

Hyperon Physics with Antiproton Beams

Workshop on Future Nuclear and Hadronic Physics at the CERN-AD, Vienna, Austria April 8-10 2024

Prof. Dr. Karin Schönning, Uppsala University

- Introduction
- Reference: PANDA at FAIR
- Hyperon structure
- Hyperon spectroscopy
- Hyperon interactions
- Precision & rare processes
- Summary

Outline

How does the strong interaction form visible matter form the fundamental quarks and gluons?

Why hyperons?

- Role of flavour in hadrin properties
- Self-analysing decay \rightarrow traceable spin
- Strangeness additional degree of freedom in nuclear matter.

Why antiprotons?

• Measured cross sections of ground-state hyperons in $\bar{p}p \rightarrow \bar{Y}Y$ 1-100 µb*.

• Excited hyperon cross sections should to be similar to those of ground-states**.

* E. Klempt *et al.*, Phys. Rept. 368 (2002) 119-316 **V. Flaminio *et al.*, CERN-HERA 84-01

UPPSALA UNIVERSITET

\rightarrow Large expected production rates! 7

Why antiprotons?

Antihyperon – hyperon pair production in $\overline{p}p \rightarrow \overline{Y}Y$:

- Two-body processes
 - \rightarrow well-defined kinematics
- Symmetric particle-antiparticle final state

 \rightarrow entangled system \rightarrow correlated decays

Reference: PANDA at HESR, FAIR

The PANDA detector

• 4π coverage

UPPSALA UNIVERSITET

• Vertexing, Tracking, PID, Calorimetry

- Internal targets:
 - Cluster jet and pellet ($\bar{p}p$)
 - Foils $(\bar{p}A)$

The High Energy Storage Ring

- Anti-protons beam
 - $1.5 < p_{beam} < 15 \text{ GeV/c}$
- Luminosity:
 - Design $\sim 2^{*}10^{32}$ cm⁻²s⁻¹
 - Phase One $\sim 10^{31}$ cm⁻²s⁻¹

٠

Advantages of PANDA

Near 4π detectors \rightarrow exclusive hyperon-antihyperon measurements:

- Large reconstruction efficiency
- Small reconstruction bias

Low background

		_	~	
(Pi	ЭГ	7)	а
	-			

*PANDA: Eur. Phys. J A57, 4, 154 (2021) **PANDA: Eur. Phys. J A 57:184 (2021) *** PANDA: Eur. Phys. J A57, 4, 149 (2021)

p _{beam} (GeV/c)	Reaction	σ (μb)	ε (%)	Rate @ 10 ³¹ cm ⁻² s ⁻¹	S/B	Events /day
1.64	$\bar{p}p ightarrow \bar{\Lambda}\Lambda$	64.0	16.0*	44 s ⁻¹	114	3.8·10 ⁶
1.77	$\bar{p}p o \bar{\Sigma}^0 \Lambda$	10.9	5.3**	2.4 s ⁻¹	>11*	207 000
6.0	$\bar{p}p o \bar{\Sigma}^0 \Lambda$	20	6.1**	5.0 s ⁻¹	21	432 000
4.6	$\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$	~1	8.2*	0.3 s ⁻¹	274	26000
7.0	$\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$	~0.3	7.9*	0.1 s ⁻¹	65	8600
4.6	$\bar{p}p \rightarrow \bar{\Lambda}K^+\Xi^- + \text{c.c.}$	~1	5.4***	0.2 s ⁻¹	>19*	17000
7.0	$\bar{p}p o \overline{\Omega}^+ \Omega^-$	0.002-0.06	14			

Hyperon structure

A lot of progress on the proton structure and radius in recent years

- what about the unstable hyperons?

Electromagnetic Form Factors Time-like Space-like e^{-} π^0 \bar{p} e^{-} e^{-} e^{-} В B_1 e^+ \bar{p} e^{-} B_2 \overline{R} В В e^+ High-q² "Unphysical" Low- q^2 $e^+e^- \rightarrow B\bar{B}$ $e^-B \rightarrow e^-B$ region BESIII, Belle II $B_1 \rightarrow B_2 e^+ e^$ e.g. JLAB PANDA HADES, PANDA PANDA $-Q^2 = q^2 < 0$ $q^2 = 0$ q^2 $q^2 = (m_{B_1} + m_{B_2})^2$ $q^2 = (m_{B_1} - m_{B_2})^2$ $B_1 \to B_2 \gamma$ Difficult to access Possible to access for hyperons! for hyperons!

Transition radii accessible from EMFF behaviour near $q^2 = 0$

$$< r_E >^2 = 6 \frac{dG_E(q^2)}{dq^2}|_{q^2=0}$$
 and $< r_M >^2 = \frac{6}{G_M(0)} \frac{dG_M(q^2)}{dq^2}|_{q^2=0}$

Ongoing measurements by HADES and PANDA @ HADES:

- FAIR Phase o initiative
- HADES: Excellent for e^+e^- tagging.
- PANDA: Forward trackers increases hyperon acceptance

5an)da

• Hyperons from *pp* collisions^{*}.

 $\frac{6}{10} \frac{dG_M(q^2)}{dG_M(q^2)} |_{2} \sim \sum_{n=1}^{\infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$

Hyperon transition FF

Hyperon transition FFs with antiproton beams

- Large expected Σ^0 and Y* hyperon yields in $\bar{p}p$ annihilations!
- Antihyperons move forward in CMS (and lab) system

 $\rightarrow e^+e^-$ from $\overline{\Sigma}^0$ decay boosted

 \rightarrow better chance to detect e^+e^- ?

Check-list for hyperon structure with antiprotons

Σ

/\

- $p_{beam}^{thr}(\Sigma^0\overline{\Lambda}) = 1.65 \text{ GeV/c}$
- $p_{beam}^{thr}(\Sigma^*(1385)\overline{\Lambda}) = 2.20 \text{ GeV/c}$
- $p_{beam}^{thr}(\Lambda(1520)\overline{\Lambda}) = 2.60 \text{ GeV/c}$
- BR($\Sigma^0 \to \Lambda e^+ e^-$) expected to be ~5^{*10⁻³} & $\sigma(\bar{p}p \to \Sigma^0 \bar{\Lambda}) \sim 10 \ \mu b^-$
 - Luminosity of 10^{31} cm⁻²s⁻¹ $\rightarrow \sim 1000 \Sigma^0 \rightarrow \Lambda e^+ e^-$ events takes 1 day
 - Luminosity of 10³⁰ cm⁻²s⁻¹ \rightarrow ~1000 $\Sigma^0 \rightarrow \Lambda e^+e^-$ events take 10 days
- Large acceptance tracking
- e^+e^- identification & separation from converted γ
- Not too think target $\rightarrow e^+e^-$ must not be absorbed!

π

Hyperon spectroscopy

Light baryons

Jlab, ELSA, HADES, J-PARC A lot of recent progress! Multi-strange hyperons

Jlab, J-PARC, PANDA

Charm and beauty baryons

Belle II, LHCb A lot of recent progress!

Multi-strange hyperon spectroscopy

Gap to fill in the multi-strange sector!

- JPARC: $K^- p \rightarrow K^+ \Xi^*$, $K^- p \rightarrow K^+ \Omega^* X$ - GluEX @ KLF: $K_L p \rightarrow \Xi^* K$
- PANDA: $\overline{p}p \rightarrow Y^*\overline{Y} + c.c.$ - 2-body process also for Ω^* - Exclusive measurements - Large rates, low background^{*,**}

*PANDA: Eur. Phys. J A57, 4, 149 (2021). **PANDA: Eur. Phys. J A 57:184 (2021)

J^P	(D, L_N^P)	S		Octet	members		Singlets
$1/2^+$	$(56,0^+_0)$	1/2	N(939)	$\Lambda(1116)$	$\Sigma(1193)$	$\Xi(1318)$	
$1/2^{+}$	$(56,0^+_2)$	1/2	N(1440)	A(1600)	$\Sigma(1660)$		
$1/2^{-}$	$(70,1^{-}_{1})$	1/2	N(1535)	$\Lambda(1670)$	$\Sigma(1620)$	$\Xi(1620)$	$\Lambda(1405)$
					$\Sigma(1560)^{\dagger}$		
$3/2^{-}$	$(70,1_1^-)$	1/2	N(1520)	$\Lambda(1690)$	$\Sigma(1670)$	$\Xi(1820)$	$\Lambda(1520)$
$1/2^{-}$	$(70,1^{-}_{1})$	3/2	N(1650)	$\Lambda(1800)$	$\Sigma(1750)$	$\Xi(1690)$	
					$\Sigma(1620)^{\dagger}$		
$3/2^{-}$	$(70,1_1^-)$	3/2	N(1700)	$\Lambda(?)$	$\Sigma(1940)^{\dagger}$	$\Xi(?)$	
$5/2^{-}$	$(70,1_1^-)$	3/2	N(1675)	$\Lambda(1830)$	$\Sigma(1775)$	$\Xi(1950)^{1}$	
$1/2^{+}$	$(70,0^+_2)$	1/2	N(1710)	$\Lambda(1810)$	$\Sigma(1880)$	$\Xi(?)$	$\Lambda(1810)^{\dagger}$
$3/2^{+}$	$(56,2^+_2)$	1/2	N(1720)	$\Lambda(1890)$	$\Sigma(?)$	$\Xi(?)$	
$5/2^{+}$	$(56,2^+_2)$	1/2	N(1680)	$\Lambda(1820)$	$\Sigma(1915)$	$\Xi(2030)$	
$7/2^{-}$	$(70, 3^{-}_{3})$	1/2	N(2190)	$\Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	$\Lambda(2100)$
$9/2^{-}$	$(70,3^{-}_{3})$	3/2	N(2250)	$\Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	
$9/2^{+}$	$(56, 4^+_4)$	1/2	N(2220)	$\Lambda(2350)$	$\Sigma(?)$	$\Xi(?)$	

	Decuplet members							
$3/2^+$ (56,0)	⁺) $3/2 \Delta(1232) \Sigma(1385)$	$\Xi(1530)$	$\Omega(1672)$					
$3/2^+$ (56,0)	$^+_2)$ 3/2 $\varDelta(1600)$ $\varSigma(1690)^{\dagger}$	$\Xi(?)$	$\Omega(?)$					
$1/2^{-}$ (70,1	$_{1}^{-}$) 1/2 $\Delta(1620)$ $\Sigma(1750)^{+}$	$\Xi(?)$	$\Omega(?)$					
$3/2^{-}$ (70,1)	$_{1}^{-}$) 1/2 $\Delta(1700)$ $\Sigma(?)$	$\Xi(?)$	$\Omega(2012)$					
$5/2^+$ (56,2)	$^{+}_{2})$ 3/2 $\varDelta(1905)$ $\Sigma(?)$	$\Xi(?)$	$\Omega(?)$					
$7/2^+$ (56,2)	$^+_2)$ 3/2 $\Delta(1950)$ $\Sigma(2030)$	$\Xi(?)$	$\Omega(?)$					
$11/2^+$ (56,4)	⁺ ₄) $3/2 \ \Delta(2420) \ \Sigma(?)$	$\Xi(?)$	$\Omega(?)$					

PANDA feasibility study of $\bar{p}p \rightarrow \bar{\Lambda}K^+\Xi^- + c.c.$

_Ξ⁻(1820)

- Include intermediate $\Xi^*(1690) \rightarrow \Lambda K$ and $\Xi^*(1820) \rightarrow \Lambda K$
- Simplified PANDA MC framework
- $p_{heam} = 4.6 \text{ GeV/c}$

Assu	time $\sigma = 1 \ \mu b$ and $\Xi \rightarrow 18000 \ \overline{\Lambda}K^+\Xi^-$	10 ³¹ cm ⁻ events /	²s-1 day	p	-	▲ <u>=</u> +	K^- π^+_1 $\overline{\Lambda}^0$ $\overline{\rho}$
^{beam} eV/c)	Reaction	σ (μb)	ε (%)	Rate @ 10 ³¹ cm ⁻² s ⁻¹	S/B	Events /day	π+2
4.6	$\bar{p}p \rightarrow \bar{\Lambda}K^+\Xi^- + c.c$	~1	5.4	0.2 ^{-s}	>19	~18000	

P (G

р

 π^{-}

Check-list for hyperon spectroscopy with antiprotons

- Threshold beam momenta for $\bar{p}p \rightarrow Y^*\bar{Y} + c.c.$
 - $p_{beam}^{thr} (\Lambda^* (1405)) = 2.26 \text{ GeV/c}$
 - $p_{beam}^{thr}(\Xi^*(1620)) = 3.55 \text{ GeV/c}$
 - $p_{beam}^{thr}(\Xi^*(1690)) = 3.78 \text{ GeV/c}$
 - $p_{beam}^{thr}(\Xi^*(1820)) = 4.22 \text{ GeV/c}$
 - $p_{beam}^{thr} (\Omega^*(2100)) = 6.58 \text{ GeV/c}$
- Luminosity:
 - 10²⁹ cm⁻²s⁻¹: 18000 events take ~100 days
 - $10^{30} \text{ cm}^{-2}\text{s}^{-1}$: 18000 events take ~10 days
 - $10^{31} \text{ cm}^{-2} \text{s}^{-1}$: 18000 events take ~1 day
- Large acceptance tracking
- PID

UPPSALA UNIVERSITET

Hadron interactions

...or more specifically, hyperon-antihyperon and hyperon-nucleon interactions.

Hyperon production

Strong production dynamics

- Relevant degrees of freedom: quark-gluon or mesons?
- Strange *versus* charm sector?
- Role of spin?

Spin observables in $\bar{p}p \rightarrow \bar{Y}Y$

The differential cross section of a this process can be described in terms of

- Spin observables
- Decay asymmetries
- Angles

Spin observables in $\bar{p}p \rightarrow \bar{Y}Y$

BESIII

3

2 ا 12^E/2 • BaBar

BESIII

Final state interactions (FSI) of $\overline{Y}Y$ needed for interpretation of hyperon EMFFs from $e^+e^- \rightarrow Y\overline{Y}$

> - $\overline{Y}Y$ potential models use $\overline{p}p \rightarrow \overline{Y}Y$ data as input.

80

60

40

20

 $rrg(G_E/G_M)$ (deg)

Hyperon-nucleon (YN) interaction

Why?

- Crucial component to predict properties of hypernuclei.
- Needed to understand the *hyperon puzzle* of neutron stars.

- Hyperon femtoscopy
- Hypernuclear studies
- Secondary *YN* interactions
 - Example: $e^+e^- \rightarrow J/\Psi \rightarrow Y\bar{Y}$ studied with BESIII

***BESIII, arXiv: 2401.09012 (2024)

The $\Xi^0 n \to \Xi^- p$ reaction

- Primary reaction $e^+e^- \rightarrow J/\Psi \rightarrow \Xi^0 \overline{\Xi}^0$.
- Secondary Ξ^0 beam with $p_{\Xi} = 0.818$ GeV/c.
- Interaction mainly with 9Be in beam pipe.
- Infered cross section from 20 observed events assuming "effective neutrons" in 9Be **: $\sigma(\Xi^0 n \to \Xi^- p) = 7.4 \pm 1.8 \pm 1.5 \text{ mb.}$

The $\Lambda p \to \Lambda p$ and $\overline{\Lambda} p \to \overline{\Lambda} p$ reactions

- Primary reaction $e^+e^- \rightarrow J/\Psi \rightarrow \Lambda \overline{\Lambda}$
 - Secondary $\Lambda/\overline{\Lambda}$ beam with $p_{\Lambda} = 1.074$ GeV/c.
 - Interaction mainly with protons in the oil between pipes.

Hyperon interactions with BESIII

Hyperon interactions with an antiproton experiment

Advantages of using secondary hyperon beams from $\bar{p}p \rightarrow \bar{Y}Y$:

- Two-body reaction \rightarrow hyperon beam properties known (as in $J/\Psi \rightarrow \overline{Y}Y$ case)
- Access to a broad hyperon momentum range
 - Advantage compared to $J/\Psi \rightarrow \overline{Y}Y$.
- Access to multi-strange hyperons
 - Advantage compared to campaigns planned at Spring-8 and J-PARC.
- Access to antihyperons
 - Advantage compared to primary reactions with photon-, lepton-, and pion beams.
- Large $\bar{p}p \rightarrow \bar{Y}Y$ cross sections
 - Advantage compared to primary reactions with photons or leptons.

Check-list for hyperon interaction studies with primary antiproton beams

 \overline{p}

• Threshold momenta for $\bar{p}p \rightarrow \bar{Y}Y$

 $p_{beam}^{thr}(\Lambda\overline{\Lambda}) = 1.44 \text{ GeV/c}$ $p_{beam}^{thr}(\Sigma^{+}\overline{\Sigma}^{-}) = 1.85 \text{ GeV/c}$ $p_{beam}^{thr}(\Xi^{0}\overline{\Xi}^{0}) = 2.58 \text{ GeV/c}$ $p_{beam}^{thr}(\Xi^{-}\overline{\Xi}^{+}) = 2.61 \text{ GeV/c}$ $p_{beam}^{thr}(\Omega^{-}\overline{\Omega}^{+}) = 4.93 \text{ GeV/c}$

- Luminosity of 10³¹ cm⁻²s⁻¹
 - $\Lambda\overline{\Lambda}$ sample of "BESIII J/ Ψ size" in 1 day
 - $\Xi \Xi$ sample of "BESIII J/ Ψ size" in 20 days \rightarrow For YN studies, an extended target may do the job.
- Large acceptance tracking
- For Σ^+ and Ξ^0 : Calorimetry
- For Ω^- : PID
- For *YN* interactions: target for secondary interactions

Hadronic effects in precision and rare processes

...or more specifically, CP tests in hyperon decays.

- Required for *Baryogenesis** = dynamical generation of matterantimatter asymmetry in the universe.
- Common hunting-ground for physics beyond the SM.

*A. D. Sakharov, J. Exp. Theor. Phys. Lett. 5: 24–27.

CP violation

- Quantified by weak phases_
- Established in meson sector \rightarrow consistent with SM
- Hyperons: Simple tests *via* decay asymmetry α : $I(\cos\theta_{B}) = N(1+\alpha P_{Y}\cos\theta_{B})$ CP symmetry $\rightarrow \alpha = -\overline{\alpha}$ CP observable $A_{CP} = \frac{\alpha + \overline{\alpha}}{\alpha - \overline{\alpha}}$

CP tests in hyperon decays

Challenge: Hyperon decays interplay of strong and weak processes!

- \rightarrow CP observable from direct decay
- = function of strong and weak phases Weak phase diff. Possibly CP violating

$$A_{CP} = \frac{\alpha + \overline{\alpha}}{\alpha - \overline{\alpha}} \approx -\tan(\delta_p - \delta_s)\tan(\xi_p - \xi_s)$$

Strong phase diff.
CP conserving
*Donogue et al., PRD 34, 833 (1986)

Sequential decays

Decay parameters α , β , γ , ϕ accessible:

$$- \alpha^2 + \beta^2 + \gamma^2 = 1$$
, $tan \varphi = \frac{\beta}{\gamma}$

- CP symmetry: $\alpha, \beta, \gamma, \phi = -\overline{\alpha}, -\overline{\beta}, -\overline{\gamma}, -\overline{\phi}$
- Additional CP observable: $- \Delta \phi_{CP} = \frac{\phi + \overline{\phi}}{2} = \frac{\alpha}{\sqrt{1 - \alpha^2}} (\xi_p - \xi_s)_{LO}$ $\rightarrow \text{More sensitive to CP violating effects!}$

31

CP tests in $e^+e^- \rightarrow J/\Psi \rightarrow \Xi^-\overline{\Xi}^+$

- Analysis of $e^+e^- \rightarrow J/\Psi \rightarrow \Xi^- \overline{\Xi}^+, \Xi^- \rightarrow \Lambda \pi^- \rightarrow pp\pi^- + c.c.$
- 73000 $J/\Psi \rightarrow \Xi^- \overline{\Xi}^+$ events from 2009 and 2012
- First measurement of weak phase difference:

 $(\xi_p - \xi_s) = (1.2 \pm 3.4 \pm 0.8) \times 10^{-2}$ rad

nature

Article Open Access Published: 01 June 2022

Probing CP symmetry and weak phases with entangled double-strange baryons

The BESIII Collaboration

606, 64–69 (2022) Cite this article

CP tests, world data

BESIII:

Nature Phys. **15**, p 631-634 (2019) Phys. Rev. Lett. 125, 052004 (2020) Nature 606, 64-69 (2022) Phys. Rev. Lett. 129, 131801 (2022) Phys. Rev. D 108, L031106 (2023)

Belle:

Sci. Bull. 68, 583-592 (2023)

HyperCP:

Phys. Rev. Lett. 93, 262001, 2004.

- $\overline{Y}Y$ pair produced spin polarised and correlated \rightarrow possible to extract CP observables*
- More complicated production dynamics than in e^+e^- - polaristion + spin correlations depend on θ_Y
- CP test with PS185: O(A)~0.02 for 96000 ĀΛ events**
 PDG world average O(A)~0.01

^{*}Durand & Sandweiss, Phys. Rev. 135, 2b (1964) **PS185, Phys. Rev. C 54, 1877 (1996)

CP tests in $\bar{p}p \rightarrow Y\bar{Y}$

Hyperons @PANDA:

- Two-body production of spin correlated hyperon-antihyperon pairs
- Large cross sections = high production rate
- Exclusive reconstruction = high efficiency, low background

p _{beam} (GeV/c)	Reaction	σ (μb)	ε (%)	Rate @ 10 ³¹ cm ⁻² s ⁻¹	S/B	Events /day
1.64	$\bar{p}p ightarrow \bar{\Lambda}\Lambda$	64.0	16.0*	44 s ⁻¹	114	3.8· 10 ⁶
1.77	$\bar{p}p ightarrow \bar{\Sigma}^0 \Lambda$	10.9	5.3**	2.4 s ⁻¹	>11*	207 000
6.0	$\bar{p}p ightarrow \bar{\Sigma}^0 \Lambda$	20	6.1**	5.0 s ⁻¹	21	432 000
4.6	$\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$	~1	8.2*	0.3 s ⁻¹	274	26000
7.0	$\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$	~0.3	7.9*	0.1 s ⁻¹	65	8600
4.6	$\bar{p}p \rightarrow \bar{\Lambda}K^+\Xi^- + \text{c.c.}$	~1	5.4***	0.2 s ⁻¹	>19*	17000
7.0	$\bar{p}p ightarrow \overline{\Omega}^+ \Omega^-$	0.002-0.06	14			50 -1300

Check-list for CP tests in $\bar{p}p \rightarrow Y\bar{Y}$

• Threshold momenta for $\bar{p}p \rightarrow \bar{Y}Y$ $p_{beam}^{thr}(\Lambda \overline{\Lambda}) = 1.44 \text{ GeV/c}$

 $p_{beam}^{thr}(\overline{\Omega}^{+}\overline{\Sigma}^{-}) = 1.44 \text{ GeV/C}$ $p_{beam}^{thr}(\Sigma^{+}\overline{\Sigma}^{-}) = 1.85 \text{ GeV/C}$ $p_{beam}^{thr}(\Xi^{0}\overline{\Xi}^{0}) = 2.58 \text{ GeV/C}$ $p_{beam}^{thr}(\Xi^{-}\overline{\Xi}^{+}) = 2.61 \text{ GeV/C}$ $p_{beam}^{thr}(\Omega^{-}\overline{\Omega}^{+}) = 4.93 \text{ GeV/C}$

- Luminosity of 10^{31} cm⁻²s⁻¹
 - $\Lambda\overline{\Lambda}$ sample of "BESIII J/ Ψ size" in 1 day
 - $\Xi \overline{\Xi}$ sample of "BESIII J/ Ψ size" in 20 days

 \rightarrow An extended target may yield high luminosity but affect precision.

- Large acceptance tracking
- For Σ^+ and Ξ^0 : Calorimetry

Summary

- Hyperons provide insights to hadron structure, spectroscopy, interactions and fundamental symmetries.
- Several advantages of studying hyperons with antiproton beams.
- Single-strange and ground-state double-strange hyperons can be studied with a 3.5 GeV/c antiproton beam.
- The feasibility of future hyperon endeavors at the CERN-AD depends crucially on
 - Luminosity
 - Target
 - Available beam-time
 - Detector setup

Thanks for your attention!

STINT The Swedish Foundation for International Cooperation in Research and Higher Education