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Ab-Initio (from the beginning) Nuclear Theory

• Goal: Solving the Schrodinger equation (SE) for an A-body system:

ȁ𝐻 𝜓𝐽𝜋𝑇 >= ȁ𝐸 𝜓𝐽𝜋𝑇 >

• Nucleons are considered as point-like particles.

• The SE is solved by considering two and many-body interactions 
between nucleons
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Complexity of 
scattering 
problem

Complexity of 
many-body 
solution Both

≠ 𝑛, 𝑝 particles 
interacting with strong 
force (𝑀ℎ ≫ 𝑀𝑛,𝑝)

𝑀ℎ ≤ 𝑀𝑛,𝑝
Credits H. Lenske

 Nuclear theory is data 
driven.

 Global optical models (𝑁𝑁 or 
𝑁 ҧ𝑝 or 𝑁𝜋 scattering) are not 
applicable to exotic systems.

Research axis: Complex reactions with s- and p-shell nuclei



Building block - Chiral EFTs
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Importance

☺ High quality nuclear interactions (at N3LO).
 Various fits and successes.
 Weinberg PC wrong: no renormalizability.
☺ Correct power counting: active research

A. Tichai, et. al. Front. Phys. 8, 164 (2020)

Weinberg ‘90’91’92 Ordóñez and vK ’92 etc…

1. Development of improved power counting ⟶
high-precision/high-orders.

2. Stability of p-shell nuclei.

3. How does chiral expansion perform under 
forthcoming LQCD data? 

Friar ’97

𝒪(1)

𝒪(𝑄/𝑀ℎ𝑖)



Building block - Pionless EFT

5

1. High-precision pionless EFT for ab initio nuclear 
studies.

2. Stability of p-shell nuclei (NLO).
3. Pionless EFT in the many-body sector: mass reach.

4. Pionless EFT for antinucleon systems /hypernuclei ?

H.-W. Hammer, S. König, and U. van Kolck Rev. Mod. Phys. 92, 025004 (2020)

Importance From LQCD to nuclear 𝜋EFT

𝒪(1)

𝒪(𝑄/𝑀ℎ𝑖)

𝒪(𝑄2/𝑀ℎ𝑖
2 )

☺ Renormalizable, connection to LQCD.
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Despite significant disparities, old models,
evaluation (PWA), and Chiral EFT
parametrization yield similar agreements in
integrated cross-sections.

𝑁ഥ𝑁 strong integral cross sections for DR2 (dashed 
dotted line), KW (dashed line) and Paris 2009 (solid 
line) optical models, and the Nijmegen Partial Wave 
analysis.

𝑁ഥ𝑁: agreement to data

J. Carbonell et al. Eur. Phys. Jour. A 59 (2023)
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• Old models and evaluations, which were primarily fitted to
intermediate energy data, may display significant discrepancies
in partial wave content.

• Need for low-energy measurements ( Τ𝑑𝜎
𝑑Ω , 𝐴𝑦 etc…)

𝑁ഥ𝑁 phase-shifts comparison between two models (Paris 2009 and Kohno-
Weise) and Partial Wave Analysis (PWA) of Nijmegen (data evaluation).

𝑁ഥ𝑁: phase-shift analysis

J. Carbonell et al. Eur. Phys. Jour. A 59 (2023)
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Problems:

• 𝑁ഥ𝑁 low-energy parameters (scattering
length 𝑎 and effective range 𝑟0) are weakly
constrained by the present data.

• Nijmegen evaluation do not extrapolate to
potential models [unlike in 𝑁𝑁 case].

𝑁ഥ𝑁: low-energy limit 



𝑁ഥ𝑁: Effective Range Expansion parameters and protonium data
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T=0 𝟏𝟏𝑷𝟏
𝟏𝟑𝑷𝟎

𝟏𝟑𝑷𝟏
𝟑𝑷𝑭𝟐

Nijm*
−3.34
− 1.22𝑖

9.3
− 1.2𝑖

−3.06
− 7.23𝑖

−1.7
− 1.5𝑖

4.36
− 0.00𝑖

−3.5
− 0.0𝑖

-- --

Jülich
−2.87
− 0.36𝑖

--
−2.83
− 7.82𝑖

--
4.61
− 0.05𝑖

--
−0.74
− 1.13𝑖

--

Paris 09
−3.62
− 0.34𝑖

3.8
− 0.8𝑖

−8.78
− 4.99𝑖

0.23
− 1.1𝑖

5.12
− 0.02𝑖

−3.4
− 0.02

−0.49
− 0.87𝑖

--

KW
−3.36
− 0.62𝑖

3.7
− 1.6𝑖

−8.83
− 4.45𝑖

0.25
− 0.97𝑖

4.73
− 0.08𝑖

−3.5
− 0.1𝑖

−0.46
− 1.09𝑖

--

DR2
−3.28
− 0.78𝑖

4.2
− 2.3𝑖

−8.53
− 3.50𝑖

0.63
− 1.0𝑖

5.14
− 0.09𝑖

−3.4
− 0.1𝑖

−0.59
− 0.85𝑖

--

Nuclear 
shifted levels

Coulomb
+Nuclear

𝑝 ҧ𝑝
state

Exp
Paris 
2009

Jülich KW

1𝑆0
0.493(92)
− 𝑖 0.732(146)

0.92
− 𝑖 0.67

0.50
− 𝑖 0.71

0.57
− 𝑖 0.77

3𝑃0
−5.68(123)
− 𝑖 2.45 (49)

−2.74
− 𝑖 2.46

−0.32
− 𝑖 3.85

−2.81
− 𝑖 1.99

• Qualitative agreement for some waves but accuracy do not
exceed 10%

• Low-energy theories need high accuracy at and below
threshold

No agreement between average value
extracted from atomic data and 𝑁ഥ𝑁Scattering length and effective range over the years, same data.
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Fitting S-matrix components when the number data points is low, may lead
to ambiguities, e.g. limit where a wave is totally absorptive and do not
contribute to the elastic/c.e. cross-section. Alternative fits reproduced
equally well the data (overfitting!).

𝑁ഥ𝑁 inelasticities extracted from data (PWA).

𝑁ഥ𝑁: an example of issues to address 

J. Carbonell et al. Eur. Phys. Jour. A 59 (2023)
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We can upgrade antediluvian 𝑁ഥ𝑁 models to
match the most accurate PWA.

Yet:

1. Impossible to reproduce P-waves.

2. Unreliable extension of the partial wave
analysis to low-energy.

3. Not enough information on subthreshold
states.

𝑁ഥ𝑁: Needs for new fit with uncertainty quantifications from 𝐴 > 2 − 3 propagation

Modern Nucleon-Nucleus optical potentials come 
with uncertainty quantifications, which reflect the 
measurements uncertainties and the limitation of the 
functional form of optical model

C. D. Pruitt et al. Phys. Rev. C 107 (2023)



Ab-Initio No-Core Shell Model (NCSM)

• Suitable for studying static properties of nuclei like the energy spectrum.

• In the NCSM, the wavefunction of the A-body system is expanded using A-body Harmonic 
oscillator (HO) basis, e. g., for A=2:
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No-Core Shell Model

ℏΩ

Expansion coefficients    
(unknown) Basis states

𝑁𝑚𝑎𝑥 = max 2𝑛 + 𝑙Ψ𝑁𝐶𝑆𝑀
(𝐴)

= ෍

𝑛,𝑙,𝑠

𝑐𝑛,𝑙,𝑠 ȁ ۧ𝑛 𝑙 𝑠 𝐽𝜋𝑇



Example of No-Core Shell Model calculation: Quasi-bound states
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Quasi-bound states (in MeV) obtained from Kohno-Weise 𝑁ഥ𝑁 potential using NCSM.
Results are obtained using 𝑁max = 200 and ℏ𝜔 = 20. 

Channel 𝑝ത𝑛 𝑛ത𝑛

1S0

_____ _____

3SD1 _____ −110 − 379𝑖

3P0

_____ _____

3PF2

_____ −242 − 345𝑖



Example of No-Core Shell Model calculation: Scattering

Real part of 1S0 ҧ𝑝𝑛 scattering phaseshift calculated using Complex Scaling method with 𝜃 = 20° and 𝑛𝑟 = 450.
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NCSM + Resonating Group Method (NCSM/RGM)

• RGM can be used for studying nuclear reaction as well as nuclear structure.

• The A-body system is considered as two clusters, i.e., projectile and target.

• The A-body wavefunction is taken to have the following form:

Ψ𝑅𝐺𝑀
(𝐴)

=෍

𝑣

𝑔𝜈 𝑟

𝑟
ተ ංቍቌቀห ൿ𝛼 𝐼1

𝜋1 𝑇1 ൱อ ඁ
1

2

1

2
𝑠 𝑌𝑙 𝜃, 𝜑 𝐽𝜋𝑇
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Relative Target
Projectile

Relative 
(angular part)

𝑟



NCSM + Resonating Group Method (NCSM/RGM)

The Hamiltonian (neglecting the three-body force) can be written as:

The RGM equation then becomes:
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𝐻 = 𝑇𝑟𝑒𝑙(𝑟) + ത𝑉𝑐 𝑟 + 𝐻𝑡𝑎𝑟 +෍

𝑗=1

𝐴−1

(𝑉𝑗𝐴
𝑠 (𝑟𝑗𝐴) + 𝑉𝑗𝐴

𝑐 𝑟𝑗𝐴 ) − ത𝑉𝑐 𝑟

൫𝑇𝑟𝑒𝑙 𝑟 + ത𝑉𝑐 𝑟 ൯−(𝐸 − 𝐸𝜈
𝛼1)

𝑔𝜈 𝑟

𝑟
+෎

𝜈′

නⅆ𝑟′𝑊𝜈𝜈′ 𝑟, 𝑟
′
𝑔𝜈′ 𝑟

′

𝑟′
= 0

Contribution of interaction 
between target and projectile

Target (binding) energy−𝑍e2

𝑟



Solving Method: R-Matrix
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For illustration, we consider a two body spinless system with a local potential:

൫𝑇𝑙 + 𝑉𝑐 + 𝑉𝑠 − )𝐸 ห𝑢𝑙 ۧ(𝐸) = 0

We then add the Bloch operator ℒ 𝐵 to both sides:

ቀ𝑇𝑙 + 𝑉𝑐 + 𝑉𝑠 − ൯𝐸 + ℒ 𝐵 ห𝑢𝑙 ۧ(𝐸) = ℒ 𝐵 ห𝑢𝑙 ۧ(𝐸) , ℒ 𝐵 =
ℏ2

2𝜇
𝛿 𝑟 − 𝑎

ⅆ

ⅆ𝑟
− 𝐵

For 𝑟 outside the range of the potential, one can write the right hand side as:

ℒ 𝐵 ห𝑢𝑙 ۧ(𝐸) = ℒ 𝐵 ቚ𝑢𝑙
𝑒𝑥𝑡 ۧ𝐸 ∝ 𝐼𝑙 𝑘𝑟 + 𝑆𝑙 𝐸 𝑂𝑙 𝑘𝑟

Channel 
radius

Arbitrary
parameter



Solving Method: R-Matrix

We then expand the internal wavefunction using the lagrange basis:

ห𝑢𝑙
𝑖𝑛𝑡 >=෍

𝑗
𝐴𝑗 ቚ ൿ𝑓𝑗

The R-Matrix (setting 𝐵 = 0) can be defined as:

𝑅𝑙 𝐸 =
𝑢𝑙 𝑎

𝑎 𝑢𝑙
′ 𝑎

=
𝑢𝑙
𝑖𝑛𝑡 𝑎

𝑎 𝑢𝑙
𝑒𝑥𝑡′ 𝑎

=
ℏ2

2𝜇𝑎
෍

𝑖,𝑗

𝑛𝑠
𝑓𝑖 𝑎 𝐶−1 𝑖𝑗𝑓𝑗 𝑎

𝐶𝑖𝑗= 𝑓𝑖 (𝑇𝑙 + 𝑉𝑐 + 𝑉𝑠 − ൯𝐸 + ℒ 0 𝑓𝑗

Some algebra gives:
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𝑆𝑙 𝐸 = e2𝑖𝜙𝑙
1 − 𝐿𝑙

∗𝑅𝑙 𝐸, 0

1 − 𝐿𝑙𝑅𝑙 𝐸, 0



Numerical Challenges

൫𝑇𝑟𝑒𝑙 𝑟 + ത𝑉𝑐 𝑟 ൯−(𝐸 − 𝐸𝜈
𝛼1)

𝑔𝜈 𝑟

𝑟
+෎

𝜈′

නⅆ𝑟′𝑊𝜈𝜈′ 𝑟, 𝑟
′
𝑔𝜈′ 𝑟

′

𝑟′
= 0

19

Still considerable at 
large 𝑛, 𝑛′

𝑊𝜈𝜈, 𝑟, 𝑟
′ = ෍

𝑛𝑛′

𝑁max

𝑅𝑛′𝑙 𝑟
′ 𝑅𝑛𝑙 𝑟 𝜙

𝜈′𝑛′
𝐽𝜋𝑇

𝑉𝐴,𝐴−1 𝜙𝜈𝑛
𝐽𝜋𝑇

Convergence and other
numerical issues

ቤ ඀𝜙𝜈𝑛
𝐽𝜋𝑇 ≡ ȁ ൿ𝛼1𝐼1

𝜋1𝑇1 ȁ ඀
1

2

1

2
𝑠 𝑌𝑙 𝜃, 𝜑

𝐽𝜋𝑇

𝑅𝑛𝑙 𝑟𝐴,𝐴−1

Harmonic
oscillator

wavefunctions



Numerical Challenges

Real part of the RGM potential for antineutron-deuteron system in 2S1/2 channel before and after regularization.
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• A very high 𝑁𝑚𝑎𝑥 is needed for convergence.

• The high 𝑁𝑚𝑎𝑥 introduces noise in the potential:



Results for A=3 system (phaseshift + binding energy)
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Real part of Antinucleon-deuteron phaseshift in 2S1/2 channel with a = 18 fm and 𝑁𝑚𝑎𝑥= 80.   

𝐸𝑄𝐵 = −21 − 153𝑖 MeV

Quasi-bound state



Preliminary results for A=4 system 
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Real part of A=4 system phaseshift in 1S0 channel with a = 10 fm and 𝑁𝑚𝑎𝑥= 30.   



Stable

Conclusion and Outlook

Exact

Within some confidence

Halo nuclei

• There is no consensus among current 𝑁ഥ𝑁 potentials.

• In order to develop high-quality 𝑁ഥ𝑁 potentials, one 
needs low-energy data from experiments.

• Currently, there are no 𝑁ഥ𝑁 observable data 
available at threshold.

• The advanced ab-initio methods designed for 
𝑁𝑁 systems can be applied to 𝑁ഥ𝑁 systems.


