Neutron-antineutron oscillation and antinucleon-nuclear interactions

09.04.2024 FuPhy2024

Takashi Higuchi (KURNS, Kyoto University)

Outline

- 1. Neutron-antineutron oscillation
 - Background and today's situations
 - New proposals to improve the sensitivity of the search
- 2. Antinucleon-nucleus interaction
 - Optical potential model for antiprotons/antineutrons
 - Discuss possible research that can be done in this context

Background: neutron-antineutron oscillation

- Theoretical motivations:
 - Baryon number violation $|\Delta B|=2$
 - Could help distinguish SU(8) and SO(10) GUT models
- Previous measurements:
 - Free neutrons: ILL (1994)
 - Bound neutrons: Super-Kamiokande (2015)

Mean $n\overline{n}$ -oscillation time > 8.6×10^7 s, CL = 90% (free *n*) Mean $n\overline{n}$ -oscillation time > 4.7×10^8 s, CL = 90% ^[g] (bound *n*)

GUT models	Oscillation period		
	$ au_{nar{n}}$ =10 ⁶ ~10 ¹⁰ sec ?		
$SU(2)_{L} \times U(1)_{Y} (GWS)$	forbidden		
minimal SU(5)	forbidden		
$SU(4)_{C} \times SU(2)_{L} \times SU(2)_{R}$	yes		
SO(10)	too slow		
SO(10) with low-E (~100TeV) SU(4) _C	yes		
E ₆	too slow		
SUSY-SU(5)	too rapid		
SUSY-E ₆	yes		

R.N.Mohapatra, NIM A284 (1989) 1 K.S. Babu, R.N. Mohapatra, PLB518 (2001) 269

Previous experiment at ILL (1994)

- Cold neutron flux: 2 meV, 1.25x10¹¹ n/s
- Flight path: 76.5 m, 0.1 s
- Magnetic field: < 10 nT, pressure: < 0.01 Pa</p>
- Searched for nbar by annihilation to pions

 (130 um-thick graphite film as the annihilation target, ε_{det}=0.52)
- Accumulated observation time: $Y_{\overline{n}} = 2 \times 10^7 \text{ s}$

T. Higuchi, FuPhy2024 M. Baldo-Ceolin et al., Z. Phys. C **63**, 409 (1994).

Future experiment at ESS

- Spallation neutrons moderated by a cold source: 2.7x 10¹⁵ n/sr/s
- Large-aperture neutron guides (4 m diameter) with neutron optics (> 4 Å) , Flight path of 200 m
- Factor of $(1000)^{1/2}$ ~ 32 improved figure of merit $\sqrt{(N^* t^2)}$ compared to the ILL experiment

F. Backman et al, JINST 17, P10046 (2022)

Recent developments:

New proposals in view of the future opportunities (ESS in Sweden, new research reactor in Japan) that involve knowledge of low-energy antineutron-nucleus interactions

Low energy neutron-nucleus interaction (neutron optics)

■ At low energy (≤ 10 meV), neutron-nucleus scattering dominated by the s-wave → Fermi potential

Material	s-wave scattering length <i>b</i> (fm)	Fermi potential V _F (neV)		
Be	7.778–0.002 <i>i</i>	249.01–0.068 <i>i</i>		
С	6.648-0.0009732 i	195.3–0.029 <i>i</i>		
Р	5.130–0.0478 <i>i</i>	47.53–0.443 <i>i</i>		
Ni	10.30-1.248 <i>i</i>	<mark>243.5</mark> –29.52 i		
NiP		213.2–0.0229 <i>i</i>		

b: bound scattering length $b = \frac{A+1}{A}a$

• Totally reflection of neutron with an incident angle $\vartheta \leq \vartheta_c$:

 $E_{\perp} = E (\sin \theta)^2 \le V_{\rm F}$, the critical angle $\theta_c = \sin^{-1}(\sqrt{V_{\rm F}/E})$

Ultracold neutrons (UCNs): neutrons with energies ≤ 300 neV
 → totally reflected with any incident angle
 2024-04-20 can be stored for time ~100 s in material containers

Low energy neutron-nucleus interaction (neutron optics)

- Experimental determination:
 - Measured by neutron interferometry

Determined with precision of ~0.1-1%

Sample	b_c (fm)
Si ^a	4.060 ± 0.027
Ti	-3.477 ± 0.062
	-3.386 ± 0.064
Al	3.408 ± 0.050
	3.423 ± 0.027
	3.466 ± 0.020
V	-0.522 ± 0.004
	-0.520 ± 0.004
V averaged	-0.521 ± 0.003
V-Ni alloy ^c	-0.062 ± 0.001

Nuclide dependence:

 Largely scales as A^{1/3}, but scatters due to the nuclear structures

V.V. Nesvizhevsky, G. Pignol & K.V. Protasov, PRD 77, 034020 (2008)

T. Fujiie et al. Phs. Rev. Lett. **132**, 023402 (2024)

Recent proposals for the n-nbar oscillation search

Antineutron mirror:

- (Anti)neutron mirrors to extend the observation time by 10⁴
- 10-20% error on nbar-A scattering length is acceptable_{V. V.} Nesvizhevsky et al. Phys. Rev. Lett., 122, 221802 (2019)
 K. V. Protasovet al. Phys. Rev. D, 102, 075025 (2020)
- Use of ultracold neutrons (T. Shima 2023):
 - Use of stored ultracold neutrons instead of a neutron beam
 - Design a material vessel coating which has the identical n/nbar Fermi potential to **a few %**

T. Shima: NEWS colloquium, RCNP Osaka (2023)

Neutron-gas interaction to compensate the magnetic field:

• Pre-select the spin state of a neutron beam, fill the neutron path with gas which cancels the magnetic potential (loosen the magnetic field requirement $S = (2\vec{\mu_n} \cdot \vec{B} - V_n + V_{\overline{n}})$

V. Gudkov et al.," *Phys. Lett. B* 808, 135636 (2020).

→ Key: the scattering length of antineutrons with nucleus

 \rightarrow Next pages: neutron-material interaction in the n-nbar oscillation

Formalism of n-nbar oscillation (in vacuum)

$$irac{\partial}{\partial t}egin{pmatrix} \psi_n(t) \ \psi_{ar n}(t) \end{pmatrix} = egin{pmatrix} E_n + U_n(t) - i\Gamma_eta & arepsilon \ arepsilon & arepsilon_n + U_{ar n}(t) - i\Gamma_eta \end{pmatrix}egin{pmatrix} \psi_n(t) \ \psi_n(t) \end{pmatrix}$$

• In vacuum, $U_n(t) = -|\mu_n| \cdot B, \quad U_{ar n}(t) = |\mu_n| \cdot B \qquad \omega \equiv U_n - U_{ar n}$

• Starting from $\psi_n(0) = 1$, the oscillation probability is

$$P_{nar{n}}(t) = |\psi_{ar{n}}(t)|^2 = rac{4arepsilon^2}{\omega^2 + 4arepsilon^2} \exp(-\Gamma_eta t) \cdot \sin^2\left(rac{1}{2}\sqrt{\omega^2 + 4arepsilon^2}t
ight)$$

• Quasi-free limit (the potential difference (sufficiently small magnetic field \leq 10 nT):

$$\omega t \ll 1 ~~ \Rightarrow P_{nar{n}}(t) pprox \epsilon^2 t^2 \cdot \exp(-\Gamma_eta t) = (t/ au_{nar{n}})^2 \cdot \exp(-\Gamma_eta t)$$

of detected nbar over time : $Y_{\bar{n}} = \epsilon_{et} \cdot \Phi_n \cdot P_{n\bar{n}} \cdot t_{meas}$ \rightarrow contains $P_{n\bar{n}}$ and thus $\tau_{n\bar{n}}$

2024-04-09`

D.G. Phillips II et al. Physics Reports, **612**, 1 (20¢6)

Wall interactions in n-nbar oscillation

$$irac{\partial}{\partial t}egin{pmatrix} \psi_n(t) \ \psi_{ar n}(t) \end{pmatrix} = egin{pmatrix} E_n + U_n(t) - i\Gamma_eta & arepsilon \ arepsilon & arepsilon_n + U_{ar n}(t) - i\Gamma_eta \end{pmatrix}egin{pmatrix} \psi_n(t) \ \psi_n(t) \end{pmatrix}$$

• The n-nbar wall potential difference (quasi-free limit not applicable):

$$\omega_W \equiv U_n(t) - U_{ar n}(t) = Oig(10^{-7} [{
m eV}]ig) \gg arepsilon < 10^{-12} {
m eV} \qquad
u \equiv rac{1}{2} \sqrt{\omega_W^2 + 4arepsilon^2}$$

Solution of the differential equation:

$$egin{pmatrix} \psi_n\left(t_W
ight) \ \psi_{ar{n}}\left(t_W
ight) \end{pmatrix} = \exp\left[-\left(iE_n+rac{\Gamma_eta}{2}
ight)t_W
ight]\cdotegin{pmatrix} \cos
u t_W+i\omega_W\sin
u t_W/(2
u) & -rac{iarepsilon}{
u}\sin
u t_W}{\cos
u t_W} & \cos
u t_W-i\omega_W\sin
u t_W/(2
u) \end{pmatrix}egin{pmatrix} \psi_n\left(0
ight) \ \psi_{ar{n}}\left(0
ight) \end{pmatrix} \end{pmatrix}$$

→ Suppression of oscillation inside the wall: $\epsilon/\nu << 1$ → The wave function acquires a phase by going through the wall: (cos vt_W ± $i\omega_W/(2\nu)$ *sin vt_W)

Sensitivity

$$P_{nar{n}}pprox (\cos
u t_W)^{2N} \left(rac{t_s}{ au_{nar{n}}}
ight)^2 \qquad Y_{\overline{n}} = arepsilon_{
m det}\cdot\Phi_n\cdot P_{nar{n}}\cdot t_{meas}$$

N: # of wall collisions, t_W : dwell time in the wall t_s : free flight time between wall interaction

T. Shima: NEWS colloquium, <u>RCNP Osaka (2023)</u>

2024-04-09

Impact of nbar scattering length to the sensitivity (UCNs)

T. Shima: NEWS colloquium, <u>RCNP Osaka (2023)</u>

$$P_{nar{n}} pprox (\cos
u t_W)^{2N} \left(rac{t_s}{ au_{nar{n}}}
ight)^2 \qquad Y_{\overline{n}} = arepsilon_{
m det} \cdot \Phi_n \cdot P_{nar{n}} \cdot t_{meas}$$

Realistic numbers:

Realistic numbers:

- Free flight time t_{free} =1 s
- Wall dwell time $t_W \sim 10$ ns
- Number of collisions: N =500
- Storage lifetime: $t_{\text{free}} \times N = 500 \text{ s}$
- UCN flux: $\Phi_n \sim 10^8/s$

• Wall material:

Al (59%) Mg (41%), theoretically $V_{F,n}$ =58.3 neV ,v = 0.5 neV

E. Friedman & A. Gal, Phys. Rev. D 78, 016002 (2008)

Very sensitive to the n-nbar potential difference!

 $\rightarrow \tau_{n\bar{n}} > 10^{10} \text{ s in 1 year}$

Other proposals for the n-nbar oscillation search

- Possible design of coating that has close potentials experienced by n and nbar:
 - Compound/alloy of elements: take number average of the scattering length (e.g. NiP)

Element	Atomic mass	a _{n A} (fm)	a _{nbar A} (fm)	Moler ratio
AI	27.0	3.449	4.29	0.59
Mg	24.3	5.375	4.15	0.41

• $a_{nbar} = 4.23$ fm, $a_n = 4.37$ fm \rightarrow 1% difference

TABLE I. Parameters that characterize the interaction of \bar{n} with different materials: $b_{\bar{n}A}$ (the scattering length), $U_{\bar{n}}$ (the complex optical potential for this material), $\tau_{\bar{n}}$ (the time of storage of \bar{n} with close-to-zero vertical energy on a horizontal surface in Earth's gravitational field). Calculations for all elements are averaged over the natural isotopic compositions.

Element	$b_{\bar{n}A}$ [fm]	$U_{\bar{n}}$ [neV]	$\tau_{\bar{n}}$ [s]	
С	3.5 - i	103 – <i>i</i> 29	1.7	
Mg	3.5 - i	39 - i11	1.0	
Si	3.7 - i	48 - i13	1.2	
Ni	4.7 - i	111 – <i>i</i> 24	2.3	
Cu	4.7 - i	104 - i22	2.2	
Zr	5.3 - i	59 - i11	1.8	
Mo	5.3 - i	89 - i16	2.3	
W	6.5 - i	106 - i16	3.0	
Pb	6.7 - i	57 - i8.6	2.3	
Bi	6.7 - i	49 - i7	2.1	

V. V. Nesvizhevsky et al. *Phys. Rev. Lett.*, **122**, 221802 (2019) K. V. Protasovet al. *Phys. Rev. D*, **102**, 075025 (2020)

T. Higuchi, FuPhy2024. Gudkov et al.," *Phys. Lett. B* 808, 135636 (2020). 13

Other proposals for the n-nbar oscillation search

- Other proposals:
 - V. V. Nesvizhevsky et al. 2019: to use (anti)neutron mirrors for the beam experiment: 10-20% error on nbar-A scattering length is acceptable
 - V. Gudkov et al., 2020: Pre-select the spin state of a neutron beam, fill the neutron path with gas s.t. the magnetic potential is canceled to zero (loosen the magnetic field requirement)

 $S = (2\vec{\mu_n} \cdot \vec{B} - V_n + V_{\overline{n}})$

→ Key: the scattering length of antineutrons with nucleus

Antineutron/antiproton-nucleus interaction: available data

- pbar-nuclear scattering/annihilation:
 - pbar elastic scattering: PS184 (D, C, Ca, Pb)
 - ASACUSA : pbar elastic scattering/annihilation at 100 MeV/c (C) and 15.3 MeV/c (125 keV)
 - KEK-E-074: pbar elastic scattering/annihilation at 470-880 MeV/c (C, Al, Cu)
 - ..
- nbar-nuclear annihilation:
 - OBELIX (PS201): nbar annihilation at 100-400 MeV/c
- pbar atom spectroscopy: PS209

target	\bar{p} atoms	\bar{p} ann.	\bar{p} scatt.	\bar{n} ann.
С	+		+	+
0	+			
Ne		+		
Al				+
Ca	+		+	
Fe	+			
Ni	+	+		
Cu				+
Zr	+			
Ag				+
Cd	+			
Sn	+	+		+
Te	+			
Pt		+		
Pb	+		+	+
data points	90	7	88	42

 Table 1 Experimental results for antinucleon-nucleus interaction at low energies

E. Friedman, Hyperfine Interact., 234, 77-84 (2015).

→ No direct scattering data exists for nbar, but the model can be developed upon pbar data, checked by available nbar annihilation data

Optical potential model (Batty-Friedman-Gal)

- Scattering wavefunction
 - Only the s-wave amplitude considered: $f(\theta) \rightarrow f_0$

$$egin{aligned} \psi &= \mathrm{e}^{\mathrm{i}k\mathrm{r}} + f(heta)rac{e^{ikr}}{r}, \ \psi &= \mathrm{e}^{\mathrm{i}k\mathrm{r}} + \int
ho(\mathbf{r}')f_0rac{e^{ikr}}{|\mathbf{r}-\mathbf{r}'|}\psi_{\mathrm{eff}}(\mathbf{r}'), \end{aligned}$$

"tp model"

$$(
abla^2+k^2)\psi({f r})=-4\pi a_0^{
m eff}
ho({f r})\psi({f r})$$
 =

$$\Rightarrow V_{
m opt} = -4\pi rac{\hbar}{2\mu} a_0^{
m eff}
ho({f r}).$$

μ: reduced mass ρ: nucleon density

$$2\mu V_{opt}(r) = -4\pi \left(1+rac{\mu}{M}rac{A-1}{A}
ight) \left[b_0(
ho_n+
ho_p)+b_1(
ho_n-
ho_p)
ight]$$

b₀: iso-scalar scattering length b₁ : iso-vector scattering length

Nucleon density distribution parameterization:

$$ho_{n,p}(r) = rac{
ho_{0n,0p}}{1+\exp((r-R_{n,p})/a_{n,p})}$$

• b_0 , b_1 : scattering lengths, R: radius , a: diffuseness of the Woods-Saxon potential

Unified optical potential model approach applied to pbar-atom data

- Re(a) and Im(a) can be derived by strong-interaction-induced energy shifts and width of pbar atoms
- Used the pbar-atom data to determine the optical potential model parameters by global fit
 - Good agreement for A > 10
- C.J. Batty et al. 2001:
 - Isoscalar model
- E. Friedman et al. 2005: model with different neutron/proton distribution neutron-proton radius fitted by isotope data by PS209
 - Consistent with $Im(b_1)=0$

Re
$$a_0 = (1.54 \pm 0.03) A^{0.311 \pm 0.005}$$
 fm,
Im $a_0 = -1.00 \pm 0.04$ fm.

Parameter uncertainty at % level 2024-04-09

C. J. Batty, E. Friedman, and A. Gal, *Nucl. Phys. A*, **689**, 721–740 (2001). ^{T. Higuchi, FuPhy2024} E. Friedman, A. Gal, and J. Mareš, *Nucl. Phys. A*,.**761**, 283–295 (2005)

Elastic scattering

- The simple optical potential reproduces the experimental data better than the Paris N-Nbar potential (at least for this case)
- The same optical potential model works for both the E <0 (bound) and E> 0 (scattering) cases

E. Friedman, A. Gal, B. Loiseau, and S. Wycech, Nucl. Phys. A 943, 101–116 (2015).

Discrepancy in the annihilation data

- Annihilation cross section calculated by the optical potentia severe discrepancy with the OBELIX nbar data
 - Theory underestimates the cross-section
- Scarce data exists for pbar annihilation at the corresponding energies (100-400 MeV/c) → Recent works by ASACUSA

Data $\frac{1}{2}$: nbar experiment (not pbar!)

T. Higuchi, FuPhy2024E. Friedman, *Hyperfine Interact.*, **234**, 77–84 (20195).

Discrepancy in the annihilation data

- Annihilation cross section calculated by the optical potentia severe discrepancy with the OBELIX nbar data
 - Theory underestimates the cross-section
- Scarce data exists for pbar annihilation at the corresponding energies (100-400 MeV/c) → Recent works by ASACUSA

Latest summary in unit of classical impact factor $\sigma_A = \pi b_A^2$

^{10⁴} ^{1×10³} E. Friedman, *Hyperfine Interact.*, **234**, 77–84 (2015). ^{T. Higuchi, FuPhy2024}K. Nordlund et al., Phys. Rev. A **106**, 012803 (2022)

Summary of the situations and proposals

 The optical potential model developed upon the pbar-atom spectroscopy data works well to explain elastic scatterings, but lacks full experimental verification

Possible pbar experiments in this context:

- Annihilation cross-section measurement in a 100-400 MeV/c momentum range
 - Future facility providing DC beam with variable momentum would be desirable
- Verification of vanishing of isovector terms
 - Elastic scattering and pbar-atom spectroscopy with isotopes

Coordination of theoretical and experimental works are essential

Annihilation cross-section

 Still not enough pbar annihilation data to judge the nbar discrepancy is due to insufficiency of the theory or some experimental systematics

 \rightarrow More measurements in 100-400 MeV/c desirable, but preferably done at a DC pbar source

- Recently proposed alternative model (Lee and Wong 2018):
 - Employs more complex model of nucleon density distribution ("double diffuseness")
 - \rightarrow Possible further theoretical investigation based on *ab-initio* nucleon density distribution

H. Aghai-Khozani et al., Nucl. Phys. A, 970, 366–378 (2018)

Isovector term of the scattering length

$$2\mu V_{opt}(r)=-4\pi\left(1+rac{\mu}{M}rac{A-1}{A}
ight)\left[b_0(
ho_n+
ho_p)+b_1(
ho_n-
ho_p)
ight]$$

- The negligible iso-vector term b₁=0 in the tp potential model is the basis of applying the pbar scattering length to nbar studies, but in fact there has never been explicit check
 - In the global fits, b₁ has correlation with proton/neutron density asymmetry parameters
 - E. Friedman et al. 2005:

The vanishing of Im b_1 at the best-fit points for the two acceptable models for neutron densities deserves a comment. We note that the four $\overline{N}N$ potentials considered in Table 3 of Ref. [1] yield for Im b_1 values which are a factor of 10–20 smaller than the corresponding values of Im b_0 , so it is conceivable that also for the *effective* phenomenological parameters a similar situation will hold.

the use of many groups of isotopes all along the periodic table, the parameters of the isovector part of the potential could not be determined in *global* fits, and are therefore assumed to be consistent with zero.

- However, the charge independence of pbar-n (<-> nbar-p) reaction against pbar-p is not trivial
 - Jean-Marc Richard 2022:

A comparison of ¹⁶O and ¹⁸O isotopes, see Fig. 11, does not indicate any striking isospin dependence of the $\bar{p}N$ interaction, when averaged on spins. However, at very low energy, some isospin dependence is suggested by the data and analyses by the ²⁰²⁴⁻⁰⁴S⁰⁷PS179 and OBELIX (PS201)[66], 67]. T. Higuchi, FuPhy2024

Despite

Isovector term of the scattering length

- To explicitly study the isovector term of the scattering length, isotopes with well understood nucleon density distribution are suited, e.g. Ca isotopes
- Scattering (previous study exists for ¹⁶O &¹⁸O)
- pbar atom (previous work by PS209, but missing the effectively lowest (n,l) = (5,4) level widths

G. Bruge et al. Phys. Lett., **169B**,14 (1986).

G. Bruge et al. Phys. Lett., **169B**,14 (1986).

pbar-Ca spectroscopy by PS209

- Ge detector resolution is not sufficient, so used the intensity balance method to indirectly estimate the width of the transitions
 - The broadening by annihilation causes
- Possibility of applying a superconducting transition-edge sensor (TES) (a few eV resolution) to directly determine the width of the $(n,l) = (6,5) \rightarrow (5,4)$ around 120 keV

(cf. Nancy Paul's talk tomorrow)

Strong interaction level widths and shifts determined by PS209 experiment.

Z	A	lower level	Γ_{low}	ϵ_{low}		Γ_{up}	ϵ_{up}	
		n, ι	(67)	(ev) A	В	(ev)	(ev) A	В
8	160	3,2	484(25)	103(10)				
20	40Ca 42Ca 43Ca 44Ca 48Ca	$5,\!4$		5(12) 17(14) 62(30) 31(10) 33(12)		0.059(18) 0.080(28) 0.073(42) 0.077(23) 0.116(17)		
26	54Fe 56Fe 57Fe 58Fe	5,4	545(45) 545(54) 638(35) 2017(203)	155(60) 167(22) 164(25) -115(115)		$\begin{array}{c} 2.9(6) \\ 3.3(5) \\ 3.7(4) \\ 4.1(10) \end{array}$		

F. J. Hartmann et al., Phys. Rev. C 65, 014306 (2001)

T. Higuchi, FuPhy2024

A. Trzcinska et al, Nucl. Phys. A **692**, 176-181 (2001) ₂₅

Conclusions

- The precise knowledge of antinucleon scattering length has potential of revolutionize the sensitivity of the neutron-antineutron oscillation search
- The optical potential model of antinucleon-nucleus has sufficient precision (~1%) to be applied to the above purpose, but lacks full experimental verification
- Proposed possibilities of experimental/theoretical studies focusing

Acknowledgments:

Tatsushi Shima (RCNP, Osaka Univ.) Konstantin Protassov (LPSC Grenoble) Naofumi Kuroda (UTokyo) Michael Doser (CERN) Hiroyuki Fujioka (Tokyo Tech. Inst.)

Thank you for your attention!