Future Nuclear and Hadronic Physics at the CERN-AD *Ab initio description of antiproton-deuteron hydrogenic states*

Pierre-Yves Duerinck^{1,2}

Collaborators: Jérémy Dohet-Eraly 1 , Rimantas Lazauskas 2 , and Jaume Carbonell 3

¹ Physique nucléaire et physique quantique (PNPQ), ULB, Brussels ² Institut Pluridisciplinaire Hubert Curien (IPHC), Unistra, Strasbourg ³ Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay

April 08, 2024

1/26

Outline

Introduction

Formalism
 Faddeev equations
 Numerical resolution

4 Results

6 Conclusion

Outline

1 Introduction

2 The $N\bar{N}$ interaction

Bormalism

④ Results

G Conclusion

Antiproton physics at CERN

- The interest for low-energy antiproton physics has been revived with the development of dedicated facilities at CERN: LEAR (1983-1996), AD, ELENA.
- Opportunity to study the properties of antimatter, exotic particle-antiparticle systems, and standard matter.
- PUMA project¹: aims to study nucleus skin densities of short-lived nuclear isotopes produced by ISOLDE, using low-energy antiprotons transported from ELENA.

Figure: LEAR (Low Energy Antiproton Ring). Credits: CERN

Figure: ELENA (Extra-Low Energy Antiproton Ring). Credits: CERN

¹T. Aumann, A. Obertelli, et al. Eur. J. Phys. A 58 (2022) 88

AntiProton Unstable Matter Annihilation (PUMA) project

- The antiproton-nucleus annihilation is expected to happen in the periphery of the nucleus \longrightarrow study of the nuclear density tail by measuring the $p\bar{p}/n\bar{p}$ annihilation ratio.
- A fully microscopic treatment of antiproton-nucleus systems remains to be developed.
- Remaining questions:
 - How can we interpret the data from theoretical predictions ?
 - **2** Validity of the $N\bar{N}$ models ?
 - 3 Model dependence ?

 \longrightarrow Microscopic treatment of the antiproton-nucleus system.

Antiproton-nucleus system

• Antiproton-nucleus system:

Ocapture of the antiproton on a highly excited Coulomb orbital and formation of a quasi-bound state with

$$E = E_R - i\frac{\Gamma}{2}, \qquad E_R \approx E_B - \frac{\text{Ryd}(\bar{p}A)}{n^2}$$

2 X-ray cascade and annihilation with a nucleon of the nucleus.

 Non-relativistic description by solving the few-body Schrödinger equation:

 $(\hat{H}_0 + \hat{V}) \Psi = E \Psi$

- *Ab initio* calculations for the simplest cases (3B, 4B).
- Difficult problem due to the NN
 interaction, the annihilation dynamics, and the presence of different scales.

Antiproton-nucleus system

Antiproton-nucleus system:

Ocapture of the antiproton on a highly excited Coulomb orbital and formation of a quasi-bound state with

$$E = E_R - i\frac{\Gamma}{2}, \qquad E_R \approx E_B - \frac{\text{Ryd}(\bar{p}A)}{n^2}$$

2 X-ray cascade and annihilation with a nucleon of the nucleus.

 Non-relativistic description by solving the few-body Schrödinger equation:

 $(\hat{H}_0 + \hat{V}) \Psi = E \Psi$

- Ab initio calculations for the simplest cases (3B, 4B).
- Difficult problem due to the NN
 interaction, the annihilation dynamics, and the presence of different scales.

Antiproton-nucleus system

• Antiproton-nucleus system:

Ocapture of the antiproton on a highly excited Coulomb orbital and formation of a quasi-bound state with

$$E = E_R - i\frac{\Gamma}{2}, \qquad E_R \approx E_B - \frac{\text{Ryd}(\bar{p}A)}{n^2}$$

2 X-ray cascade and annihilation with a nucleon of the nucleus.

 Non-relativistic description by solving the few-body Schrödinger equation:

 $(\hat{H}_0 + \hat{V}) \Psi = E \Psi$

- Ab initio calculations for the simplest cases (3B, 4B).
- Difficult problem due to the NN
 interaction, the annihilation dynamics, and the presence of different scales.

Outline

Introduction

The $N\bar{N}$ interaction $N\bar{N}$ scattering Protonium *G*-parity transform Annihilation models

Is Formalism

④ Results

6 Conclusion

$N\bar{N}$ scattering

- Most of the $N\bar{N}$ scattering data come from the LEAR experiments.
- The $p\bar{p}$ scattering involves the elastic scattering $(p\bar{p} \rightarrow p\bar{p})$, the charge-exchange process $(p\bar{p} \rightarrow n\bar{n})$, and the annihilation $(p\bar{p} \rightarrow \pi\pi, \pi\pi\pi\pi, \rho\bar{\rho}, ...)$.

Figure: $N\bar{N}$ cross sections computed with different $N\bar{N}$ models^1

¹J. Carbonell, G. Hupin, and S. Wycech, Eur. Phys. J. A 59 (2023) 259

Protonium

• In the absence of strong nuclear interaction, $p\bar{p}$ would form an hydrogenic state with energy

$$\epsilon_n = -\frac{12.5}{n^2} \,\mathrm{keV}$$

and with a Bohr radius $B_{p\bar{p}} = 57 \,\mathrm{fm}$.

• The nuclear interaction shifts and broadens the energy levels.

() The level shift $\Delta E_n = \Delta E_r - i\frac{\Gamma}{2}$ has been measured for low lying states¹².

2 The level shift is related to the scattering length.

- Privileged system to test the NN interaction at low-energy.
- Hard to extract useful information from the study of antiprotonic atoms to construct $N\bar{N}$ models.

¹M. Augsburger et al., Nucl. Phys. A 658 (1999) 149

²K. Heitlinger et al., Z. Phys. A 342 (1992) 359

G-parity transform

$N\bar{N}$ interaction from G-parity transform

• The meson exchange theory is the traditional way to formulate the NN interaction:

$$V_{NN} = V_{\sigma_0} + V_{\sigma_1} + V_{\eta} + V_{\rho} + V_{\omega} + V_{\pi}$$

- Old-fashioned, yet efficient.
- The associated $N\bar{N}$ interaction is obtained via G-parity transform, providing a factor $G = \pm 1$ for each meson:

$$V_{N\bar{N}} = V_{\sigma_0} - V_{\sigma_1} + V_{\eta} + V_{\rho} - V_{\omega} - V_{\pi}$$

- Repulsive parts become strongly attractive and tensor forces become huge \rightarrow deep bound and resonant states theoretically expected but never experimentally observed...
- **Real part only** \longrightarrow Phenomenology required for the annihilation.
- More recent formulation using chiral effective field theory (Jülich¹).

¹L. Y. Dai, J. Haidenbauer, and U. G. Meißner. J. High Energy Phys. 1707 (2017) 78

$N\bar{N}$ annihilation

 The annihilation involves complex dynamics and many meson-producing channels, mainly pions¹:

- The $N\bar{N}$ channels are treated explicitly.
- The meson channels are treated by using phenomenological models.

¹T. Aumann, A. Obertelli, et al. Eur. J. Phys. A 58 (2022) 88

Optical model

• The annihilation is traditionally treated with optical potentials:

 $V_{N\bar{N}} \rightarrow V_{N\bar{N}} + W_R + iW_I$

• The imaginary part W_I induces a loss of probability current in the initial channel which simulates the effect of all annihilation channels.

• The form of $W = W_R + iW_I$ is usually a Woods-Saxon well¹ : $W(r) = \frac{-W_0}{1 + \exp[\frac{r-R}{2}]}$.

	Dover-Richard 1	Dover-Richard 2	Kohno-Weise
W_0 (GeV)	$21+20\mathrm{i}$	$0.5+0.5\mathrm{i}$	1.2 i
R (fm)	0.0	0.80	0.55
a (fm)	0.2	0.2	0.2

- Quite successful despite its simplicity.
- Non-unitary S matrix: a part of the flux goes nowhere $\longrightarrow |S^{\dagger}S| < 1$.

¹C. B. Dover, T. Gutsche, M. Maruyama, and A. Faessler. Prog. Part. Nucl. Phys. 29 (1992) 87

Optical model: protonium

- All models roughly reproduce low-energy observables and integrated cross sections.
- Reasonable agreement with experimental data.

	1S_0 (keV)		3SD_1 (keV)	
	ΔE_r	$\Gamma/2$	ΔE_r	$\Gamma/2$
DR1	0.54	0.51	0.77	0.45
DR2	0.58	0.52	0.82	0.46
KW	0.50	0.63	0.78	0.49
Paris 09	0.81	0.55	0.70	0.40
Jülich	0.44	0.59	0.78	0.64
Exp.	$0.44_{\pm 0.08}$	$0.60_{\pm 0.13}$	$0.78_{\pm 0.04}$	$0.47_{\pm 0.04}$

Table: Level shifts for S waves (keV).

• But, "large and systematic differences have been observed in almost all the partial waves"¹.

¹J. Carbonell, G. Hupin, and S. Wycech, Eur. Phys. J. A 59 (2023) 259

Optical model: protonium

- All models roughly reproduce low-energy observables and integrated cross sections.
- Reasonable agreement with experimental data.

	$^{3}P_{0}$ (meV)		$^{1}P_{1}$ (meV)	
	ΔE_r	$\Gamma/2$	ΔE_r	$\Gamma/2$
DR1	-74	57	-26	13
DR2	-62	40	-24	14
KW	-69	48	-29	13
Paris 09	-65	53	-29	14
Jülich	-16	84		
Exp.	$-139_{\pm 28}$	$60_{\pm 13}$		

Table: Level shifts for P waves (meV).

• But, "large and systematic differences have been observed in almost all the partial waves"¹.

¹J. Carbonell, G. Hupin, and S. Wycech, *Eur. Phys. J. A* 59 (2023) 259

Coupled-channel model

- The annihilation is simulated by the addition of effective meson-antimeson ($m\bar{m}$) channels mimicking the real ones.
- Still phenomenological but provides a more realistic description of the annihilation process and involves quite different dynamics (S[†]S = I).
- To investigate the model dependence, the parameters of the coupled-channel potential are here adjusted to fit the optical model results.

Figure: $p\bar{p}$ annihilation densities (¹S₀)

Outline

Introduction

2 The $N\bar{N}$ interaction

Formalism
 Faddeev equations
 Numerical resolution

④ Results

6 Conclusion

Faddeev equations (3-body systems)

- Decomposition of the wavefunction in Faddeev components¹: $\Psi = \Psi_1 + \Psi_2 + \Psi_3$
- The Faddeev components are solutions of

 $(E - H_0 - V_i)\Psi_i(\boldsymbol{x}_i, \boldsymbol{y}_i) = V_i \left[\Psi_j(\boldsymbol{x}_j, \boldsymbol{y}_j) + \Psi_k(\boldsymbol{x}_k, \boldsymbol{y}_k)\right], \quad (ijk) = (123), (312), (231)$

- Independent boundary condition for each Faddeev component \longrightarrow adapted for scattering problems.
- However, corrections required for long-range potentials.

¹L. D. Faddeev. Sov. Phys. JETP **39** (1960) 1459

Faddeev-Merkuriev equations

 To ensure the asymptotic decoupling of the Faddeev components, the Coulomb potential is separated into a short-range and a long-range part:

$$V_i = V_i^{(s)} + V_i^{(l)}$$

• The Faddeev equations become¹

$$(E - H_0 - V_i - \sum_{j \neq i} V_j^{(l)}) \Psi_i(\boldsymbol{x}_i, \boldsymbol{y}_i) = V_i^{(s)} \left[\Psi_j(\boldsymbol{x}_j, \boldsymbol{y}_j) + \Psi_k(\boldsymbol{x}_k, \boldsymbol{y}_k) \right]$$

¹S. P. Merkuriev. Ann. Phys. 130 (1980) 395

Formalism Nur

Numerical resolution

Partial wave expansion

• Resolution with a partial wave expansion:

$$\Psi_{i}(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}) = \sum_{n=l_{x}, l_{y}, L, s_{x}, S, t_{x}, T} \frac{\phi_{n}^{(i)}(x_{i}, y_{i})}{x_{i}y_{i}} \bigg\{ [l_{x}l_{y}]_{L} \left[(s_{j}s_{k})_{s_{x}}s_{i} \right]_{S} \bigg\}_{J}$$

• The radial functions are expressed as a linear combination of Lagrange functions:

$$\phi_n^{(i)}(x_i, y_i) = \sum_{\alpha, \beta} c_{n\alpha\beta}^{(i)} \hat{f}_{\alpha} \left(\frac{x_i}{h_x^{(i)}}\right) \hat{f}_{\beta} \left(\frac{y_i}{h_y^{(i)}}\right)$$

- Lagrange function: polynomial multiplied by an exponential function, behaving as r^{l+1} close to the origin.
- Resolution of an eigenvalue problem for bound states.
- Resolution of linear systems for scattering states.
- Matrices of large dimension \longrightarrow iterative methods (Power method, Lanczos algorithm, GMRES, BICGSTAB,...).

Deuteron-antiproton system: optical model

- Additional Faddeev components to account for the charge-exchange process $\longrightarrow 6 \mbox{ FM components}^1$
- Symmetry of the wavefunction \longrightarrow 5 FM equations

Figure: Faddeev components for the $d\bar{p}$ system (optical model)

¹R. Lazauskas, and J. Carbonell, Phys. Lett. B 820 (2021) 136573

Deuteron-antiproton system: coupled-channel model

- Additional Faddeev components to account for the coupling with other particle channels \longrightarrow 15 FM components
- Symmetry of the wavefunction + non-interacting mesons \longrightarrow 8 FM equations

Figure: Faddeev components for the $d\bar{p}$ system (coupled-channel model)

Deuteron-antiproton system: coupled-channel model

- Additional Faddeev components to account for the coupling with other particle channels \longrightarrow 15 FM components
- Symmetry of the wavefunction + non-interacting mesons \longrightarrow 8 FM equations

Figure: Faddeev components for the $d\bar{p}$ system (coupled-channel model)

Outline

Introduction

2 The $N\bar{N}$ interaction

Is Formalism

4 Results

G Conclusion

Scattering length

- Study of the zero-energy $d\bar{p}$ collision \longrightarrow scattering length a_l .
- Complex scaling to handle the three-body breakup in meson channels.

	$MT+KW^1$	$MT+CC^2$	$AV18+KW^1$	AV18+CC ²
	a_0 (fm)	a_0 (fm)	a_0 (fm)	a_0 (fm)
$S_{1/2}^{+}$	$1.34-0.72\mathrm{i}$	$1.32-0.71\mathrm{i}$	$1.34-0.72\mathrm{i}$	$1.31-0.68\mathrm{i}$
$S^{+}_{3/2}$	$1.39-0.72\mathrm{i}$	$1.40-0.73\mathrm{i}$	$1.39-0.72\mathrm{i}$	$1.39-0.74\mathrm{i}$
	$a_1 \; ({\rm fm}^3)$			
$P_{5/2}^{-}$	$0.71-2.64\mathrm{i}$	$0.68-2.73\mathrm{i}$	$0.70-2.60\mathrm{i}$	$0.64-2.59\mathrm{i}$

- Small dependence on the NN and on the $\bar{N}N$ interactions.
- Quite good agreement between the KW and CC models within few percent despite

their very different dynamics.

¹P.-Y. Duerinck, R. Lazauskas, and J. Carbonell, Phys. Lett. B 841 (2023) 137936 (corrigendum)

²P.-Y. Duerinck, R. Lazauskas, and J. Dohet-Eraly, Phys. Rev. C 108 (2023) 054003

Energy shift and Trueman relation

 In the absence of strong nuclear interaction between the deuteron and the antiproton would form an hydrogenic state with energy

$$E=-2.22\,\,{
m MeV}+\epsilon_n,\quad \epsilon_n=-rac{16.7}{n^2}\,\,{
m keV}$$

• The nuclear interaction shifts and broadens the energy levels:

$$E = -2.22 \text{ MeV} + E_n - i \frac{\Gamma}{2}$$

- The energy can be calculated by computing the eigenvalues of the Hamiltonian (optical model) and of the complex-scaled Hamiltonian (coupled-channel model).
- Alternative approach: computing the energy shift from the scattering length by using the Trueman relation¹. For S waves, it reads

$$\Delta E_n = E_n - i\frac{\Gamma}{2} - \epsilon_n = -\frac{4}{n} \frac{a_0}{B_{d\bar{p}}} \epsilon_n$$

¹T. L. Trueman, Nucl. Phys. 26 (1961) 57

Energy shift and Trueman relation

- Trueman relation: consistent results with the calculation of the eigenvalues.
- Easier way to compute the energy shifts.

	MT+KW ¹		MT+CC ²	
	ΔE_n (keV)	$\Delta E_n^{(\mathrm{T})}$ (keV)	ΔE_n (keV)	$\Delta E_n^{(\mathrm{T})}$ (keV)
$S_{1/2}^{+}$	$1.92-0.89\mathrm{i}$	$1.92-0.89\mathrm{i}$	$1.91-0.86\mathrm{i}$	$1.90-0.88\mathrm{i}$
$S_{3/2}^{+}$	$2.00-0.89\mathrm{i}$	$1.99-0.88\mathrm{i}$	$1.98-0.90\mathrm{i}$	$1.99-0.90\mathrm{i}$
	$\Delta E_n \; ({\sf meV})$	$\Delta E_n^{(\mathrm{T})}$ (meV)	$\Delta E_n \; ({\sf meV})$	$\Delta E_n^{(\mathrm{T})}$ (meV)
$P_{5/2}^{-}$	$51.8-213\mathrm{i}$	$55.4-205\mathrm{i}$	/	$52.8-212\mathrm{i}$
- /				
/	AV18	$+KW^1$	AV18	3+CC ²
- ,	AV18 ΔE_n (keV)	$+KW^1$ $\Delta E_n^{(\mathrm{T})} \text{ (keV)}$	AV18 $\Delta E_n \; (\text{keV})$	$3+CC^2$ $\Delta E_n^{(T)}$ (keV)
$S_{1/2}^+$	AV18 $\Delta E_n \; (\text{keV})$ $1.91 - 0.89 \text{i}$	+KW ¹ $\Delta E_n^{({\rm T})}$ (keV) 1.92 - 0.89 i	AV18 $\Delta E_n \; (\text{keV})$ $1.87 - 0.86 \text{i}$	$3+\text{CC}^2$ $\Delta E_n^{(\mathrm{T})} \text{ (keV)}$ 1.88-0.85
$S^+_{1/2} \\ S^+_{3/2}$	AV18 ΔE_n (keV) 1.91 - 0.89 i 1.99 - 0.89 i	+KW ¹ $\Delta E_n^{(T)}$ (keV) 1.92 - 0.89 i 1.98 - 0.89 i	AV18 ΔE_n (keV) 1.87 - 0.86 i 1.84 - 0.95 i	$\Delta E_n^{(T)}$ (keV) 1.88 - 0.85 1.98 - 0.91 i
$S^+_{1/2} \\ S^+_{3/2}$	AV18 $\Delta E_n \text{ (keV)}$ 1.91 - 0.89 i 1.99 - 0.89 i $\Delta E_n \text{ (meV)}$	+KW ¹ $\Delta E_n^{(T)}$ (keV) 1.92 - 0.89 i 1.98 - 0.89 i $\Delta E_n^{(T)}$ (meV)	AV18 $\Delta E_n \text{ (keV)}$ 1.87 - 0.86 i 1.84 - 0.95 i $\Delta E_n \text{ (meV)}$	$\begin{array}{c} 3 + CC^2 \\ \hline \Delta E_n^{(\mathrm{T})} \; (keV) \\ 1.88 - 0.85 \\ 1.98 - 0.91 i \\ \Delta E_n^{(\mathrm{T})} \; (meV) \end{array}$

¹P.-Y. Duerinck, R. Lazauskas, and J. Carbonell, Phys. Lett. B 841 (2023) 137936 (corrigendum)

²P.-Y. Duerinck, R. Lazauskas, and J. Dohet-Eraly, Phys. Rev. C 108 (2023) 054003

Comparison with other optical potentials

- Low dependence on both NN and $N\bar{N}$ interactions for S waves.
- Larger dispersion, yet comparable results for the $P^-_{5/2}$ state.

$S^+_{1/2}(n=1)$ (keV)	DR1	DR2	KW	Jülich
MT-I-III AV18 I-N3LO	$\begin{array}{c} 1.98-0.75 \mathrm{i} \\ 1.97-0.74 \mathrm{i} \end{array}$	2.02 - 0.74i 2.01 - 0.74i	$\begin{array}{c} 1.93-0.91 \mathrm{i} \\ 1.92-0.90 \mathrm{i} \\ 1.92-0.89 \mathrm{i} \end{array}$	1.84 - 0.89i
$S^+_{3/2}(n=1)$ (keV)	DR1	DR2	KW	Jülich
MT-I-III AV18 I-N3LO	$\begin{array}{c} 2.02 - 0.75 \mathrm{i} \\ 2.03 - 0.73 \mathrm{i} \end{array}$	2.06 - 0.76i 2.08 - 0.75i	1.98 - 0.91i 1.97 - 0.91i 1.99 - 0.89i	1.97 - 1.14i
$P^{5/2}(n=2) \; ({\rm meV})$	DR1	DR2	KW	Jülich
MT-I-III AV18 I-N3LO	$\begin{array}{c} 92.9 - 192 \mathrm{i} \\ 91.5 - 185 \mathrm{i} \end{array}$	95.1 - 209i 93.6 - 193i	52.4 - 208i 51.7 - 201i	33.1 — 219i

Table: Level shifts for S (keV) and P waves (meV) computed with different $NN + N\overline{N}$ interactions.

Comparison with experiment

- Our results are the exact solution (in the numerical sense) of the three-body problem.
- Strong discrepancy with experimental data, especially for ΔE_R (~ 4σ).

Figure: Comparison of the spin-average S wave level shifts and widths with previous results and experiments.

The case of coupled waves

- The Trueman relation works well for uncoupled waves but is not valid for spin-coupled ones such as $P_{1/2}^-$, $P_{3/2}^-$ due to long-range terms in $\frac{1}{r^3}$ arising from the quadrupole moment of the deuteron.
- Strong differences are therefore observed when comparing results obtained with central and realistic NN interactions.

	MT+KW	AV18+KW
${}^{2}P_{1/2}(n=2)$	45.3 - 194.1i	-28.4 - 226.6i
${}^{4}P_{1/2}(n=2)$	69.0 - 243i	213.0 - 184.9i
${}^{2}P_{1/2}(n=3)$	$15.9-68.1\mathrm{i}$	$-4.7-79.4\mathrm{i}$
${}^{4}P_{1/2}(n=3)$	$24.2-85.3\mathrm{i}$	$63.2-65.1\mathrm{i}$

Table: $P_{1/2}^-$ level shifts (meV) computed with different NN interactions.

$N\bar{N}$ model-dependence

• While a nice agreement is observed for S waves, sizeable differences are found in some P waves, which is also observed in protonium.

	I-N3LO+KW	I-N3LO+Jülich
${}^{2}P_{1/2}(n=2)$	-25.9 - 229i	38.7 - 268i
${}^{4}P_{1/2}(n=2)$	218-190i	192 - 220i
${}^{2}P_{1/2}(n=3)$	-3.6 - 80.1i	$25.7-95.9\mathrm{i}$
${}^{4}P_{1/2}(n=3)$	$60.7-46.0\mathrm{i}$	$48.8-75.4\mathrm{i}$
${}^{2}P_{3/2}(n=2)$	58.2 - 193i	54.0 - 163i
${}^{4}P_{3/2}(n=2)$	-38.9 - 228i	-83.6 - 215i
${}^{2}P_{3/2}(n=3)$	18.8 - 67.7i	17.5 - 57.1i
${}^{4}P_{3/2}(n=3)$	-8.4 - 80.0i	-24.2 - 75.4i

Table: Coupled P waves level shifts (meV) computed with different $N\bar{N}$ interactions.

Annihilation density

• The annihilation density $\gamma_a(r)$ is related to the probability of annihilation of the antiproton in space:

$$\Gamma = \int \gamma_a(r) \mathrm{d}r$$

- For the P wave, the annihilation density scales with the deuteron density \longrightarrow peripheral absorption.
- For the S wave, the annihilation is less peripheral.

Figure: Annihilation density for S wave (left) and P wave (right).

25 / 26

Outline

Introduction

2 The $N\bar{N}$ interaction

Is Formalism

④ Results

6 Conclusion

Conclusion

Conclusion

- Investigation of the model-dependence in the $d\bar{p}$ system by comparing different $N\bar{N}$ models (optical, coupled-channel).
- $d\bar{p}$ level shifts:
 - 1 Low dependence on both NN and $N\bar{N}$ interactions for S waves.
 - **2** Strong model-dependence in some P waves \longrightarrow our understanding of the $N\bar{N}$ interaction can be improved.
 - Oespite their very different dynamics, the optical and coupled-channel models provide quite similar results —> highlights the interest for optical models given their relative simplicity.
 - 4 Trueman relation valid to compute the level shift of uncoupled states.
- Annihilation densities: the annihilation is expected to be peripheral, at least for P waves → supports the major hypothesis of PUMA experiments.
- Prospects:
 - 1) Study of $\frac{1}{r^3}$ terms in $p\bar{p}$ and $d\bar{p}$ systems (magnetic, quadrupole).
 - 2 Extension of the formalism to four-body systems (Faddeev-Yakubovsky): $^{3}H+\bar{p},$ $^{3}He+\bar{p}.$