

#### A SACKFUL OF ANTINEUTRONS: A WISHLIST FOR THE SOLUTION OF A FEW OPEN PROBLEMS

Alessandra Filippi INFN Torino



FuPhy24 Workshop Vienna, April 9, 2024

## **Outline of the talk**

- Introduction: state-of-art measurements with low energy antineutrons as probes
  - $\bar{n}$  induced interactions and annihilation dynamics
  - Meson spectroscopy with antineutrons
- Puzzles (at least 4!)
  - Annihilation cross sections on nuclei:  $\vec{n}$ 's vs  $\vec{p}$ 's
  - The shape of (*np*) elastic cross section
  - I=0 vs I=1 sources in  $\overline{NN}$  annihilation
  - The CEX cross section at very forward angles
- Open issues (... many more ...)
  - Dynamical selection rules and the onset of strangeness in annihilation reactions
  - Does baryonium exist?
  - Meson spectroscopy in a gluon-rich environment
    - Channels with open and hidden strangeness



## Why antineutrons?

- $(\overline{n} p)$  is a fixed isospin system: I=1
- $(\overline{p}p)$  contains both the I=0 and I=1 sources
  - $\bar{n}$  's offer a powerful selection rule excluding several initial states and constraining the combination of quantum numbers of intermediate objects/resonances
- The same quantum numbers are featured by the  $(\bar{p} n)$  system formed in deuterium targets
  - PRO's:
    - higher statistics/cross section
    - $\bar{p}$  annihilation can occur at rest,  $\bar{n}$  annihilation always in flight (more initial partial waves involved)
  - CON's
    - The hit neutron in deuteron has a Fermi momentum: the kinematics are not "exactly" closed
    - The recoiling nucleon has a momentum which should be measured
    - The recoiling nucleon can rescatter against the particles produced in the annihilation
    - Additional complication: does the annihilation occur on a proton or a neutron in deuteron?

# **Antineutron beams: a short history**

- $\bar{n}$  from external production targets, dumping a proton beam and separating  $\bar{n}$ 's by means of TOF
  - AGS PS (Brando et al., 1981)
    - Antineutrons from 0.3 to 1 GeV/c

#### Antineutrons from CEX reaction

- Argonne ZGS (Gunderson e al., 1981)
  - CEX on CH<sub>2</sub> production target
  - 1 GeV/c antiprotons
- BNL AGS (Armstrong et al., 1987)
  - CEX on CH<sub>2</sub> production target
  - $\bar{p}$  momentum: 505 and 520 MeV/c
  - *ā* momentum: 100-500 MeV/c
  - Event rate: 0.2  $\overline{n}$  /s

#### • LEAR PS178 (1988)

- CEX on LH<sub>2</sub>
- Tagged  $\bar{n}$  beam
- LEAR beam:  $10^6 \ \overline{p}$  /s

#### The antineutron beam at OBELIX

#### LEAR OBELIX (1990)

- Production Target: CEX on LH<sub>2</sub>
- + 305 and 412 MeV/c  $ar{p}$
- Untagged antineutron beam, collimation, ~0 deg production
- Intensity: 30-60  $\bar{n}\,/10^6\bar{p}$
- Reaction target:  $\overline{n}$  on LH<sub>2</sub> + possible (further downstream) nuclear targets
- 35 million events collected overall





• Iterative search of  $z_c$ 



- CA: direction of  $\overline{n}$
- $p_{\bar{n}}$  from CEX kinematics
- $p_{\overline{p}}$  (known, nominal) decreased by  $\Delta p_{\overline{p}}$  ( $\overline{p}$  slowed down in PT)
  - repeat iteration with updated  $p_p$



#### **n**-antinucleon *total* cross section

#### Total cross sections below 500 MeV/c

- Armstrong et al. (1987)
  - Transmission method with empty/full target
  - Data compatible with a (A+B/p) parametrization

#### • OBELIX Experiment

- Thick target/narrow beam transmission technique
- $\sigma_T$  in the (50-390) MeV/c momentum range
- 10% error
- Good agreement in the overlap region
- Slightly lower than  $\sigma(\bar{p}p)$  below 200 MeV/c





#### $\overline{n}$ -antinucleon annihilation cross sections

#### Annihilation cross sections

- Banerjee et al. (1985): (500-800) MeV/c
  - $LH_2$  bubble chamber,  $\bar{n}$  by CEX
  - $\sigma_{ann} = (55.4 \pm 2.2) \text{ mb}$
- Armstrong et al. (1987):
  - $\sigma_{ann}$  from  $\sigma_{T}$  by subtracting elastic cross section: 15-20% error
  - $\sigma_{ann}$  compatible with (A +B/p)
- Mutchler et al. (1988): same experimental set-up at BNL AGS
  - $\beta \sigma_{ann} = (40 \pm 3) \text{ mb} @ 22 \text{ MeV/c}$
  - $\beta \sigma_{ann} = (32 \pm 5) \text{ mb } @ 43 \text{ MeV/c}$
  - Imaginary part of the spin averaged *S*-wave scattering length
    - $a_1 = (-0.83 \pm 0.07) \text{ fm}$





- OBELIX (1990-1996)
  - Good agreement with Armstrong data
  - 7% normalization error
  - Good fit by ER expansion with *S*, *P*, *D* waves:  $\alpha_D = (4.7 \pm 0.6)\%$



#### $\overline{n}$ -nucleus cross sections

- OBELIX: several nuclear targets placed downstream LH<sub>2</sub>
- Mass number dependence:
  - $x = 0.66 \sim 2/3$ 
    - "normal"  $A^{2/3}$  law, within 2%
  - Annihilation on the nuclear surface
  - Localized hadronic interaction with high cross section
- Momentum dependence:
  - Roughly proportional to 1/eta



$$\sigma_{ann} = \sigma_0(p)A^x = (A + b/p)A^x$$

#### PUZZLE #1: ANNIHILATION CROSS SECTIONS IN NUCLEI AT LOW MOMENTA

- Friedman (2014): the  $\bar{n}A$  annihilation cross section cannot be described by an optical potential which fits well the  $\bar{p}A$  interactions
  - $\bar{n}$ 's are not subject to Coulomb scattering as  $\bar{p}$ 's
  - Interaction modelled through optical potential:
    - $\bar{n}$  data suggest the presence of a sort of Coulomb focusing
- Too few data on  $\bar{p}A$  for a thorough comparison
  - A single data by ASACUSA on *Sn* can be used for the comparison
    - Experimental  $\bar{n}$  Sn cross sections are larger than the corresponding  $\bar{p}$  Sn
- Desirable to have measurements for  $\bar{n}$  and  $\bar{p}$  on the same targets



Friedman, NPA925 (2014), 141



9



## **Open issues: two body annihilation dynamics**

- Several cross sections for selected two-body reactions measured
- Interesting results pointing at dynamical selection rules especially related to the onset of strangeness in annihilation reactions
  - OZI rule violation effects
    - Polarized strange sea quarks?
    - Quark "standard" rescattering?



10

### **Meson spectroscopy in PRODUCTION**

- High statistics study of **exclusive reactions** in many pions final states
  - Background level: < 5%
- Annihilation in 3 charged pions
  - **35118** events in the Dalitz plot
  - Signatures for  $f_0(1500)$ ,  $f_2(1565)$ , and minor stuff



- 26271 events selected
- Signatures for  $f_0(1500)$ ,  $f_0(1300)$ ,  $\rho(1450)$ ,...
- High combinatorial background









#### **Meson spectroscopy in FORMATION**

- On the hunt of baryonium...
- Narrow state observed by E687 in  $6\pi$  diffractive photoproduction
  - m = 1.911 GeV,  $\Gamma$  = 29 MeV,  $J^{PC}$  = 1--
- Further observations by DM2 in  $e^+e^- \rightarrow 6\pi$
- OBELIX: search for a state in formation in the reaction  $\bar{n}p \rightarrow 3\pi^+ 2\pi^+ \pi^0$ 
  - Same mass window
  - Same quantum numbers accessible for annihilation in *S*-wave
  - Several hypotheses for the formation mechanism
  - No signal found
    - Upper limit:  $\sigma < 0.5 \text{ mb}$



PL B527(2002),39

## Total vs annihilation cross sections

- Dip-bump effect observed in *o(np)<sub>TOT</sub>* in the 65-80 MeV/c momentum range
- Smooth trend of  $\sigma(\bar{n}p)_{ann}$
- No set of parameters can describe at the same time both the cross sections
  - Bad fits of  $\sigma_T$  with *ER* expansion
  - Is the irregular behavior of  $\sigma_T$  due to the elastic component?



#### **PUZZLE #2: THE ELASTIC CROSS SECTION**

- Definitely there is an anomaly in the elastic channel
- Can it be due to a quasi-nuclear bound state close to threshold, produced in a  $(\overline{n}p)$  spin-triplet configuration? (Kudryavtsev, Druzijnin)
- Can it be explained following the pattern of a (sort-of) nuclear Ramsauer-Townsend effect?
- The points at 64.5 and 80 MeV/c are close to the lower bound imposed by unitarity on  $\bar{S}$ -wave





## PUZZLE #3: I=0 vs I=1 INTERACTIONS

• From the ratio between  $\sigma_T(\bar{n}p)$  and  $\sigma_T(\bar{p}p)$  the contribution to the annihilation of the I=0 and I=1 sources can be deduced

$$R = \frac{\sigma_T(\bar{p}p)}{\sigma_T(\bar{n}p)} = \frac{\sigma_T(l=0) + \sigma_T(l=1)}{2\sigma_T(l=1)}$$

- Experimental facts:
  - Strong dominance of the I=0 component at low momentum
    - Due to coherence of the central and tensor terms of the  $\overline{N}N$  medium range force (Dover et al.)
      - $\sigma_T(I=0)/\sigma_T(I=1)$ :
        - (2.5±0.4) @ 70 MeV/c
        - (1.1±0.1)@300 MeV/c
  - Same behavior for the annihilation cross sections:  $\sigma_{ann}(\bar{n}p) < \sigma_{ann}(\bar{p}p)$ 
    - The *I*=1 source is always weaker than *I*=0
      - σ<sub>ann</sub>(I=0)/σ<sub>ann</sub>(I=1): (2.4±0.4) @ 70 MeV/c
      - BUT at 700 MeV/c the ratio becomes 1.5!



## **Open problem: total CEX cross section**

- Few measurements exist at low momenta: wide disagreement!
  - Hamilton et al. (1980):
    - Close to threshold: typical trend for endothermic reactions
  - Brückner et al. (1987):
    - Close to threshold: linear decrease
- More data would be desirable



#### PUZZLE #4: DIFFERENTIAL $\sigma_{CEX}$

- Few measurements exist and mostly at high momenta:
  - In the full angular range:
    - PS199 (1995): 693 MeV/c (○), 875 MeV/c (●)
    - Nakamura et al. (1978): 780 MeV/c (▲)
  - At 0°:
    - Brückner et al. (1987): 183, 287, 505 and 590 MeV/c
    - OBELIX: indirect "backward" estimation, 99-400 MeV/c
      - ~ 4 mb/sr
      - Compatible with a standard endothermic reaction, similar to Hamilton's total cross section
      - Comparison with other data:
        - OK with Bruckner's at 300 MeV/c total disagreement at 183 MeV/c and other momenta
        - Nakamura? Too large momentum...





18

#### **Open problems in meson spectroscopy:** *I=2* **states?**

- No hints were found for a  $I{=}2$  state decaying into  $\rho\rho$ 
  - Only one observation in PDG in  $e^+e^- \rightarrow \rho^0 \rho^0$ , without a similar signal in  $e^+e^- \rightarrow \rho^+ \rho^-$
  - Mass ≈1600 MeV, 300 MeV wide
  - $J^{PC} = 2^{++}$
  - Some (unsuccessful) attempts were made to extract this component in the analysis of the  $5\pi\,{\rm channel}$ 
    - Too low statistics (and too difficult to disentangle)
- Some statistical indications for a I=2 state in  $\pi^+\pi^+$  at m=1420,  $\Gamma$ =160 MeV, with  $J^{PC} = 0^{++}$ 
  - Very small branching fraction: 4×10<sup>-3</sup>
  - Needs confirmation

#### OBELIX, PL B495 (200), 284



## **Open issues in meson spectroscopy with kaons:** $\bar{n}p \rightarrow K^+K^-\pi^+$

- Related to the production of strangeonium states (many still needing confirmation), glueballs decay into strange quarks, ...
  - Hidden strangeness resonances decaying in  $K^+K^-$ 
    - $J^{PC} = (even)^{++}$  or  $(odd)^{--}$ 
      - $f_0, f_2, a_0, \varphi$  and radial excitations
  - open strangeness radial excitations:  $K^*$ ,  $K_0$ ,  $K_1$ ,  $K_2$ , ...
- OBELIX: exclusive final channel
  - **241** events fully identified by means of dE/dx and  $\beta$  + 4C kinematic fit
  - Very clean sample but too small!



### **Open issues in meson spectroscopy with kaons:** $\bar{n}p \rightarrow K^o_s K^o_s \pi^+$

- $K^0_{\ S} K^0_{\ S}$ :  $J^{PC} = (even)^{++}$
- Possible intermediate resonant states:
  - No  $\varphi$  nor  $1^{--}$  strangeonium states
  - $f_0, f_2$  produced only from initial states with G = -1 $({}^1S_0, {}^3P_1, {}^3P_2)$
  - *a*'s produced only from initial states with G = +1
- OBELIX: mass selection for  $K_s + 6C$  kinematic fit
  - 687 events selected
  - K\*+ peak needs better identification (vertexing, ...)



## **Open issues in meson spectroscopy with** kaons: $\bar{n}p \rightarrow K^{\theta}{}_{L}K^{\pm}\pi^{\mp}\pi^{+}$

- Related to the long-sought *E/1*-puzzle
  - Search for intermediate states decaying in  $\overline{K}K\pi$
  - State-of-art:
    - Two pseudoscalar states
      - $\eta(1400-1420) \to a_0 \pi, \ \eta \pi \pi$
      - $\eta(1500) \rightarrow K\overline{K}\pi$
    - One axial state
      - $f_1(1420) \rightarrow K\overline{K}\pi$
  - Channel produced only by *P*-waves for *G*-parity conservation
    - Axial states production potentially favored
    - $K^0K^{\pm}$  systems have  $I^G = 1^+$ :  $a_0$ ,  $a_2$ ,  $\rho$



## "Educated" wishlist

- To solve a view puzzles left open rather simple experimental set-ups would be needed
  - Differential elastic and total cross sections
    - Tagged  $\bar{n}$  beam with a production (CEX) target and a scatterer
    - Compact neutron detector (fibre-based?)
    - Small experimental set-up (less than 1 m long)
  - Systematic measurement of  $\sigma_{ann}(\bar{n}p)$  and  $\sigma_{ann}(\bar{p}p)$  from 700 down to 50 MeV/c
    - Non-magnetic set-up
    - Good angular coverage
    - Production target for antineutrons
    - Reaction target(s): same vessel for  $LH_2$  (down to 200 MeV/c),  $GH_2$  at lower momenta
  - Meson spectroscopy
    - More intense  $\bar{n}$  beam required (at least a factor of 10)
    - Powerful and full coverage magnetic detector for all the annihilation products



## Conclusions

- A good amount of physics results was obtained for the first time using antineutrons as probes, a few puzzles remained open
  - Trend of elastic cross sections close to threshold
  - *I*=0 vs *I*=1 annihilation sources
  - Trend of  $\sigma_{\rm CEX}$  at 0 degrees close to threshold
  - Comparison of annihilation cross sections of low momentum  $\bar{n}\,{}^{\prime}{\rm s}\,{\rm vs}\,\bar{p}\,{}^{\prime}{\rm s}$  on nuclear targets
  - Meson spectroscopy with kaons in the final state
- Wish: possibility to study some of these items at forthcoming new facility!



#### Varenna 2004

International Enrico Fermi School of Physics



In memory of Tullio and Helmut