

Probing the neutron skin variations in isotope pairs by hyperon-antihyperon production in antiproton–nucleus interactions

2024

Falk Schupp^a, Josef Pochodzalla^{a,b,*}, Patrick Achenbach^{a,b,1}, Michael Bölting^a, Martin Christiansen^a, Theodoros Gaitanos^c, Horst Lenske^d, Marcell Steinen^a

^aHelmholtz Institute Mainz, GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Johannes Gutenberg University, 55099 Mainz, Germany
 ^bInstitute for Nuclear Physics, Johannes Gutenberg University, 55099 Mainz, Germany
 ^cDepartment of Theoretical Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
 ^dInstitut für Theoretische Physik, Justus-Liebig-Universität Gießen, D-35392 Gießen, Germany

- Motivation
- Neutron skin
- Method
- Remarks on feasibility

Mass – Radius Relation

- Stellar matter in hydrostatic equlibrium
- Described by GR and Tolman–Oppenheimer–Volkoff (TOV) equation

$$\frac{dP}{dr} = -\frac{G \cdot M(r) \cdot \varepsilon(P)}{r^2 c^2} \cdot \left(1 + \frac{P}{\varepsilon(P)}\right) \cdot \left(1 + \frac{4\pi r^3 P}{M(r) \cdot c^2}\right) \left(1 - \frac{2GM(r)}{rc^2}\right)$$

- P: pressure
- ε: energy density
- M(r): mass enclosed within radius r

 $\frac{dM(r)\cdot c^2}{dr} = 4\pi r^2 \varepsilon(P)$

- > Specific solution (M,R) requires Equation of state ε (P) as input
 - Soft EoS: low maximum mass and small radii
 - Stiff EoS: high maximum mass and large radii

^{JG|} Nuclear Equation of State

Approximated by Taylor expansion around normal nuclear density ρ_0

isoscalar part E_{SNM}

$$\boldsymbol{E}(\rho,\delta) = \boldsymbol{E}_0 + \frac{\boldsymbol{K}_0}{2} \cdot \left(\frac{\rho - \rho_0}{3\rho_0}\right)^2$$

incompressibility
$$K_0 = 9\rho_0^2 \frac{d^2 E_{SNM}}{d\rho^2} (\rho_0)$$

symmetry energy $S_0 = \frac{1}{2} \frac{\partial^2 E}{\partial \delta^2}(\rho_0, 0)$

slope of
$$E_{sym}$$
 $L = 3\rho_0 \frac{dE_{sym}}{d\rho}(\rho_0)$

$$K_{sym} = 9\rho_0^2 \frac{d^2 E_{sym}}{d\rho}(\rho_0)$$

slope of neutron EOS

isovector part E_{sym}

$$\mathbf{S}_{0} + L \cdot \left(\frac{\rho - \rho_{0}}{3\rho_{0}}\right) + \frac{\mathbf{K}_{sym}}{2} \cdot \left(\frac{\rho - \rho_{0}}{3\rho_{0}}\right)^{2} \cdot \delta^{2}$$

Nuclear Physics with p+A interactions

neutron skin anihyperons in nuclei hyper- and antihyper atoms double hypernuclei $\overline{\Lambda}\Lambda$ and $\overline{\Lambda}\Sigma$ $\overline{\Lambda}\Lambda$ tagged negativ (anti)hyperons tagged Ξ

JGIU Neutron skin

- > Neutron skin defined as $R_{rms}(n) R_{rms}(p)$
- > Definition of neutron skins is not unique

M Thiel et al 2019 J. Phys. G: Nucl. Part. Phys. 46 093003

(α,α)@166 MeV (p,p)@10.8 - 16.3 MeV

(p,p)@1044 MeV

(α,α)@104 MeV (p,p)@1040 MeV

π⁺/π⁻ scattering (α,α)@1370 Me\

$$DR = \frac{p_{\Sigma^{-}\overline{\Lambda}}^{a} / p_{\Lambda\overline{\Lambda}}^{a}}{p_{\Sigma^{-}\overline{\Lambda}}^{b} / p_{\Lambda\overline{\Lambda}}^{b}} \approx \frac{1 + p_{abs}}{1 - p_{abs}}$$

with $p_{abs} = 1 - \exp\left(-\sigma_{\overline{p}n} \cdot \int_{\Delta_{n}} \rho_{n} \cdot dr_{n}\right)$

Idea

JG

arXiv:2209.03875

isotope	abundance	exp. proton	proton	neutron	neutron	skin	RMF
		radius	radius	radius	skin	difference	model
	[%]	\mathbf{R}_{p}^{exp} [fm]	\mathbf{R}_p [fm]	\mathbf{R}_n [fm]	$\Delta \mathbf{R}_{pn}$ [fm]	Δ_n [fm]	
²⁰ Ne	90.5	2.992±0.008 [51]	2.782	2.758	-0.024	_	NL3 [52]
²² Ne	9.3	2.986±0.021 [51]	2.800	2.887	0.087	0.111	NL3 [52]
⁴⁰ Ca	96.9	3.4776±0.0019 [53]	3.452	3.416	-0.036		NL1 [52]
⁴⁸ Ca	0.187	3.4786±0.0106 [53, 54]	3.525	3.731	0.206	0.242	NL1 [52]
⁴⁰ Ca	96.9	3.4776±0.0019 [53]	3.391	3.354	-0.037	_	NL3 [52]
⁴⁸ Ca	0.187	3.4786±0.0106 [53, 54]	3.472	3.659	0.187	0.224	NL3 [52]
⁴⁰ Ca	96.9	3.4776±0.0019 [53]	3.396	3.360	-0.036	_	NL3* [55]
⁴⁸ Ca	0.187	3.4786±0.0106 [53, 54]	3.475	3.666	0.191	0.227	NL3* [55]
⁴⁰ Ca	96.9	3.4776±0.0019 [53]	3.117	3.090	-0.028	_	Set I [56]
⁴⁸ Ca	0.187	3.4786±0.0106 [53, 54]	3.243	3.357	0.1114	0.142	Set I [56]
⁵⁸ Ni	68.1	3.770±0.002 [57]	3.769	3.768	0.000	_	NL3 [52]
⁶⁴ Ni	0.926	3.854±0.002 [57]	3.822	3.947	0.125	0.125	NL3 [52]
¹²⁹ Xe	26.4	4.7775±0.0050 [53]	4.768	4.932	0.164	_	NL3 [52]
¹³⁰ Xe	4.1	4.7818±0.0049 [53]	4.776	4.950	0.174	0.010	NL3 [52]
¹³¹ Xe	21.2	4.7808±0.0049 [53]	4.784	4.968	0.184	0.020	NL3 [52]
¹³² Xe	26.9	4.7859±0.0048 [53]	4.792	4.986	0.194	0.030	NL3 [52]
¹³⁴ Xe	10.4	4.7899±0.0047 [53]	4.809	5.023	0.213	0.049	NL3 [52]
¹³⁶ Xe	8.9	4.7964±0.0047 [53]	4.826	5.059	0.233	0.069	NL3 [52]

Finite impact parameter range

Straight line geometry

▶ Integrated density within 1 interaction length \sim 0.18fm² at 2.4GeV/*c*

Impact parameter averaged neutron-to-proton ratio: ⁴⁰Ca 0.97 and ⁴⁸Ca 1.65

Full transport calculations: GiBUU

target	RMF	p (<u>p</u>)	events	$\Lambda\overline{\Lambda}$	$\Sigma^{-}\overline{\Lambda}$	double ratio		
	model	[GeV/c]	[10 ⁶]			GiBUU	Equation 9	$ ho_{\Delta}$
²⁰ Ne	NL3 [52]	1.7	99	7579	1629			
²² Ne	NL3 [52]	1.7	98	6347	1965	1.440 ± 0.054	1.115	1.328
²⁰ Ne	NL3 [52]	2.4	167	32387	10870			
²² Ne	NL3 [52]	2.4	171	29227	13297	1.356 ± 0.021	1.100	1.309
⁴⁰ Ca	NL1 [52]	2.4	415	76323	22880			
⁴⁸ Ca	NL1 [52]	2.4	450	66694	36074	1.799 ± 0.018	1.224	1.703
⁴⁰ Ca	NL3 [52]	2.4	415	74280	21827			
⁴⁸ Ca	NL3 [52]	2.4	450	61313	32391	1.798 ± 0.019	1.207	1.705
⁴⁰ Ca	NL3* [55]	2.4	415	78753	23438			
⁴⁸ Ca	NL3* [55]	2.4	450	64212	34523	1.807 ± 0.018	1.210	1.707
⁴⁰ Ca	Set I [56]	2.4	415	67000	17446			
⁴⁸ Ca	Set I [56]	2.4	450	57016	26042	1.754 ± 0.020	1.129	1.691
⁵⁸ Ni	NL3 [52]	2.4	100	16811	5230			
⁶⁴ Ni	NL3 [52]	2.4	108	14978	6534	1.402 ± 0.030	1.113	1.358
¹²⁹ Xe	NL3 [52]	2.4	109	13717	6238			
¹³⁰ Xe	NL3 [52]	2.4	109	13394	6225	1.022 ± 0.022	1.001	1.036
¹³¹ Xe	NL3 [52]	2.4	109	13403	6379	1.047 ± 0.023	1.018	1.050
¹³² Xe	NL3 [52]	2.4	109	13335	6556	1.081 ± 0.023	1.026	1.084
¹³⁴ Xe	NL3 [52]	2.4	109	12771	6656	1.146 ± 0.025	1.043	1.134
¹³⁶ Xe	NL3 [52]	2.4	109	12680	6739	1.169 ± 0.025	1.062	1.184

BUU vs. Schematic model

Advantage of schematic model: explore sensitivity between neutron skin and double ratio Sensitivity

Experimental reqirements

- PANDA detector as reference
- Goal: 1% measurement of double ratio
- > 2.10⁶ interaction per second
- Reconstruction efficiency
 - ∧ 30%
 - > ⊼ 30%
 - > Σ^- 3% (detection of n required!)
- ≻ S/B =73
- > Statistical uncertainty limited by Σ^-
- Required time ~1 day at PANDA

 There are many interesting topics for energetic antiproton beams

Figure 10: Output of the boosted decision tree (BDT) algorithm for background events (red histogram) and signal events (blue histogram).