratio		Experiment	
$\bar{p}d \to \pi^- p$	1.46 ± 0.08	$\times 10^{-5}$	OBELIX (in gas)	
$\bar{p}d \to \pi^0 n$	7.02 ± 0.72	$\times 10^{-6}$	Crystal Barrel 🔪	
$\bar{p}d \rightarrow \eta n$	3.19 ± 0.48	$\times 10^{-6}$	Crystal Barrel 🗸	the 2 the exetical readels error well
$\bar{p}d \rightarrow \omega n$	22.8 ± 4.1	$\times 10^{-6}$	Crystal Barrel	the 2 theoretical models agree well
$\bar{p}d \to \eta' n$	8.2 ± 3.4	$\times 10^{-6}$	Crystal Barrel	with the ratio of these B.R.S
$\bar{p}d \rightarrow \phi n$	$3.56 \pm 0.20^{+0.2}_{-0.1}$	$\times 10^{-6}$	OBELIX (in gas)	the rescattering model agrees well with
$\bar{p}d \rightarrow \rho^- p$	2.9 ± 0.6	$\times 10^{-5}$	OBELIX (in gas)	the ratio of these B.R.s
$\bar{p}d \to \pi^- \Delta^+ (\to \pi^0 p)$	1.01 ± 0.08	$\times 10^{-5}$	OBELIX (in gas)	
$\bar{p}d \to \pi^0 \Delta^0 (\to \pi^- p)$	1.12 ± 0.20	$\times 10^{-5}$	OBELIX (in gas)	
$\bar{p}d \to \pi^0 \Delta^0 (\to \pi^0 n)$	2.21 ± 0.24	$\times 10^{-5}$	Crystal Barrel	
$\bar{p}d \to \Sigma^0 K^0$	2.15 ± 0.45	$\times 10^{-6}$	Crystal Barrel	
$\bar{p}d \rightarrow \Lambda K^0$	2.35 ± 0.45	$\times 10^{-6}$	Crystal Barrel	these B.K.s are in good agreement with the fireball model and in discorregation
				the fireball model and in disagreement
				with the rescattering model

More in-depth on existing data

(Non-)existing data

• Pontecorvo annihilations on three nucleons have never been measured

Interest: different models predict different rates (by 1-2 orders of magnitude)

\overline{p}^{3} He \rightarrow n p measurement in ASACUSA

ASACUSA is studying the possibility of measuring $\overline{p}^{3}He \rightarrow n p$

Difficulties:

- Need of a DC antiproton beam
- Pontecorvo reactions are rare processes (B.R.=10⁻⁵-10⁻⁸)
- Background

Measurement at rest in ³He can be performed by the ASACUSA collaboration 2 options:

1) using the DC slow antiprotons from the new secondary line in ASACUSA

or

2) using the antiprotons from ELENA modified to deliver a DC beam

ASACUSA at CERN-AD

- antiprotonic helium atoms with laser spectroscopy to test CPT
- antihydrogen ground-state hyperfine structure to test CPT
- atomic and nuclear collision cross sections of antiprotons at low energies

1) using the DC slow antiprotons from the new secondary line in ASACUSA

see Angela Gligorova's talk

The antiproton trap, MUSASHI, can deliver a DC-like beam of antiproton

In MUSASHI: 2 x 10⁶ antiprotons captured, cooled and trapped for each ELENA shot (7 x 10⁶ antiprotons) **DC extraction**: (expected in the target) 10⁵ antiprotons/100 s cycle @250 eV \rightarrow 1000 \overline{p}/s

1 μm window of the cryogenic ^3He target requires re-acceleration to at least 100 keV

... antiprotons decelerated and then re-accelerated

2) using the antiprotons from ELENA modified to deliver a DC beam

see Davide Gamba's talk

AD-ELENA

The only low-energy $\overline{\mathbf{p}}$ source

AD: 5.3 MeV **pulsed** beam: $3 \times 10^7 \overline{p}$ every ~ 100 s

ELENA: 5.3 MeV \rightarrow 100 keV 4 experiments run in parallel (24h/day)

ELENA could be modified to have a slow extracted (DC) antiproton beam at 100 keV

(expected in the target) **4-6 10^4 \overline{p}/s** x 10-100 better than with MUSASHI ... and no need to re-accelerate

Typical apparatus for Pontecorvo reactions is a magnetic spectrometer

Made of:

- Magnet
- Tracking detector (drift chambers, ...)
- T.o.F. system
- e.m. calorimeter

Features:

- reconstruct the trajectories of (all) the particles
- Determine their energy-momentum \rightarrow PID
- Determine missing mass

is it possible to use a simpler apparatus?

Goal: Design a "simple" apparatus to measure the B.R. of \overline{p}^{-3} He \rightarrow n p

 $\pi^{\pm} \pi^{0}$

n

The idea is to use:

- an efficient detector for 1 GeV neutron
 - \rightarrow Thick plastic scintillators

- a highly **efficient veto system** mainly for other neutral particles (especially γ 's from π^{0} 's)
 - \rightarrow Sandwich of Pb layers & plastic scintillators

The design is driven by Monte Carlo simulations with GEANT4

Plastic

scintillator for

neutron

detection

DETECTOR

Cube-like geometry with only 4 faces (2/3 4π solid angle)

Geometry

Neutron detector and veto system are segmented

gaseous ³He target (radius = 5 cm) Target Al vessel thickness = 0.32 mm Inner cube length =10 cm

Veto system: sandwich of scintillators & Pb layres

of scintillator layers = 12
scintillator layer thickness = 6 mm

of Pb layers = 10 Pb layer thickness = 6 mm

Neutron scintillator detector

of layers =3
layer thickness = 15 cm

of electronic readout channels = 9762

Topology-based event selection

Topology-based event selection

Applied selection to acquire $\ \overline{p}^{\ 3}He \rightarrow n+p$ and to reject BKG

• Only 1 hit on the first scintillator layer of veto

("proton" signal)

AND

• A signal in the neutron detector behind the red hit $\vartheta_1 < 10^\circ$ ("fast proton" signal)

to reject the spectator proton

AND

• A signal in the neutron detector in the opposite direction $\vartheta_2 < 10^{\circ}$ ("neutron" signal)

AND

• No signal in the veto system far from the "proton" $\vartheta_3 < 300^{\circ}$ (no other particle)

Monte Carlo results

BACKGROUND

Selected Geant4 Physics list: FTFP_BERT_HP + STD + HP It uses quark gluon string model for high energy interactions

For annihilations at rest B.R. values expected to be not very realistic

of generated \overline{p}^{3} He annihilations = 1.8 x 10⁸

of fake Pontecorvo events = 2

no BKG events for other reactions (not in GEANT4):

- Another Pontecorvo reaction:

$$\overline{p}^{3}$$
He \rightarrow d π^{0}

- Semi-Pontecorvo reactions (antiproton annihilates on a correlated (pn) pair in ³He):

e.g. $\overline{p}^{3}He \rightarrow \pi^{-}p p \quad \overline{p} \ll d \gg \rightarrow \pi^{-}p$

<<d>>> quasi-deuteron

Monte Carlo results

Validation of the GEANT4 simulations

Experimental data are needed to validate the GEANT4 simulations of high-energy neutrons

Detection efficiency of a plastic scintillator for 1 GeV neutron can be measured at the n_TOF facility at CERN

Rate estimate in ASACUSA

To measure in ASACUSA: antiproton acceleration (100 keV?)

N.B. also acquire data of antiproton annihilations in hydrogen \rightarrow useful to study the BKG

Other options

Consider the following options:

• Reduce the material

Present configuration:

Cube-like geometry with 4 faces (2/3 4π solid angle) Inner cube length =10 cm Outer cube length = 136 cm

Stuff:165 kg of Pb20 kg of veto scintillators1500 kg of neutron detector scintillators

• Reduce the segmentation/number of electronic readout channels

number of electronic readout channels = 9800

• veto system: use crystals instead of lead and scintillator

(In principle more expensive but it could be possible to recycle a dismissed calorimeter from completed experiments)

Conclusions

On paper, an apparatus with **only scintillator detectors** seems to work The apparatus has to be optimized

Pros: the apparatus is relatively cheap, not difficult to build and to maintain

but ...

no PID not multipurpose: no other measurements can be performed

Consider a totally different scenario: \rightarrow use a magnetic spectrometer

Pros:

- PID implemented
- multipurpose apparatus \rightarrow different measurements are possible:
 - In the same data sample other reactions can be studied (included the search of the sexaquark S)
 see the talks by Glennys Farrar and Michael Doser
 - Using a H₂ target, the e.m. proton form factor in the time-like region (B.R. 10⁻⁷) could be measured

Cons:

- expensive
- many expert groups should be involved

Thank you very much for your attention

Short reviews:

C. Amsler, arXiv 1908.08455 (2019) A. Donnachie, Physics Reports (2004) Credits:

