

Trento Institute for Fundamental Physics and Applications

Prospects from a cold antideuteron beam in AD/ELENA

an initial excursion

R. Caravita* *INFN – TIFPA, Trento (IT)

The Antimatter Experiment: Gravity, Interferometry, Spectroscopy (**AEgIS**) collaboration aims at performing direct experimental tests of the Weak Equivalence Principle (**WEP**) using **anti-atoms**.

The chosen method is the **direct detection of the free-fall trajectory** of antihydrogen atoms, produced in a **pulsed** way

The CERN accelerator complex Complexe des accélérateurs du CERN

AEgIS research lines

Recent achievements: efficient catching from ELENA

Client-Server asynchronous architecture

- 5T catching trap controller in a continuous accumulation and listen for messages loop
- 1T interaction trap controller runs custom experimental sequences and allows debugging

Achievements

- Stable operation for weeks in constant accumulation
- While constantly accumulating, we reached up to ~100 million antiprotons in our traps

Recent achievements: antiprotonic atoms formation

Achievements

- Procedure for controlled gas injection and cleaning
- Technique to trap the positive ions resulting from antiproton interactions with the rest gas target
- Time-of-flight spectroscopy of trapped positive ions

This technique leads to

- Fully stripped and highly charged ions in Penning traps
- TOF spectroscopy of annihilation fragments
- Produce short-lived nuclei directly in Penning traps
- Interact antiprotons with ³He

Releasing ions towards MCP

Efficient in catching and tunable in thickness ...

... our apparatus is ready to accumulate two antimatter species (tested with antiprotons & e⁺/H⁻) ...

... we have an established technique to interact antiprotons with gases ...

... if we would receive antideuterons like H⁻, we would be ready from time 0 to do experiments with them

TRAPPED ANTIDEUTERONS

Antideuteronic atoms

- Mix dbar and protons obtained by H⁻ stripping (dbar p) Mix dbar and low-Z nuclei by buffer gas (X-ray) Mix dbar and high-Z nuclei from anionic sources (see next)

Mix dbar and high-Z nuclei from anionic sources

n	Z = 30	3 = 60	3 = 90
21 - 20			0.448
20 -+ 19			0.605
19 - 18			0.830
18 - 17		1	1.16
17 + 16		0.327	1.65
16 - 15		0.476	2.41
1 5 → 14		0.712	
14 → 13		1.10	
13 → 12		1.74	
12 - 11	0.180	2.89	
11 - 10	0.313		
10 - 9	0.574		
9 → 8	1.13		
B → 7	2.42		

Antideuteronic atoms with high Z

 Polarization of the dbar induces observable line shifts (part-per-mil): observable in the X-ray cascade

<u>TABLE</u> : Relative line shift X due to the polarizability of the antideuteron. Units : %oo. Dotted lines show where break-up or absorption is expected to set in.

[1] G. Baur, The break-up of antideuterons in the Coulomb field of the nuclei[2] T. E. O. Ericson and P. Osland, Polarization break-up of antideuterons in the nuclear Coulomb field

Mix dbar and high-Z nuclei from anionic sources

Antideuteronic atoms with high Z

- Polarization of the dbar induces observable line shifts (part-per-mil): observable in the X-ray cascade
- For heavy nuclei, the antideuteron dissociated by Coulomb interaction before it reaches the nucleus

$$\begin{split} E_{\bar{d}} &= -13.6\,\mathrm{eV}\,\frac{\mu_{\bar{d}}}{\mu_e}\frac{Z^2}{n_{\bar{d}}^2} = 50\,\mathrm{keV}\,\frac{M+m_e}{M+m_{\bar{d}}}\,\frac{Z^2}{n_{\bar{d}}^2} \\ E_{\bar{p}} &= -13.6\,\mathrm{eV}\,\frac{\mu_{\bar{p}}}{\mu_e}\frac{Z^2}{n_{\bar{p}}^2} = 25\,\mathrm{keV}\,\frac{M+m_e}{M+m_{\bar{p}}}\,\frac{Z^2}{n_{\bar{p}}^2} \end{split}$$

$$E_{\bar{n}} = -|\epsilon_b| - |E_{\bar{d}}| + |E_{\bar{p}}|$$

$$E_{\bar{n}}^{(90)} = 1.0 \div 1.8 \,\mathrm{MeV}$$

 $E_{\bar{n}}^{(30)} = 2.5 \div 2.8 \,\mathrm{MeV}$

a technique to produce MeV antineutrons.

[1] G. Baur, The break-up of antideuterons in the Coulomb field of the nuclei[2] T. E. O. Ericson and P. Osland, Polarization break-up of antideuterons in the nuclear Coulomb field

Switchyard and anionic source for negative iodine

TRAPPED ANTIDEUTERONS

Antideuteronic atoms

- Mix dbar and protons obtained by H⁻ stripping
- Mix dbar and low-Z nuclei by buffer gas
- Mix dbar and high-Z nuclei from anionic sources

Antideuteron

- Measure precisely the dbar mass
- Measure the magnetic moment
- Measure the binding energy

Synthesize heavier antinuclei

Fuse antideuterons together

Antideuterium

- Form and trap Dbar
- Test CPT by Dbar spectroscopy
- Test the WEP by free-falling Dbar

Anti-deuterium (\overline{D}) should also become available for experiment in future, and offers further opportunities for complementary tests [38]. In terms of Lorentz and CPT violation as parametrised by the SME, its spectrum would be sensitive to SME couplings involving the antineutron as well as the antiproton [115],

Table 4.1 The antimatter particles and bound states discussed in this chapter, together with their electric charge and B - L quantum number, the type of fundamental principles which they enable to be tested, and the types of experiments possible. WEPff and WEPc, as defined in Chap. 1, refer to the universality of free-fall and the universality of clocks respectively. AI denotes atomic matterwave interferometry. We have only shown this in the table for the neutral antihydrogen, although AI experiments with other species may also be feasible

Species	Q, B-L	Tests	Experiments
\overline{p}	-1, -1	CPT, WEPc, Lorentz	Traps
d	-1, -2	CPT, WEPc, Lorentz	Traps
e+	1,1	CPT, WEPc, Lorentz	Traps
Ħ	0,0	CPT, WEPc, WEPff, Lorentz	Spectroscopy, AI, free fall
D	0 -1	CPT, WEPc, WEPff, Lorentz	Spectroscopy, free fall
\overline{H}^+	1,1	CPT, WEPc, Lorentz	Traps
H_2^-	-1, -1	CPT, WEPc, Lorentz	Traps, Spectroscopy
Mu	0,0	WEPc, WEPff, Lorentz	Spectroscopy, free fall
Ps	0,0	WEPc, WEPff, Lorentz	Spectroscopy, free fall
$He^+\overline{p}$	0,2	CPT, WEPc, Lorentz	Spectroscopy
	Enclosed to be a first second s	The second se	A REAL PROPERTY AND

M. Charlton et al., Antihydrogen and Fundamental Physics,

Lorentz and CPT tests with hydrogen, antihydrogen, and related systems

V. Alan Kostelecký and Arnaldo J. Vargas Physics Department, Indiana University, Bloomington, Indiana 47405, USA (Dated: IUHET 592, June 2015)

Some theoretical insights

- Antideuterons can be a tool to set constraints on SME coefficients not accessible by other means in the antineutron sector
- Antideuterium has a net B L charge: in principle can be used to test gauged B – L interactions (stringent tests with matter already there) or other B – L interactions specific of antimatter (subject to be deepened)

Further theoretical investigation is required to work out the full list of coefficients constrained by antideuteron/antideuterium experiments.

Assumptions

Cross-section: 100 mb at 160 keV (c.m) dbars in trap (24 h at 1000 /shot): $3.6 \cdot 10^5$ Plasma volume: 10 cm $\cdot \pi$ (1 mm)²

E(CM) /keV

$$\bar{d} + \bar{d} \rightarrow \overline{{}^{3}He} + n$$

 $\bar{d} + \bar{d} \rightarrow \overline{{}^{3}H} + p$

$$R_{\bar{d}\bar{d}} = \frac{N_d^2}{V_{trap}} \, \sigma \, v_{rel} \approx 2.0 \, {\rm evt/day}$$

Motivates a study of "hot storage" for long periods of time

Production rate and momentum from exp. data

- Absolute production cross-section at 30 GeV in fixed target experiments estimated at 10 nb / (sr · GeV/c)
- Three orders of magnitude higher dbar yield at 200 GeV compared to 20 GeV (unfortunately unaccessible at PS)
- Momentum distribution peaked at the center-of-mass momentum: antideuterons formed at rest in the c.-m. by coalescence of pbar and nbar
- At 26 GeV incoming protons, secondary momentum is a broad peak centered at 7 GeV/c with moderate dependence on the target material

Production mechanism

- For E < 30 GeV: cascade model of [2]
- For E > 100 GeV: nucleon-nucleon collisions

CERN-PS proton beam						
Energy	26 GeV					
Bunches	5					
p delivered	1.75 · 10 ¹³					

Production thresholds					
p 5.6 GeV					
d	16 GeV				
³ He	28 GeV				
⁴ He	45 GeV				

Ε _ρ	Z _{target}	Obs. K'	Calc. K'
26 GeV	9	7 GeV/c	9.5 GeV/c
70 GeV	9	17 GeV/c	16.7 GeV/c
200 GeV	9	30 GeV/c	28.8 GeV/c

[1] H. Koch, 10.1007/bf02398657[2] S. T. Butler, C. A. Pearson, 10.1103/physrev.129.836

Antideuterons production: the cascade model

Cascade model

- The proton initiates a hadronic cascade including baryons and antibaryons
- Antiproton and antineutrons of small relative momentum coalesce into an antideuteron
- Nuclear scattering contribution
- Connection between momentum distribution of (anti)deuterons and (anti)protons at a given angle

Consequences

- A-dependance of the dbar production rate: Be and Al better target choices than Ir
- The production maximum momentum for antideuterons is always twice the maximum for antiprotons

2

4

6

Ir

8

 R_0 (fm)

[1] S. T. Butler, C. A. Pearson, 10.1103/physrev.129.836

Expected antideuterons production from the AD target

						Ep	Z _{target}	K' _{pbar}	K' _{dbar}
Source		Pine (GeV/c)	Psec (GeV/c)	PT (GeV/c)	Lab. angle	70 GeV	27	13.7 GeV/c	27.4 GeV/c
Antipov et al [10]	n-Al	70	13.3	0.6	ung-	52 GeV	27	11.5 GeV/c	23.0 GeV/c
O Binon et al. [11]	p-Al	52	18.7		0°	43 CoV	27	10.2 GoV//c	20.5 GoV/c
O Binon et al.	p-Al	43	15.5		0°	43 06 0	21	10.2 Gev/c	20.3 Gev/c
▼ Dorfan et al. [2]	p-Be	30	5	0.4	<i>(</i> 0	30 GeV	9	5.3 GeV/c	10.5 GeV/c
× Massam et al. [3]	р-Ве	19.2	2.5		0	19.2 GeV	٩	4.0 GeV/c	8 1 GeV/c

Antiproton equivalent

Interpolated value for 26 GeV/c primary, 3.5 GeV/c secondary: $\frac{R_{\bar{d}}}{R_{\bar{p}}} = 4 \cdot 10^{-6}$ (in beryllium, a bit pessimistic as the peak is at 4.8 GeV/c)

Flux estimation from the AD target

- Produced antiprotons 40 · 10⁶ shot⁻¹
- Factor of 1/3.8 Be-Ir conversion
- Expected flux: 42 dbar shot⁻¹
- Peak momentum: 11.4 GeV/c

Ep	Z _{target}	K'	Yield
26 GeV	9	4.85 GeV/c	3.8
26 GeV	27	7.43 GeV/c	2.9
26 GeV	192	11.4 GeV/c	1

To be re-evaluated from Monte Carlo

[1] C. D. Johnson, T. R. Sherwood, 10.1007/bf02398658

Expected antideuterons production from the AD target

						Anti	iproton equ	ivalent -		-		-
Ra						4	.p. o to o qo		Ep	Z _{target}	K' _{pbar}	K' _{dbar}
Rạ .	79 20	A 1	Source		p_{inc} (GeV/c)	P_{sec} (GeV/c)	PT (GeV/c)	Lab. angle	70 GeV	27	13.7 GeV/c	27.4 GeV/c
104	2	AI	Antipov et al. [10]	p-Al	70	13.3	0.6		52 GeV	27	11.5 GeV/c	23.0 GeV/c
1	2		O Binon et al. [11]	p-Al	52	18.7		0°	43 GeV	27	10.2 GeV/c	20.5 GeV/c
	Be	AI	 ✓ Dorfan et al. [2] 	p-Ai p-Be	30	5	0.4	<u> </u>	30 GeV	9	5.3 GeV/c	10.5 GeV/c
10 -			× Massam et al. [3]	р-Ве	19.2	2.5		0	40.0.001		1 GeV/c	8.1 GeV/c
10 ⁷ - 10 ⁸ -	Be	 Very small Biasing of antiproto much be Status ~1 	an cross-section can be applied or on/antineutron pro enefit for rare pro	nly to a oductio cesses	an initial p on), and tl s: 10 ¹³ sin 10 ⁴ antine	eutrons in	astic proc s everythi articles ar 3 days. F	es way cess (ind ing altog e neede	cluding gether w ed escence	ithout	· · 10 ⁻	-6
" E	10 20 30 40 50	-	processes 10 ⁶ of	feach	species a	re neede	d (moving	g to a se	rver farn	n)		Yield
			• Prod	uced a	ntiproton:	<u>s 40 · 10º</u>	SNOT	26 Ge	eV 9	4.8	35 GeV/c	3.8
			FactorExpension	cted fl	ა.ө ве-т ux: 42 db	ar shot-1	וזנ	26 Ge	eV 27	7.4	43 GeV/c	2.9
			Peak	mome	entum: 11	.4 GeV/c		26 Ge	eV 192	2 11	.4 GeV/c	1

To be re-evaluated from Monte Carlo

[1] C. D. Johnson, T. R. Sherwood, 10.1007/bf02398658

Some flux orders of magnitude for trapped antideuteron experiments

Experimental scheme	Impact	Min. est. d flux
d charge-to-mass ratio in Penning trap d magnetic moment in Penning trap	d mass and binding energy, CPT/Lorentz test with d/\bar{n} d magnetic moment, CPT/Lorentz test with d/\bar{n}	0.01 d shot^{-1} 0.01 d shot^{-1}
d – buffer gas mixing in a nested trap	Low-Z d-atoms observation	$1 \text{ d} \cdot \text{shot}^{-1}$
	Low-Z d-atoms X-ray cascade	$10 \overline{d} \cdot \text{shot}^{-1}$
\bar{d} – anion mixing with laser photodetachment	High-Z d-atoms observation	$1 \overline{d} \cdot shot^{-1}$
	High-Z d-atoms X-ray cascade, low-energy n detection	$10 \overline{d} \cdot \text{shot}^{-1}$
$\overline{\mathbf{d}} - \overline{\mathbf{e}}^+$ in nested trap	Formation of D	$100 \text{ d} \cdot \text{shot}^{-1}$
$\bar{d} - \bar{e}^+$ mixing in spectroscopy trap	D trapping and spectroscopy, CPT/Lorentz test with D	$1000 \overline{\mathrm{d}} \cdot \mathrm{shot}^{-1}$
$\overline{d} - \overline{e}^+$ mixing in vertical trap	Gravity with \overline{D} , constraints on long-range $B - L$ forces	$1000 \mathrm{d} \cdot \mathrm{shot}^{-1}$
d–d fusion in a Malmberg/Penning trap	Formation of ³ He and ³ H antinuclei	$1000 \text{ d} \cdot \text{shot}^{-1}$
d–p̄ fusion in a Malmberg/Penning trap	Formation of the ³ He antinucleus	$10000~\bar{d}\cdot \rm{shot}^{-1}$

Table I: Summary of the prospects enabled by experimental schemes employing cold antideuterons and estimate of the required flux

R. Caravita, Perspectives from a cold antideuteron beam in the AD/ELENA facility, arXiv

Wrapping up

Experiment prospects:

Technologies from experiment-side are very developed

Production prospects

- From the current target, ~42 dbar shot⁻¹ at 11.4 GeV/c
- Increase possibility by going to lower Z targets
- Detailed Geant4 simulation is a necessity: in progress

Physics prospects

- Physics prospects of testing CPT already with less than 1 /shot
- Detecting antideuteronic atoms requires fluxes of at least 10 /shot
- Complementary to antihydrogen: more theoretical insight is required

Machine operation

- Would need operation diagnostics for very small number of particles
- Background of antiprotons most likely present: to be estimated
- Machine tuning is most likely very challenging: tuning with pbars? A guiding deuterium beam? A lot of open questions

an initial excursion

THANKS FOR THE ATTENTION

