Exploring new physics chance with antideuteron beam at J-PARC

Yue Ma from Few-body Systems in Physics Lab, RIKEN

y.ma@riken.jp

Outline

- Motivation
- * Current status of \overline{d} study
- Our proposal for J-PARC
 - Investigate *d nucleus* potential and annihilation mechanism
 - Possible topics for the future
- Summary

Motivation

- * \bar{p} *nucleus* interaction has inspired tremendous investigations
 - ✤ Relativistic Mean Field theory suggests an exceptionally deep potential $V_0 = -661$ MeV by flipping the G parity
 - Optical potential based on experimental data:
 - * $V_0: -30 \sim -153$ MeV, $W_0: 100 \sim 174$ MeV
- What will happen if we add one more antinucleon into the system?
 - How will the optical potential change for \overline{d} *nucleus*?
 - How does *d* annihilate with nucleus? one-by-one or one-step?
 - Propose to study these topics at J-PARC K1.8 beam line

p – *nucleus* potential: atomic *x*-ray

Only sensitive to peripheral region of nucleus: $V_0 :\sim -110$ MeV, $W_0 :\sim 160$ MeV

> E. Friedman et al., Nucl. Phys. A (761) p283 (2005) C. J. Batty, Rep. Prog. Phys. (52) p.1165 (1989)

\bar{p} – nucleus potential: elastic scattering

Only sensitive to peripheral region of nucleus: $V_0 :\sim -30$ MeV, $W_0 : 118 \sim 174$ MeV D. Garreta, et al., Phys. Lett. 149B, p.64, (1984)

\bar{p} – nucleus potential: absorption cross section

 σ_{abs} fitted with different coupling constant: $\xi = 0, V_0 = -0; \xi = 1, V_0 = -661$ MeV; 600 MeV/c (900 MeV/c) \bar{p} annihilates at 50%(70%) of nuclear density

Sensitive to (almost) nuclear medium density $V_0 :\sim -153$ MeV, $W_0 :\sim 110$ MeV; Stronger optical potential enhances \bar{p} absorption DOI:https://doi.org/10.1103/PhysRevC.80.021601

Current status of \bar{d} study

• Only basic properties of \bar{d} are roughly known: $E_{binding} = 2.4 \pm 0.6$ MeV with unknown size

* $d: E_{binding} = 2.224575 \pm 0.000009$ MeV and r = 2.1 fm

- Available data:
 - * JINR in 1970s, total absorption cross sections for \overline{d} at 13.3 and 25 GeV/c momentum with various targets
 - * ALICE in 2020s, total inelastic cross section for \overline{d} from collider events with wide momentum range
 - Both results are insensitive to the \overline{d} *nucleus* potential

\bar{d} absorption cross section by JINR

* \overline{d} momentum is too high to probe the \overline{d} – *nucleus* potential

Optimized d beam momentum is ~2.0 GeV/c (~1 GeV/c per nucleon) suggested by GiBUU calculation

doi: https://doi.org/10.1016/0550-3213(71)90229-X doi: https://doi.org/10.1016/0370-2693(70)90112-7

\bar{d} inelastic cross section by ALICE

Recent results from ALICE:

- Detector materials as effective targets <A> =17.4 and 31.8
- Only total inelastic cross sections are measured and different processes can not be decoupled

 $\sigma_{inelastic} = \sigma_{NonAnn} + \sigma_{ParAnn} + \sigma_{CohAnn}$ doi: https://doi.org/10.1103/PhysRevLett.125.162001

What will happen when \bar{d} meets nucleus?

- * How will the optical potential change for \overline{d} *nucleus*?
 - * *enhanced* due to compressed \overline{d} *nucleus* system?
 - * *reduced* because of pion shield in $\overline{N} + N \rightarrow \pi s$?
- * How does \overline{d} annihilate with nucleus?
 - * one-by-one or one-step?
- We want to answer these questions with our experiment at J-PARC K1.8 beam line

Our proposal for J-PARC Hadron Facility

- Definition of terminology:
 - Coherent Annihilation: $\overline{d} + A \rightarrow (A 2) + mesons$
 - ✤ Partial Annihilation: $\bar{d} + A \rightarrow (A 1) + \bar{N} + mesons$

• Derive \bar{d} – *nucleus* optical potential with $\sigma_{ParAnn}/\sigma_{CohAnn}$ ratio

- * Stronger attractive potential enhances the coherent annihilation events by pulling \bar{d} closer to the nucleus
- Study *d nucleus* annihilation scenario by examining annihilation phase space

Our tool: GiBUU in a nutshell

Home

- Repo
- Downloads
- Contact

The Giessen Boltzmann-Uehling-Uhlenbeck Project

Search

Start Page Index History

Login Preferences Help/Guide About Trac

		Breadcrumbs: WikiStart LesHouches EventOutput impatient FAQ perWeight
Timeline	Documentation 🖵 🕽	

wiki: WikiStart

Home

The GiBUU project

The **GiBUU project** provides a unified theory and transport framework in the MeV and GeV energy regimes for

- elementary reactions on nuclei, as e.g.
 - electron + A,
 - photon + A,
 - neutrino + A ,
 - hadron + A (especially pion + A and proton + A)
- and for A + A heavy-ion collisions,

using the same physics input and code. The GiBUU code provides a full dynamical description of the reaction and delivers the complete final state of an event; it can thus be used as an **event generator**. The source code is freely available.

For all the reactions, the flow of particles is modeled within a Boltzmann-Uehling-Uhlenbeck (BUU) framework. The relevant degrees of freedom are **mesons** and **baryons**, which propagate in mean fields and scatter according to cross sections which are applicable to the energy range of a few 10 MeV to about 40 GeV. In the higher energy regimes the concept of **pre-hadronic** interactions is implemented in order to realize *color transparency* and *formation time* effects. For a general overview of the model, its theoretical basis as well as many practical details, refer to the review paper:

Transport-theoretical Description of Nuclear Reactions

O. Buss, T. Gaitanos, K. Gallmeister, H. van Hees, M. Kaskulov, O. Lalakulich, A. B. Larionov, T. Leitner, J. Weil, U. Mosel

➡ Phys. Rept. 512 (2012) 1-124 / ➡ Inspire

Table of Contents The GiBUU project General Info Using GiBUU Documentation About GiBUU **External Projects** Trivia For Developers Contact Privacy Policy GiBUU model Further reading Getting the GiBUU code Download as tar balls Public git access (via GitHub) Publications Diploma theses PhD theses **INSPIRE** Database The History of BUU Codes at Giessen The GiBUU Team Privacy Policy Contact

GiBUU calculation vs \bar{p} +¹²C data (0.6 GeV/c)

- * Very good agreement between GiBUU and data by using proper optical potential $V_0 = -153$ MeV
- * Thanks to Dr. Gallmeister of Giessen University for implementing \bar{d} beam into GiBUU

Topic I: derive \bar{d} – nucleus potential

- * $\sigma_{ParAnn}/\sigma_{CohAnn}$ ratio is very sensitive to optical potential because a strong attractive potential pulls antinucleon into nucleus and enhances the coherent annihilation ratio
 - * $\sigma_{ParAnn} / \sigma_{CohAnn} = 61010 / 21911 = 2.8$ at $\xi = 0.2, V_0 = -150$ MeV
 - * $\sigma_{ParAnn} / \sigma_{CohAnn} = 42631 / 21911 = 1.9, \ \theta_{\bar{N}} \le 10^{\circ} \text{ Lab.}$
 - * $\sigma_{ParAnn} / \sigma_{CohAnn} = 50731 / 31359 = 1.6$ at $\xi = 0.5, V_0 = -300$ MeV
 - * $\sigma_{ParAnn} / \sigma_{CohAnn} = 26362 / 31359 = 0.8, \ \theta_{\bar{N}} \le 10^{\circ} \text{ Lab.}$
- We can, therefore, derive \bar{d} *nucleus* optical potential by measuring $\sigma_{ParAnn}/\sigma_{CohAnn}$ ratio

Topic II: Study *d* annihilation scenario

- Our question: how does matter-antimatter annihilate?
 - * two-step independent annihilation: $2 \times (\overline{N} + N)$
 - ★ correlated cascade annihilation: 1: $\bar{N} + N \rightarrow n \times \pi$, 2: $\pi + \bar{N} \rightarrow \bar{\Delta}, 3: \bar{\Delta} + N \rightarrow n \times \pi$
 - * one-step annihilation: $\bar{d} + 2N \rightarrow n \times \pi$
- Our answer: distinguish among these annihilation scenarios by examining the phase space via pion momentum distribution

Topic II: Study *d* annihilation scenario

 Demonstration for difference in phase space due to different annihilation scenarios

$$* n_{mean} = 5.01 \times \frac{\mathrm{IM}_{\bar{\Delta}+p}}{2 \times m_p}, n_{\sigma} = 1.04 \times \frac{\mathrm{IM}_{\bar{\Delta}+p}}{2 \times m_p}$$

Topic II: Study *d* annihilation scenario

 1.5×10^5 unbiased events from \bar{d} +¹²C reaction by GiBUU; we can distinguish the contributions from different annihilation scenarios by examining pion events beyond $\overline{N} - N$ annihilation kinematics, i.e., phase space limit currently, only correlated cascade annihilation

Experiment concept at K1.8 beam line

d identification @ K1.8 by Ukai san

Existence of \overline{d} was confirmed at K1.8 beam line @ 1.8 GeV/c * Yield is estimated to be ~0.3 \overline{d} /spill (~5 seconds) @ 64 kW * 1.5 × 10⁵ \overline{d} beam particles with one month beam time

https://doi.org/10.48550/arXiv.2312.11821

Experiment concept: \bar{d} +¹²C

* 10 cm long graphite target in thin slice to react with \bar{d} beam

* Dipole spectrometer to measure $\sigma_{ParAnn} / \sigma_{CohAnn}$ and examine annihilation phase space with π^{\pm} momentum

Yield estimation: \bar{d} +¹²C $\rightarrow \pi^{\pm,0}$

✤ For 1 cm of graphite with 2 g/cm³ density:

- * Reaction probability per \overline{d} beam particle = $1cm \times \frac{2g}{cm^3} \times \frac{6.02 \times 10^{23}}{12} \times 1.2 \times 10^{-24} cm^2 \sim 0.1$
- * ~10 cm of graphite target will fully react with \bar{d} beam
- * Assuming 0.3 \overline{d} /spill (5 seconds) @ 64kW for one month beam time, we can expect $1.5 \times 10^5 \ \overline{d} \times 14.6 \ \% B \cdot R \cdot = 2.0 \times 10^4$ events for coherent annihilation and 5.6×10^4 events for partial annihilation
 - * 10% precision for $\sigma_{ParAnn}/\sigma_{CohAnn}$ to derive optical potential
 - * ~ 300 events π^{\pm} events beyond $\bar{p} p$ phase space ($\geq 1.6 \text{ GeV/c}$)

How to derive ParAnn and CohAnn

- W/O in-flight secondary annihilation background yet
- Fit p
 + n
 ParAnn for real data multiplicity including shower in between 4<=nTrack<=11 to avoid breakup events</p>
- Obtain relative position and width between p/n ParAnn and CohAnn from GiBUU and apply them to data fitting to decouple p/n ParAnn and CohAnn with ~10% accuracy; reliable because of the stableness of the saturated phase space feature

- Thanks to M. Ukai *et al.*, a unique chance to investigate \overline{d} related physics is now open at J-PARC Hadron Facility K1.8 beam line
- We propose to study
 - * mean field perspective: derive the \bar{d} *nucleus* optical potential with $\sigma_{ParAnn}/\sigma_{CohAnn}$
 - ✤ microscopic picture: study \bar{d} nucleus annihilation scenario with pion yield beyond \bar{p} p annihilation phase space
 - * As a by-product, we can also obtain the \overline{d} radius for the first time in the world

Advertisement: J-PARC antimatter consortium

- A casual occasion to allow Physicists to exchange information and brain storming to use pbar and dbar beam at J-PARC
- Current members from Osaka University, Kyoto University and RIKEN
- If you have any interests, please feel free to contact us

Possible topics for d related physics

Topics	Method	Condition
CPT: static	d̄ atomic x-ray	need slow d
CPT: scattering	d̄+pvsp̄+d	low precision
d radius	coherent annihilation cross section	our proposal
d+12C potential	Partial/Coherent annihilation ratio	our proposal
d annihilation scenario	measure annihilation phase space	our proposal

F

Possible topics for d related physics

T98@36th J-PARC PAC report by Tanaka san