FuPhy2024 : Future Nuclear and Hadronic Physics at the CERN-AD

Resonance states in antiprotonic helium

Jean Servais

Physique Nucléaire et Physique Quantique

Université libre de Bruxelles

(Brussels, Belgium)

Collaborator : J. Dohet-Eraly

April 2024

Background

The CERN AD & ELENA have opened the path to high-precision measurement on antimatter :

- exploring antimatter properties,
- probing CPT symmetry by searching tiny asymmetries in matter / antimatter properties.

Some collaborations :

- AEgIS & GBAR : study of \bar{g} on \bar{H} ,
- ALPHA : H spectroscopy,
- BASE : antiproton magnetic moment,
- ASACUSA : experiments with antiprotonic helium (He⁺ \bar{p}) to measure $m_{\bar{p}}/m_e$.

The ASACUSA experiments with $He^+\bar{p}$

Study of antiprotonic helium, a metastable three-body system made of He²⁺, \bar{p} , and e^- , by **spectroscopic techniques**.

- 2011 : first high-precision measurement of $m_{\bar{p}}/m_e = 1836.1526736(23)^1$
- 2016 : improvement of the previous value, $m_{\bar{p}}/m_e = 1836.1526734(15)^2$. This value agrees with the ratio m_p/m_e , within the **experimental error bar**.
- 2020 : similar experiments with pionic helium $(He^{+}\pi^{-})^{3}$, and prospects with other exotic atoms $(He^{+}K^{-} \text{ or } H\bar{p})$.

Antiprotonic helium. Figure extracted from Yamazaki, T., *et al.* (2002). Physics Reports, 366, 183-329.

¹Hori, M., *et al.* (2011). Nature, 475, 484-488.

²Hori, M., et al. (2016). Science, 354, 610-614.

³Hori, M., et al. (2020). Nature, 581, 37-41.

A metastable hybrid atomic system

Antiprotonic helium is an exotic atom containing both matter and antimatter. Process of **creation of this unstable long-lived atom** :

- A fraction of antiprotons (~ 3%) replace one electron in the electronic cloud of He.
- Capture in high-n, nearly circular states (L₀ ~ n₀ 1), with

$$n_0\sim \sqrt{rac{m_{
m He}m_{ar p}}{(m_{
m He}+m_{ar p})m_e}}\sim 38.$$

Antiprotonic helium quasibound spectrum. Figure exctracted from M. Hori, Can. Jour. Phys. 89.1 (2011)

A metastable hybrid atomic system

Antiprotonic helium is an exotic atom containing both matter and antimatter. Process of **creation of this unstable long-lived atom** :

3 Resonance states (i.e. unstable but long-lived), with

$$E_{
m res} = E_r - i rac{\Gamma}{2}$$
 and $au_{
m Auger} \sim \hbar/\Gamma.$

Resonances labeled by (L, v).

- Deexcitation mainly by two competing processes
 - Auger emission of e⁻
 Radiative transitions (→ spectroscopy)

Slow cascade process

 \rightarrow long-lived atom suitable for experiments ($\sim \mu s \gg ps$)

Antiprotonic helium resonance spectrum. Figure exctracted from M. Hori, Can. Jour. Phys. 89.1 (2011)

Theoretical description of exotic atoms

Given these high-precision measurements, as e.g.

1132609226.7(2.8)(2.5)(1.4) MHz for the $(31,0) \rightarrow (30,0)$ transition,

theoretical results are needed to infer the antiproton mass from spectroscopic data. This system has been studied very accurately **for a restricted number of states** (L = 28 - 41, v = 0 - 5), relevant from an experiment p.o.v., mostly by

- Korobov and coworkers,
- the Kyushu group.

My research aims at

- studying resonances in three-body atomic systems (exotic or not), by means of a method as simple, fast, and accurate as possible,
- probing this method by performing calculations on antiprotonic helium, which has been studied very accurately (appropriate benchmark system),
- while enriching our knowledge of its resonance spectrum.

Preliminary theoretical description (E_r)

Three-body system

 \bar{p}

 r_{23}

 r_{13}

e⁻

Internal coordinates

Perimetric coordinates $(x, y, z, \psi, \theta, \phi)$

$$\begin{cases} x = r_{12} - r_{23} + r_{12} \\ y = r_{12} + r_{23} - r_{13} \\ z = -r_{12} + r_{23} + r_{13} \end{cases}$$

Wavefunction

$$\Psi_{c,LM}^{\pi} = \sum_{K=0}^{L} \mathcal{D}_{MK}^{L\pi}(\psi,\theta,\phi) \Phi_{K}(x,y,z)$$

He²⁺

 r_{12}

 $E_{\rm res} = E_r - i \frac{\Gamma}{2}$

Non-relativistic description

 $(T+V)\Psi^{\pi}_{CIM} = E \Psi^{\pi}_{CIM},$

with $V = Z_1 Z_2 / r_{12} + Z_2 Z_3 / r_{23} + Z_1 Z_3 / r_{13}$.

 \triangle Preliminary **simplified** description : apply a bound-state-like approach, and compute $E = E_r \in \mathbb{R}$.

Radial basis functions

Real wavefunction

$$\Psi_{c,LM}^{\pi} = \sum_{K=0}^{L} \mathcal{D}_{MK}^{L\pi}(\psi,\theta,\phi) \Phi_{K}(x,y,z)$$

The Lagrange-mesh method¹

$$\Phi_{K}(x, y, z) = \sum_{ijk} C_{ijk}^{K} F_{ijk}^{K}(x, y, z)$$

where

$$F_{ijk}^{K} \propto f_{i}^{(N_{x})} \left(\frac{x}{h_{x}}\right) f_{j}^{(N_{y})} \left(\frac{y}{h_{y}}\right) f_{k}^{(N_{z})} \left(\frac{z}{h_{z}}\right),$$

Orthonormality at the Gauss approximation

$$\langle F_{ijk} | F_{lmn} \rangle_{G} = \delta_{il} \delta_{jm} \delta_{kn}$$

+ diagonal potential matrix, sparse Hamiltonian matrix \rightarrow accuracy and ease

The Lagrange-Laguerre functions $f_n(u)$ are proportional to the product of a Laguerre polynomial and an exponential.

¹Baye, D. (2015). Physics reports, 565, 1-107.

Quasibound states: some valuable insights

Diagonalizing the Hamiltonian matrix, one obtains $E_r \in \mathbb{R}$,

$$E_{\rm res} = E_r - i \frac{\Gamma}{2}.$$

- Quasibound real energies have been computed for a wide range of *L*, from 0 to 80 (see r.h.s. for v = 0).
- The number of stable digits on E_r is very roughly of the order of magnitude of 1/Γ.

L	E_r	L	E_r
3	-183.862303	22	-6.090
4	-117.851910	23	-5.642
5	-81.99445	24	- 5.2596
6	-60.37364	25	-4.90952
7	-46.3411	26	-4.60246
8	-36.7205	27	-4.330238
9	-29.8391	28	-4.0881916
10	-24.7480	29	-3.87240911
11	-20.876	30	-3.679774786
12	-17.863	31	- 3.5076350311
13	-15.473	32	-3.35375786378
14	-13.546	33	-3.21624423252
15	-11.967	34	-3.09346690187
16	-10.662	35	-2.98402095424
17	-9.570	36	-2.88668239016
18	-8.645	37	-2.80037231540
19	-7.857	38	-2.72412479286
20	-7.180	39	-2.657056942961
21	6 504	40	-2598340648168

Quasibound real energies for $(L = 3 - 40, v = 0)^1$.

¹Baye, D., Dohet-Eraly, J., and Schoofs, P. (2019). Physical Review A, 99, 022508.

Quasibound states: some valuable insights

In addition to E_r , the real wavefunction leads to

- the mean radii for the same angular momenta¹
- relativistic corrections (discussed later in this talk)
- radiative-decay lifetimes (discussed later in this talk)

In addition, the hydrogenic picture appears for low and high $L \rightarrow "atomcule"^2$.

¹Baye, D., Dohet-Eraly, J., and Schoofs, P. (2019). Physical Review A, 99, 022508.

²Yamazaki, T., *et al.* (2002). Physics Reports, 366, 183-329.

Accessing resonance widths (E_r, Γ)

Generalities

A resonance \equiv a pole of the ${\cal S}$ matrix.

The corresponding resonance wavefunction, also called a Siegert state, only contains outgoing components which **diverge at infinity**.

Evaluating the Auger width $\Gamma \leftrightarrow$ calculations in the complex plane ($E_{res} \in \mathbb{C}$). In this work, two approaches have been adopted :

- the complex-scaling method, which rotates the wavefunction in the complex plane, to make it convergent at infinity (→ bound-state-like techniques are applicable)
- e the Kohn variational principle, which includes explicitly the asymptotic wavefunctions describing the scattering

$${\sf He}^{2+}ar{p}+e^-
ightarrow {\sf He}^{2+}ar{p}+e^-$$

in the total wavefunction, in order to determine the scattering properties of the state (e.g. phase shift, S matrix)

Complex scaling method

Principle

Scaling of the radial coordinates

$$r_{lm}
ightarrow r_{lm} e^{i\theta}$$

in the real wavefunction $\Psi_{c,LM}^{\pi}$ in perimetric coordinates.

Energies are rotated by an angle 2θ in the complex plane. Bound and resonance energies are stable,

$$\frac{\partial E_{\text{res}}}{\partial \theta} = \left\langle \Psi_{c,LM}^{\pi}(\theta) \middle| \frac{\partial H}{\partial \theta} \middle| \Psi_{c,LM}^{\pi}(\theta) \right\rangle$$
$$\approx 0.$$

while scattering states rotate.

L	Ε	E_r	Г
2	-326.477424	- 326.477423	< 10 ⁻⁶
3	-183.862303	-183.862303	2×10^{-6}
4	- 117.851910	-117.851909	8×10^{-6}
5	-81.99445	- 81.994465	2.5×10^{-5}
6	-60.37364	-60.373637	6.1×10^{-5}
7	- 46.3411	-46.341003	1.3×10^{-4}
8	-36.7205	-36.720433	$2.3 imes 10^{-4}$
9	-29.8391	-29.839104	$4.0 imes 10^{-4}$
10	-24.7480	-24.74797	6.3×10^{-4}
11	-20.876	-20.87608	$9.6 imes 10^{-4}$
12	- 17.863	-17.86326	1.4×10^{-3}
13	- 15.473	- 15.47318	1.9×10^{-3}
14	-13.546	-13.5456	2.6×10^{-3}
15	- 11.967	-11.9687	3.4×10^{-3}
16	-10.662	-10.6626	4.3×10^{-3}
17	-9.570	-9.5691	5.4×10^{-3}
18	-8.645	-8.6448	6.5×10^{-3}
19	- 7.857	-7.8568	$7.8 imes 10^{-3}$
20	-7.180	-7.1800	9.2×10^{-3}
21	-6.594	-6.5951	1.1×10^{-2}

Extracted from Baye, D., et al. (2019). Physical Review A, 99, 022508.

Complex scaling method

The complex scaling and Lagrange-mesh methods

- succeeded in computing resonance energies and widths for $3 \le L \le 21$ (v = 0),
- failed to obtain states with higher L, relevant from an experiment p.o.v. $(I_{e^-} > 1)$.

However,

- some authors succeeded to describe these resonances by means of the complex scaling, using a more complicated wavefunction^{1,2},
- combining the Lagrange-mesh and complex-scaling methods proved to be highly efficient in bielectronic atoms such as Ps⁻ or He^{3,4}.

 \rightarrow the rotated wavefunction in perimetric coordinates is **unsuited to describe the present system** (different scales)

 \rightarrow a variational scattering approach is adopted in the following.

¹Kino, Y., Kamimura, M., and Kudo, H. (1998). Nuclear Physics A, 631, 649-652.

²Korobov, V. I. (2014). Physical Review A, 89, 014501.

³Dohet-Eraly, J. and Servais, J. (2022). Journal of Physics B 55, 245001.

⁴Servais, J. and Dohet-Eraly, J. (2023). Journal of Physics B 56, 075001.

Kohn Variational principle

The principle is to include explicitly wavefunctions describing the asymptotic state related to the scattering

$$\mathsf{He}^{2+}ar{p} + e^-
ightarrow \mathsf{He}^{2+}ar{p} + e^-$$

The real wavefunction $\Psi_{c,LM}^{\pi}$ is complemented with asymptotic functions Ω depending on the Jacobi coordinates $(\mathbf{x}_1, \mathbf{x}_2)$,

$$\Psi = \Psi_{c,LM}^{\pi}(x, y, z, \psi, \vartheta, \phi) + \tilde{S}\Omega^{O}(\mathbf{x}_{1}, \mathbf{x}_{2}) + \Omega'(\mathbf{x}_{1}, \mathbf{x}_{2}).$$

Kohn Variational principle

The total wavefunction then reads,

$$\Psi = \Psi^{\pi}_{c,LM}(x, y, z, \psi, \vartheta, \phi) + \tilde{S}\Omega^{O}(\mathbf{x}_{1}, \mathbf{x}_{2}) + \Omega'(\mathbf{x}_{1}, \mathbf{x}_{2}).$$

Complex Kohn variational principle¹:

$$\mathcal{S}(E) = \tilde{\mathcal{S}} + i \langle \Psi | H - E | \Psi \rangle,$$

where \tilde{S} is obtained by varying the coefficients of the total wavefunction Ψ .

As a resonance corresponds to a pole of the \mathcal{S} matrix,

$$\mathcal{S}(E_r - i\Gamma/2) \longrightarrow \infty$$
,

the resonance parameters can be obtained by extrapolating the S matrix in the complex plane, from the real-energy axis².

¹Miller, W. H., and Jansen op de Haar, B. M. (1987). The Journal of chemical physics, 86, 6213-6220.

²Rakityansky, S. A., et al. (2007). Journal of Physics A, 40, 14857.

Resonance parameters for v = 0

L	$I_{e^{-}}$	Er	Г	<i>E</i> _r	Г
		Current	method	Complex scali	ng + LMM
1	1	-733.9492462	$7.1 imes 10^{-9}$	/	/
2	1	-326.477424	$2.5 imes 10^{-7}$	-326.477 424	/
3	1	-183.862303	$1.98 imes10^{-6}$	-183.862 303	$2 imes 10^{-6}$
4	1	-117.851909	$8.36 imes10^{-6}$	-117.851 909	$8 imes 10^{-6}$

L	$I_{e^{-}}$	Er	Г	<i>E</i> _r	Г
		Current me	ethod	Korob	ov ¹
30	3	-3.6797747877	$9.5 imes10^{-9}$	-3.679 774 787 657 6	$9.5204 imes10^{-9}$
31	4	-3.50763503898	$1.1 imes10^{-12}$	-3.507 635 038 971 01	$1.1 imes 10^{-12}$
32	4	-3.35375787084	$2.1 imes10^{-12}$	-3.353 757 870 833 40	$2.14 imes 10^{-12}$
33	4	-3.21624423907	$2.8 imes10^{-13}$	-3.21624423907002	$2.8 imes 10^{-13}$

Converged nonrelativistic resonance energies and widths for antiprotonic helium (v = 0). Korobov performed **complex-scaling calculations** with a higher number of nonlinear parameters, in sextuple-precision arithmetic (\sim 48-digits numbers), hence achieving a higher accuracy.

¹Korobov, V. I. (2008). Physical Review A, 77, 042506.

Widths for v = 0

- The higher the momentum carried by the electron I_e, the lower the Auger width: the width decreases by several orders of magnitude when I_e increases by one unit
- Auger emission is strongly hindered in states with low Γ, hence they are suited for spectroscopic measurements

Widths for L = 32

L	v	$I_{e^{-}}$		Er	Г
32	0	4	Current	-3.35375787084	2.1×10^{-12}
			Korobov ¹	-3.35375787083340	2.14×10^{-12}
32	1	3	Current	-3.2276763797	$5.45 imes 10^{-9}$
			Korobov ¹	-3.2276763796294	$5.4474 imes10^{-9}$
32	2	3	Current	-3.116679796	$1.398 imes 10^{-7}$
			Korobov ¹	-3.116679795873	$1.3947 imes10^{-7}$

Resonance energies and Auger widths for L = 32, for rovibrational bands v = 0 - 2.

The Auger widths tend to increase as the rovibrationnal number increases.

¹Korobov, V. I. (2008). Physical Review A, 77, 042506.

Conclusion regarding the nonrelativistic description

In this work, the Lagrange-mesh method (LMM) has been combined to

- the complex scaling method $\rightarrow \times$ (lack of flexibility)
- \bullet an explicit scattering approach $\rightarrow \checkmark$
 - simplicity of the LMM is mostly preserved
 - accurate results (Γ up to $\sim 10^{-13}$)

Overall, efficient method that competes well with more complicated ones¹.

However, this **nonrelativistic picture** is limited if comparison to experiments is needed.

 $^{^1}$ Note that resonances in H $^-$ have been described accurately using this method, see arXiv : 2404.04191.

Other properties and corrections

Radiative transitions

The real wavefunction $\Psi^{\pi}_{c,LM}$ can be used to compute several quantities.

The quasibound wavefunction is used for computing E1 transitions¹,

$$\Gamma_{i \to f}^{E1} = \frac{4}{3} \alpha^3 (E_i - E_f)^3 \frac{1}{2L_i + 1} \sum_{M_i M_f \mu} \left| \left\langle \Psi_{c, L_i M_i}^{\pi_i} \right| O_{\mu}^{(1)} \left| \Psi_{c, L_f M_f}^{\pi_f} \right\rangle \right|^2$$

with $O^{(1)}_{\mu}$ a function of the Wigner-*D* matrices and of the perimetric coordinates. The radiative lifetime is defined as

$$\tau_{E1} = \hbar \left(\sum_{\forall \text{ permitted } f} \Gamma_{i \to f}^{E1} \right)^{-1}$$

It can be compared to the Auger lifetime $\tau_{Auger} \sim \hbar/\Gamma$.

¹Pilón, H. O., and Baye, D. (2013). Physical Review A, 88(3), 032502.

Radiative transitions

L	$I_{e^{-}}$	Er	Γ_{E1}
30	3	-3.679774779	$1.28\ \times 10^{-11}$
31	4	-3.507635034	$1.602 imes10^{-11}$
32	4	-3.353757864	$1.795 imes10^{-11}$
33	4	-3.216244232	1.885×10^{-11}
34	5	-3.093466902	$1.898 imes10^{-11}$

Nonrelativistic resonance energies and radiative widths for antiprotonic helium $(L \rightarrow L - 1)$, in the lowest rovibrational band v = 0.

Relativistic corrections

The real wavefunction $\Psi^{\pi}_{c,LM}$ can also be used to compute relativistic corrections.

The leading-order relativistic corrections is derived from the Breit-Pauli Hamiltonian,

$$H_e = -\alpha^2 \left\{ \frac{\mathbf{p}^4}{8} - \frac{\pi}{2} \left[Z_3 Z_1 \delta(\mathbf{r}_{13}) + Z_3 Z_2 \delta(\mathbf{r}_{23}) \right] \right\}.$$

The correction is evaluated perturbatively by computing the mean value of these operators.

Relativistic corrections

L v	Г	$\langle {oldsymbol p}_2^4 angle$	$\langle \delta_{13} \rangle$	$\langle \delta_{23} \rangle$
32 0	$\begin{array}{c} 2.1 \ \times \ 10^{-12} \\ 2.120 \times \ 10^{-12} \end{array}$	30.71821	1.066 497	0.104 457 7
Korobov ¹		30.718284	1.066 498 3	0.104 458 28
33 0	$\begin{array}{rrr} 2.7 & \times 10^{-13} \\ 2.76 & \times 10^{-13} \end{array}$	33.304 85	1.144 395 7	0.095 613 5
Korobov ¹		33.304 865	1.144 396 3	0.095 613 57
33 1	$\begin{array}{rrr} 5.3 & \times 10^{-12} \\ 5.33 & \times 10^{-12} \end{array}$	37.27874	1.263 515	0.083 869 6
Korobov ¹		37.278814	1.263 524 0	0.083 870 45
34 0		36.069 94	1.227 561	0.086 593 3
Korobov ¹		36.069 959	1.227 561 4	0.086 593 37

The obtained accuracy on the corrections is of **at least 5 significant digits**. The results are more accurate as Γ decreases, as the bound-state-like description becomes more appropriate.

¹Korobov, V. I. (2014). Physical Review A, 89(1), 014501.

Conclusion and prospects

Conclusion

- Simple, fast and accurate numerical method for describing theoretically antiprotonic helium and computing the resonance parameters for a wide range of the total angular momentum,
- Validated by very accurate results found in literature, still **powerful despite its high simplicity** (one open-channel, sparse Hamiltonian matrix, double-precision arithmetic), obtaining widths smaller than 10^{-12}

Prospects

- **Improving the accuracy** provided by the method (e.g. going beyond double-precision arithmetic, implementing higher-order relativistic corrections)
- Evaluating radiative transitions and relativistic corrections with the *total* wavefunction Ψ, containing the complex asymptotic functions
- Explore other exotic three-body atoms: pionic helium, kaonic helium