

FUTURE UPDATES AND HYPERNUCLEI PRODUCTION AT THE PUMA EXPERIMENTAL SETUP

Moritz Schlaich for the PUMA Collaboration 09.04.2024

INTRODUCTION

- Upgrade ion source setup with laser ablation source
- - investigation of metal ions

Upgrade 2

- Modify trap infrastructure with new detection system
- Use antiprotonic atoms to ٠ produce new hypernuclei

INTRODUCTION

experimental campaign 2024 / 2025

- Characterization of detection system: p, d
- Study final state interactions with nucleon number: ⁴*He*, ¹⁶*O*, ²⁰*Ne*, ⁴⁰*Ar*, ¹³²*Xe*
- Investigate isospin dependence along isotopic chains: $^{78-86}Kr$, $^{124-136}Xe$

UPGRADE 1

LASER ABLATION SOURCE – INTRODUCTION

PUMA ion source setup

- Produces isotopically pure ion bunches
- Provides up to 10⁴ ions / bunch
- Current setup lacks versatility
 - → Metal ions <u>cannot</u> be produced

quadrupole ion bender

electron-impact

ionization source

LASER ABLATION SOURCE – MOTIVATION

• Equation of state (EoS) of infinite nuclear matter:

with $S(\rho) = S(\rho_0) + \mathbf{L} \cdot \left(\frac{\rho - \rho_0}{3\rho_0}\right) + \dots$ and $\rho = \rho_n + \rho_p$, $\delta = \rho_n - \rho_p$

- Neutron skin thickness correlated with slope parameter *L* of EoS
- Medium-mass closed shell nuclei with neutron excess ideal to study neutron skins

→ ⁴⁸Ca, ²⁰⁸Pb

• Study proton-closed shell isotopic chains

 \rightarrow ⁴⁰⁻⁴⁸Ca, ¹¹²⁻¹²⁴Sn

$$\frac{E}{A}(\rho,\delta) = \frac{E}{A}(\rho,\delta=0) + S(\rho)\cdot\delta^2 + \cdots$$

M. Tanaka et. al., PRL 124, 102501 (2020)

LASER ABLATION SOURCE

UPGRADE 2

Upgrade 2

- Modify trap infrastructure with new detection system
- Use antiprotonic atoms to
 - produce new hypernuclei

HYPERNUCLEI – MOTIVATION

- Strangeness in modern nuclear physics largely unexplored
 - → ~ 500,000 bound Λ hypernuclei (Λ<70, Z<120) predicted
 E. Khan et al., Phys. Rev. C 92, 044313 (2015)

but only ~ 40 observed so far

- How does strangeness content evolve with baryonic density?
 - \rightarrow Investigate influence on the nuclear EoS?
- Increase experimental activities involving hypernuclei
- Antiprotonic atoms as a tool for hypernuclei production
 - \rightarrow Use PUMA infrastructure
 - \rightarrow Redesign trap and detection system

D. Lonardoni et al., Phys. Rev. Lett. 114, 092301 (2015)

HYPERNUCLEI – PRODUCTION MECHANISM

- Antiprotonic atom formed with target nucleus
- Meson emission after annihilation (dominated by pions)
- Kaons emitted in ~ 5% of all annihilations
- Strangeness production allows formation of Λ particles

two routes for hyperon generation

- Final state interactions of K^- or K^0 with nucleons $K^- n \rightarrow \Lambda \pi^-, K^- p \rightarrow \Lambda \pi^0$
 - \rightarrow Strangeness exchange
- Final state interactions of pions with nucleons

 $\pi \ n \ \rightarrow \Lambda \ K \ \pi, \ \pi \ p \ \rightarrow \Lambda \ K \ \pi$

→ Strangeness pair production

TECHNISCHE

HYPERNUCLEI – SIMULATIONS

- 1. STEP: Simulation with GiBUU (Gießen Boltzmann-Uehling-Uhlenbeck) code
 - \rightarrow Antiprotons (E_{kin} = 10 eV) collide with nucleus at rest
 - \rightarrow Annihilation profile obtained from data on antiprotonic atoms
 - → Propagation of annihilation products & interaction with residual nucleus $\rightarrow \Lambda$ production
 - → Definition of excited hypernuclei based on phase space coalescence: $\rho_B > 0.01 \rho_0$

A. Schmidt et al., Eur. Phys. J. A 60, 55 (2024)

HYPERNUCLEI – SIMULATIONS

TECHNISCHE UNIVERSITÄT DARMSTADT

- **1. STEP**: Simulation with GiBUU (Gießen Boltzmann-Uehling-Uhlenbeck) code
 - \rightarrow Antiprotons (E_{kin} = 10 eV) collide with nucleus at rest
 - \rightarrow Annihilation profile obtained from data on antiprotonic atoms
 - → Propagation of annihilation products & interaction with residual nucleus $\rightarrow \Lambda$ production
 - → Definition of excited hypernuclei based on phase space coalescence: $\rho_B > 0.01 \rho_0$
 - 2. STEP: Deexcitation of hypernuclei simulated in ABLA++
 - \rightarrow Typical excitation energies: 0 6 MeV / nucleon
 - \rightarrow Deexcitation via fisson or evaporation of n, p, light particles
 - \rightarrow Derivation of yields of different hypernuclei

HYPERNUCLEI – PRODUCTION RATES

$^{16}\mathrm{O}$		$^{40}\mathrm{Ar}$		
nucleus	p in 10^{-5}	nucleus	p in 10^{-5}	
$^{10}_{\Lambda}\mathrm{B}$	9 ± 2	$^{29}_{\Lambda}\text{Al}$	19 ± 3	
$^{7}_{\Lambda}$ Li	8 ± 2	$^{32}_{\Lambda}$ Si	15 ± 3	
${}^{10}_{\Lambda}{ m Be}$	7 ± 2	$^{28}_{\Lambda}Al$	15 ± 3	
${}^{11}_{\Lambda}{ m B}$	6 ± 2	$^{31}_{\Lambda}\mathrm{Al}$	13 ± 2	
$^9_\Lambda{ m Be}$	5 ± 2	$^{28}_{\Lambda}{ m Mg}$	13 ± 2	
84	Kr	132	² Xe	
nucleus	Kr p in 10 ⁻⁵	135 nucleus	² Xe p in 10 ⁻⁵	
$\frac{1}{^{65}_{\Lambda}Cu}$	Kr p in 10^{-5} 28 ± 3	$\frac{133}{\text{nucleus}}$	$\frac{1}{2}$ Xe p in 10^{-5} 21 ± 3	
$\frac{1}{1}$	$\frac{1}{28 \pm 3}$ 24 ± 3	$\frac{133}{\text{nucleus}}$	2^{2} Xe p in 10^{-5} 21 ± 3 19 ± 3	
$\begin{array}{c} ^{64}\\ \hline \textbf{nucleus}\\ ^{65}_{\Lambda}\text{Cu}\\ ^{72}_{\Lambda}\text{Ge}\\ ^{71}_{\Lambda}\text{Ga} \end{array}$	$\frac{1}{10^{-5}}$ 28 ± 3 24 ± 3 21 ± 3	$\begin{array}{c} 133\\ \hline \textbf{nucleus}\\ ^{109}_{\Lambda} Ag\\ ^{113}_{\Lambda} In\\ ^{104}_{\Lambda} Pd \end{array}$	$p \text{ in } 10^{-5}$ $p \text{ in } 10^{-5}$ 21 ± 3 19 ± 3 18 ± 3	
$\begin{array}{c} _{84}\\ \hline \textbf{nucleus}\\ ^{65}_{\Lambda}\text{Cu}\\ ^{72}_{\Lambda}\text{Ge}\\ ^{71}_{\Lambda}\text{Ga}\\ ^{69}_{\Lambda}\text{Ga} \end{array}$	6 Kr p in 10^{-5} 28 ± 3 24 ± 3 21 ± 3 20 ± 3	133 nucleus $109 \atop \Lambda \text{Ag}$ $113 \atop \Lambda \text{In}$ $104 \atop \Lambda \text{Pd}$ $106 \atop \Lambda \text{Pd}$	$p in 10^{-5}$ $p in 10^{-5}$ 21 ± 3 19 ± 3 18 ± 3 16 ± 3	

A. Schmidt et al., Eur. Phys. J. A 60, 55 (2024)

A. Schmidt et al., Eur. Phys. J. A 60, 55 (2024)

9 April 2024

HYPERNUCLEI – EXPERIMENTAL SETUP

Courtesy A. Obertelli

Residual nucleus identification \rightarrow *TPC* Weak decay pion identification \rightarrow *silicon trackers* Hypernuclei identification \rightarrow *invariant mass method*

- Antiprotons trapped in Penning trap to form antiprotonic atoms with target gas atoms
- Tune annihilation rate with target gas pressure \rightarrow Approx. 10⁻⁸ mbar
- Hypernuclei production tagged by time difference between annihilation and weak decay (~ 200 ps)

determine invariant mass of hypernucleus

 $M_Y^2 = m_\pi^2 + M^2 + 2\sqrt{m_\pi^2 + p_\pi^2 c^2}\sqrt{M^2 + p_r^2 c^2} - 2\overrightarrow{p_\pi} \cdot 2\overrightarrow{p_r}$

TECHNISCHE

UNIVERSITÄT DARMSTADT

HYPERNUCLEI – EFFICIENCY ESTIMATION

 $N_{\overline{p}} = 3 \cdot 10^6$ Antiprotons per bunch: (every two minutes) ٠ $N_{\rm spill} = 7800$ Number of bunches: (15 days beam time) ٠ $x_{cap} = 30 \%$ Trapping efficiency: (conservative assumption) $f(_{\Lambda}Y) = 0.01\%$ Y production rate: (based on simulations) ٠ Annihilation detection efficiency: $\epsilon_a = 78\%$ (based on simulations) ٠ BR = 5%Mesonic decay branching ratio: (unfavorable case) ٠ Recoil fragment reaching TPC: $\epsilon_{\rm f} = 50 \%$ (geometrical acceptance) ٠ $\epsilon_{\omega} = 50 \%$ (conservative assumption) Weak-decay-event timing selection: ٠ Recoil fragment entering TPC: $\epsilon_{\text{TPC}} = 60\%$ (conservative assumption) ٠ Tracking & identification efficiency: $\epsilon_{\text{track}} = 60\%$ (conservative assumption) ٠

 $N(_{\Lambda}Y) = N_{\overline{p}} \cdot N_{\text{spill}} \cdot x_{\text{cap}} \cdot f(_{\Lambda}Y) \cdot \epsilon_{a} \cdot BR \cdot \epsilon_{f} \cdot \epsilon_{\omega} \cdot \epsilon_{\text{TPC}} \cdot \epsilon_{\text{track}} =$ **1500 identified hypernuclei**

SUMMARY

TECHNISCHE UNIVERSITÄT DARMSTADT

• Two upgrades for PUMA experiment planned

Upgrade 1

- Develop laser ablation ion source
 - \rightarrow Allow production of metal ions
- Study medium-mass closed shell nuclei
- Commissioning planned for CERN's Long Shutdown 3

Upgrade 2

- Develop new detection system and modify Penning trap
 - \rightarrow Produce and detect new hypernuclei
- Simulations suggest accessibility of broad hyperisotope range
- Experimental activity planned in post-PUMA future (2027-2028?)

THE PUMA COLLABORATION

T. Aumann, N. Azaryan, W. Bartmann, A. Bouvard, O. Boine-Frankenheim, A. Broche, F. Butin, D. Calvet, J. Carbonell, P. Chiggiato, H. De Gersem, R. De Oliveira, T. Dobers, F. Ehm, J. Ferreira Somoza, J. Fischer, M. Fraser, E. Friedrich, M. Gomez-Ramos, J.-L. Grenard, G. Hupin, K. Johnston, C. Klink, M. Kowalska, Y. Kubota, P. Indelicato, R. Lazauskas, S. Malbrunot-Ettenauer, N. Marsic, W. Müller, S. Naimi, N. Nakatsuka, R. Necca, D. Neidherr, A. Obertelli, Y. Ono, S. Pasinelli, N. Paul, E. C. Pollacco, L. Riik, D. Rossi, H. Scheit, M. Schlaich, R. Seki, A. Schmidt, L. Schweikhard, S. Sels, E. Siesling, T. Uesaka, M. Wada, F. Wienholtz, S. Wycech, C. Xanthopoulou, S. Zacarias

THANK YOU!

APPENDIX – BRANCHING RATIOS

Antiproton - Proton		Antiproton - Proton	
Final State	Probability in %	Final State	Probability in %
$\rho^+\rho^-$	3.37	$\pi^+\pi^+\pi^-\pi^-\pi^0$	2.61
$\pi^+\pi^-\pi^0$	2.34	$\pi^+\pi^-\pi^0\pi^0\omega$	2.58
$\pi^+\pi^- ho^0$	2.02	$\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-$	2.83
$\pi^+\pi^0 ho^-$	2.02	$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}\pi^{0}$	9.76
$\pi^-\pi^0 ho^+$	2.02	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	2.68
$\pi^+\pi^-\omega$	3.03	$K^{*+}K^{*-}$	0.225
$\pi^+\pi^-\pi^0\omega$	2.84	$K^{*0} \bar{K}^{*0}$	0.225
$\pi^+\pi^+\pi^-\pi^-$	2.74	$K^0 \bar{K}^0 \omega$	0.232
$\pi^+\pi^-\pi^0\pi^0$	3.89	$K^+K^-\omega$	0.232
$\pi^+\pi^+\pi^- ho^-$	2.58	$K^0 \overline{K}{}^0 ho^0$	0.202
$\pi^+\pi^-\pi^- ho^+$	2.58	$K^+K^-\rho^0$	0.202
$\pi^+\pi^-\pi^0 ho^0$	6.29	$K^{0}K^{-}\rho^{+}$	0.234
$\pi^+\pi^0\pi^0 ho^-$	5.05	$\bar{K}^0 K^+ \rho^-$	0.234
$\pi^-\pi^0\pi^0 ho^+$	5.05	$K^{*+}\bar{K^0}\pi^-$	0.23
		$K^{*-}K^0\pi^+$	0.23

A. Schmidt et al., Eur. Phys. J. A 60, 55 (2024)

APPENDIX – BRANCHING RATIOS

Antiprot	on - Neutron	Antiproton	Antiproton - Neutron		
Final State	Probability in $\%$	Final State	Probability in $\%$		
$ ho^- ho^0$	3.51	$\pi^+\pi^-\pi^-\pi^0\pi^0$	2.72		
$ ho^-\eta$	2.27	$\pi^+\pi^+\pi^-\pi^-\pi^-\pi^0$	8.33		
$ ho^-\omega$	3.51	$\pi^+\pi^-\pi^-\pi^0\pi^0\pi^0$	6.67		
$\pi^+\pi^-\pi^-$	2.86	$K^0 K^- \pi^0$	0.316		
$\pi^+\pi^- ho^-$	3.62	$K^0 ar{K}^0 \pi^-$	0.432		
$\pi^-\pi^0 ho^0$	5.61	$K^+K^-\pi^-$	0.513		
$\pi^0\pi^0 ho^-$	3.51	$K^0 K^- \omega$	0.35		
$\pi^- \rho^+ \rho^-$	2.09	$K^0 \bar{K}^0 \rho^-$	0.77		
$\pi^{-}\pi^{0}\omega$	5.05	$K^+K^-\rho^-$	0.77		
$\pi^+\pi^-\pi^-\omega$	10.52	$K^{*-}K^{0}\pi^{0}$	0.245		
$\pi^+\pi^-\pi^-\pi^0$	5.51	$K^{*0}K^-\pi^0$	0.245		

A. Schmidt et al., Eur. Phys. J. A 60, 55 (2024)

APPENDIX – MOMENTUM DISTRIBUTIONS

A. Schmidt et al., Eur. Phys. J. A 60, 55 (2024)

