Tuning Ramond-Ramond flux for AdS3 strings

Alessandro Sfondrini

UNIVERSITÀ DEGLI STUDI DI PADOVA

Maximally supersymmetric AdS3 backgrounds

These backgrounds have 16 susys (half of $AdS_5\times S^5)$:

 $AdS_3 \times S^3 \times T^4$, $AdS_3 \times S^3 \times K3$, $AdS_3 \times S^3 \times S^3 \times S^1$

They should be dual to (largely unknown) $\mathcal{N} = (4, 4)$ two-dimensional SCFTs.

Maximally supersymmetric AdS3 backgrounds

These backgrounds have 16 susys (half of $AdS_5\times S^5)$:

 $AdS_3 \times S^3 \times T^4$, $AdS_3 \times S^3 \times K3$, $AdS_3 \times S^3 \times S^3 \times S^1$

They should be dual to (largely unknown) $\mathcal{N} = (4, 4)$ two-dimensional SCFTs.

In this talk I will focus on the **planar spectrum** of

AdS $_3 \times S^3 \times 7^4$

which is actually a **family of backgrounds**.

The AdS_3 isometries are $\mathfrak{so}(2,2) \cong \mathfrak{su}(1,1)^{\oplus 2} \cong \mathfrak{sl}(2,\mathbb{R})^{\oplus 2}$ with generators

 ${\sf L}_m, \quad m=0,\pm 1, \qquad {\sf L}_m, \quad \dot{m}=0,\pm 1.$

The AdS_3 isometries are $\mathfrak{so}(2,2) \cong \mathfrak{su}(1,1)^{\oplus 2} \cong \mathfrak{sl}(2,\mathbb{R})^{\oplus 2}$ with generators

$$
\mathsf{L}_m,\quad m=0,\pm 1\,,\qquad \widetilde{\mathsf{L}}_{\dot{m}},\quad \dot{m}=0,\pm 1.
$$

Similarly for S^3 we have $\mathfrak{so}(4)\cong \mathfrak{su}(2)^{\oplus 2}$ with generators

$$
\mathbf{J}^{\alpha\beta}, \quad \alpha, \beta = \pm \,, \qquad \widetilde{\mathbf{J}}^{\dot{\alpha}\dot{\beta}}, \quad \dot{\alpha}, \dot{\beta} = \pm \,,
$$

The AdS_3 isometries are $\mathfrak{so}(2,2) \cong \mathfrak{su}(1,1)^{\oplus 2} \cong \mathfrak{sl}(2,\mathbb{R})^{\oplus 2}$ with generators

$$
L_m
$$
, $m = 0, \pm 1$, $\tilde{L}_{\dot{m}}$, $\dot{m} = 0, \pm 1$.

Similarly for S^3 we have $\mathfrak{so}(4)\cong \mathfrak{su}(2)^{\oplus 2}$ with generators

$$
\mathbf{J}^{\alpha\beta}, \quad \alpha, \beta = \pm \,, \qquad \widetilde{\mathbf{J}}^{\dot{\alpha}\dot{\beta}}, \quad \dot{\alpha}, \dot{\beta} = \pm \,,
$$

The **energy spectrum** is related to global time in AdS_3

$$
\textbf{E}_{\text{tot}} = \textbf{L}_0 + \widetilde{\textbf{L}}_0 \in \mathbb{R}
$$

The AdS_3 isometries are $\mathfrak{so}(2,2) \cong \mathfrak{su}(1,1)^{\oplus 2} \cong \mathfrak{sl}(2,\mathbb{R})^{\oplus 2}$ with generators

$$
L_m
$$
, $m = 0, \pm 1$, $\tilde{L}_{\dot{m}}$, $\dot{m} = 0, \pm 1$.

Similarly for S^3 we have $\mathfrak{so}(4)\cong \mathfrak{su}(2)^{\oplus 2}$ with generators

$$
\mathbf{J}^{\alpha\beta}, \quad \alpha, \beta = \pm \,, \qquad \widetilde{\mathbf{J}}^{\dot{\alpha}\dot{\beta}}, \quad \dot{\alpha}, \dot{\beta} = \pm \,,
$$

The **energy spectrum** is related to global time in AdS_3 $E_{\text{tot}} = L_0 + \widetilde{L}_0 \in \mathbb{R}$

It will also be convient to consider the **lightcone energy**

$$
\mathbf{H}_{tot} = \mathbf{E}_{tot} - \mathbf{J}_{tot}, \qquad \mathbf{J}_{tot} = \mathbf{J}^{+-} + \widetilde{\mathbf{J}}^{+-}
$$

"Simplest" AdS3 backgrounds: pure NSNS backgrounds

Near-horizon limit of k NS5 branes and $N \gg 1$ fundamental strings.

"Simplest" AdS3 backgrounds: pure NSNS backgrounds

Near-horizon limit of k NS5 branes and $N \gg 1$ fundamental strings.

In this case, there is only the metric $G^{\mu\nu}$ and Kalb-Ramond field $B^{\mu\nu}$ so that

$$
H = dB = vol(AdS_3) + vol(S^3)
$$

The only (interesting) parameter is $k = 1, 2, 3, 4, \ldots$, which becomes the string tension.

In units where $R_{AdS_3} = R_{S_3} = 1$, the tension is

$$
T=\frac{k}{2\pi}
$$

"Simplest" AdS3 backgrounds: pure NSNS backgrounds

Near-horizon limit of k NS5 branes and $N \gg 1$ fundamental strings.

In this case, there is only the metric $G^{\mu\nu}$ and Kalb-Ramond field $B^{\mu\nu}$ so that

$$
H = dB = vol(AdS_3) + vol(S^3)
$$

The only (interesting) parameter is $k = 1, 2, 3, 4, \ldots$, which becomes the string tension.

In units where $R_{AdS_3} = R_{S_3} = 1$, the tension is

$$
T=\frac{k}{2\pi}
$$

The classical string action is that of a WZW model. [Giveon, Kutasov, Seiberg '98] [...]

Pure NSNS backgrouds as WZW models $(k > 1)$

 $AdS_3\times S^3\times T^4$ can be realised as a WZW model in the RNS formalism, based on

 $\Bigl(\mathfrak{sl}(2,\mathbb{R})_{k+2}\oplus\mathfrak{su}(2)_{k-2}\Bigr)^{\oplus 2}$ Kač-Moody representations, plus free fermions

Pure NSNS backgrouds as WZW models $(k > 1)$

 $AdS_3\times S^3\times T^4$ can be realised as a WZW model in the RNS formalism, based on

 $\Bigl(\mathfrak{sl}(2,\mathbb{R})_{k+2}\oplus\mathfrak{su}(2)_{k-2}\Bigr)^{\oplus 2}$ Kač-Moody representations, plus free fermions

The short-string spectrum is generated by the modes of the Kač-Moody currents (and of the free fermions and free \mathcal{T}^4 bosons) on a reference state $|\ell_0, j_0\rangle$, $\ell_0\in\mathbb{R}$, $j_0\in\mathbb{N}$. Schematically

$$
\big|\Psi_{\{\eta_j,\tilde{\eta}_j\}}\big\rangle=\Big(\alpha_{-{\eta_1}}\cdots\alpha_{-{\eta_r}}|\ell_0,j_0\rangle\Big)\otimes\Big(\tilde{\alpha}_{-\tilde{\eta}_1}\cdots\tilde{\alpha}_{-\tilde{\eta}_s}|\tilde{\ell}_0,j_0\rangle\Big)
$$

Pure NSNS backgrouds as WZW models $(k > 1)$

 $AdS_3\times S^3\times T^4$ can be realised as a WZW model in the RNS formalism, based on

 $\Bigl(\mathfrak{sl}(2,\mathbb{R})_{k+2}\oplus\mathfrak{su}(2)_{k-2}\Bigr)^{\oplus 2}$ Kač-Moody representations, plus free fermions

The short-string spectrum is generated by the modes of the Kač-Moody currents (and of the free fermions and free \mathcal{T}^4 bosons) on a reference state $|\ell_0, j_0\rangle$, $\ell_0\in\mathbb{R}$, $j_0\in\mathbb{N}$. Schematically

$$
\big|\Psi_{\{n_j,\tilde{n}_j\}}\big\rangle=\Big(\alpha_{-n_1}\cdots\alpha_{-n_r}|\ell_0,j_0\rangle\Big)\otimes\Big(\tilde{\alpha}_{-\tilde{n}_1}\cdots\tilde{\alpha}_{-\tilde{n}_s}|\tilde{\ell}_0,j_0\rangle\Big)
$$

The Virasoro constraint gives a quadratic equation for $\ell_0=\tilde{\ell}_0$, so that [Maldacena, Ooguri '00] [...]

$$
\mathbf{E}_{\text{tot}}\left|\Psi_{\{n_j,\tilde{n}_j\}}\right\rangle=\sqrt{\left(j_0+\tfrac{1}{2}\right)^2+2k\left(n_1+\cdots+n_r+\tilde{n}_1+\cdots+\tilde{n}_s\right)}\,\left|\Psi_{\{n_j,\tilde{n}_j\}}\right\rangle
$$

Spectrum for pure-NSNS backgrouds

For a state of the form

$$
\left|\Psi_{\{\eta_j,\tilde{\eta}_j\}}\right\rangle=\left(\alpha_{-{\eta_1}}\cdots\alpha_{-{\eta_r}}|\ell_0,j_0\rangle\right)\otimes\left(\tilde{\alpha}_{-\tilde{\eta}_1}\cdots\tilde{\alpha}_{-\tilde{\eta}_s}|\tilde{\ell}_0,j_0\rangle\right)
$$

the specturm is

$$
\mathbf{E}_{\text{tot}}\left|\Psi_{\{n_j,\tilde{n}_j\}}\right\rangle=\sqrt{\left(j_0+\tfrac{1}{2}\right)^2+2k\left(n_1+\cdots+n_r+\tilde{n}_1+\cdots+\tilde{n}_s\right)}\,\left|\Psi_{\{n_j,\tilde{n}_j\}}\right\rangle
$$

This is $\boldsymbol{\mathsf{highly}}$ degenerate as it does not depend on the individual $\boldsymbol{\mathsf{n}}_j.$

Spectrum for pure-NSNS backgrouds

For a state of the form

$$
\big|\Psi_{\{\eta_j,\tilde{\eta}_j\}}\big\rangle=\Big(\alpha_{-{\eta_1}}\cdots\alpha_{-{\eta_r}}|\ell_0,j_0\rangle\Big)\otimes\Big(\tilde{\alpha}_{-\tilde{\eta}_1}\cdots\tilde{\alpha}_{-\tilde{\eta}_s}|\tilde{\ell}_0,j_0\rangle\Big)
$$

the specturm is

$$
\mathbf{E}_{\text{tot}}\left|\Psi_{\{n_j,\tilde{n}_j\}}\right\rangle=\sqrt{\left(j_0+\tfrac{1}{2}\right)^2+2k\left(n_1+\cdots+n_r+\tilde{n}_1+\cdots+\tilde{n}_s\right)}\,\left|\Psi_{\{n_j,\tilde{n}_j\}}\right\rangle
$$

This is $\boldsymbol{\mathsf{highly}}$ degenerate as it does not depend on the individual $\boldsymbol{\mathsf{n}}_j.$

It is also much simpler than what happens for RR backgrounds like AdS_5 and AdS_4 .

(There is also a "long string" continuum spectrum.)

Mixed-flux backgrouds

It is possible to **continuously turn on a RR flux for fixed** k , e.g. by switching on an axion in the F1-NS5 system. [O-Sax, Stefanski '18]

Mixed-flux backgrouds

It is possible to **continuously turn on a RR flux for fixed** k , e.g. by switching on an axion in the F1-NS5 system. [O-Sax, Stefanski '18]

This gives a IIB background with the same metric but fluxes

$$
H = dB = q \left(\text{vol}(AdS_3) + \text{vol}(S^3) \right) , \qquad F_3 = \sqrt{1 - q^2} \left(\text{vol}(AdS_3) + \text{vol}(S^3) \right) .
$$

where $0 < q \le 1$ is a new parameter. The tension is now larger

$$
T=\frac{1}{q}\frac{k}{2\pi}
$$

Mixed-flux backgrouds

It is possible to **continuously turn on a RR flux for fixed** k , e.g. by switching on an axion in the F1-NS5 system. [O-Sax, Stefanski '18]

This gives a IIB background with the same metric but fluxes

$$
H = dB = q \left(\text{vol}(AdS_3) + \text{vol}(S^3) \right) , \quad F_3 = \sqrt{1 - q^2} \left(\text{vol}(AdS_3) + \text{vol}(S^3) \right) .
$$

where $0 < q \le 1$ is a new parameter. The tension is now larger

$$
T=\frac{1}{q}\frac{k}{2\pi}
$$

It is convenient to use two parameters, $h > 0$ and $k \in \mathbb{N}$

$$
h = \sqrt{1 - q^2} \, \text{T},
$$
 $\frac{k}{2\pi} = q \, \text{T},$ $\text{T} = \sqrt{h^2 + \frac{k^2}{4\pi^2}}.$

Mixed and pure-RR background

We expect that turning on $h > 0$ will lift the degeneracies of the spectrum, and give rather intricate expression for the energies (like for $AdS_5\times S^5).$

It is very difficult to compute the spectrum in the RNS formalism. [Cho, Collier, Yin '20]

Mixed and pure-RR background

We expect that turning on $h > 0$ will lift the degeneracies of the spectrum, and give rather intricate expression for the energies (like for $AdS_5\times S^5).$

It is very difficult to compute the spectrum in the RNS formalism. [Cho, Collier, Yin '20]

There is also a family of **pure-RR backgrounds**, for which

$$
k=0 \quad \Rightarrow \quad B_{\mu\nu}=0, \qquad h>0
$$

They arise from the **D1-D5 system**, and are even harder to study in the RNS formalism.

Integrability: an alternative way to quantise the string

The classical Green-Schwarz action for $AdS_3\times S^3\times T^4$ is <mark>integrable for any</mark> $h,k.$

[Cagnazzo, Zarembo '12]

This provides a scheme to quantise the model in lightcone gauge, like for $AdS_5\times S^5.$

[Arutyunov, Frolov, Zamaklar '06] [. . .]

Using this approach, one may compute the spectrum for any k , h, as we shall see.

Lightcone gauge for the GS string

Schematically we take $\phi\in\mathcal{S}^3$ and $t\in AdS_3$ to make ligthcone coordinates X^\pm and set:

$$
X^+ = \tau \quad \& \quad \mathcal{P}_- = 1 \quad \text{where} \qquad \mathcal{P}_\mu = \frac{\delta S_{GS}}{\delta(\partial_\tau X^\mu)}
$$

Lightcone gauge for the GS string

Schematically we take $\phi\in\mathcal{S}^3$ and $t\in AdS_3$ to make ligthcone coordinates X^\pm and set:

$$
X^{+} = \tau \quad \& \quad \mathcal{P}_{-} = 1 \quad \text{where} \quad \quad \mathcal{P}_{\mu} = \frac{\delta S_{GS}}{\delta(\partial_{\tau} X^{\mu})}
$$

The worldsheet Hamiltonian $\mathsf{H}_{w.s.}$ is precisely H_{tot}

$$
\mathbf{H}_{w.s.} = -\int_{0}^{L} d\sigma \mathcal{P}_{+} = \mathbf{E}_{tot} - \mathbf{J}_{tot} = \mathbf{H}_{tot}
$$

For convenience we split $H_{tot} = H + \dot{H} = (L_0 - J^{+-}) + (\dot{L}_0 - \dot{J}^{+-}).$

Lightcone gauge for the GS string

Schematically we take $\phi\in\mathcal{S}^3$ and $t\in AdS_3$ to make ligthcone coordinates X^\pm and set:

$$
X^{+} = \tau \quad \& \quad \mathcal{P}_{-} = 1 \quad \text{where} \quad \quad \mathcal{P}_{\mu} = \frac{\delta S_{GS}}{\delta(\partial_{\tau} X^{\mu})}
$$

The worldsheet Hamiltonian $\mathsf{H}_{w.s.}$ is precisely H_{tot}

$$
\mathbf{H}_{w.s.} = -\int_{0}^{L} d\sigma \mathcal{P}_{+} = \mathbf{E}_{tot} - \mathbf{J}_{tot} = \mathbf{H}_{tot}
$$

For convenience we split $H_{tot} = H + \dot{H} = (L_0 - J^{+-}) + (\dot{L}_0 - \dot{J}^{+-}).$

The worldsheet size L is also fixed

$$
L = \int_{0}^{L} d\sigma \mathcal{P}_{-} = \mathbf{J}^{+-} + \widetilde{\mathbf{J}}^{+-} = \mathbf{J}_{tot}
$$

Symmetries

The full symmetry algebra is $\mathfrak{psu}(1,1|2)^{\oplus 2}$, with BPS bound

$$
\mathbf{H} \equiv \mathbf{L}_0 - \mathbf{J}^{+-} \ge 0 \,, \qquad \widetilde{\mathbf{H}} \equiv \widetilde{\mathbf{L}}_0 - \widetilde{\mathbf{J}}^{+-} \ge 0 \qquad \Rightarrow \quad \mathbf{H}_{tot} \ge 0
$$

Symmetries

The full symmetry algebra is $\mathfrak{psu}(1,1|2)^{\oplus 2}$, with BPS bound

$$
\mathbf{H} \equiv \mathbf{L}_0 - \mathbf{J}^{+-} \ge 0 \,, \qquad \widetilde{\mathbf{H}} \equiv \widetilde{\mathbf{L}}_0 - \widetilde{\mathbf{J}}^{+-} \ge 0 \qquad \Rightarrow \quad \mathbf{H}_{tot} \ge 0
$$

The $AdS_3\times S^3\times T^4$ Killing spinors fit in $\mathfrak{psu}(1,1|2)^{\oplus 2}$ as

$$
\mathbf{G}_{m}^{\alpha A}, \quad m = \pm \frac{1}{2}, \quad \alpha = \pm, \qquad \widetilde{\mathbf{G}}_{m}^{\dot{\alpha} A}, \quad \dot{m} = \pm \frac{1}{2}, \quad \dot{\alpha} = \pm,
$$

and $A = 1, 2$ is common to the two families.

Symmetries

The full symmetry algebra is $\mathfrak{psu}(1,1|2)^{\oplus 2}$, with BPS bound

$$
\mathbf{H} \equiv \mathbf{L}_0 - \mathbf{J}^{+-} \ge 0 \,, \qquad \widetilde{\mathbf{H}} \equiv \widetilde{\mathbf{L}}_0 - \widetilde{\mathbf{J}}^{+-} \ge 0 \qquad \Rightarrow \quad \mathbf{H}_{tot} \ge 0
$$

The $AdS_3\times S^3\times T^4$ Killing spinors fit in $\mathfrak{psu}(1,1|2)^{\oplus 2}$ as

$$
\mathbf{G}_{m}^{\alpha A}, \quad m = \pm \frac{1}{2}, \quad \alpha = \pm, \qquad \widetilde{\mathbf{G}}_{m}^{\dot{\alpha} A}, \quad \dot{m} = \pm \frac{1}{2}, \quad \dot{\alpha} = \pm,
$$

and $A = 1, 2$ is common to the two families.

In lightcone gauge, only half of the supercharges survive.

There are four "left" and four "right" superchages

$$
\mathbf{G}_{+\frac{1}{2}}^{-A}, \ \mathbf{G}_{-\frac{1}{2}}^{+A}, \quad A = 1, 2, \qquad \qquad \widetilde{\mathbf{G}}_{+\frac{1}{2}}^{-A}, \ \widetilde{\mathbf{G}}_{-\frac{1}{2}}^{+A}, \quad A = 1, 2
$$

There are four "left" and four "right" superchages

$$
\mathbf{G}_{+\frac{1}{2}}^{-A}, \ \mathbf{G}_{-\frac{1}{2}}^{+A}, \quad A = 1, 2, \qquad \qquad \widetilde{\mathbf{G}}_{+\frac{1}{2}}^{-A}, \ \widetilde{\mathbf{G}}_{-\frac{1}{2}}^{+A}, \quad A = 1, 2
$$

Their algebra is quite simple when $J_{tot} \sim L \rightarrow \infty$

$$
\left\{ \mathbf{G}_{-\frac{1}{2}}^{+A}, \mathbf{G}_{+\frac{1}{2}}^{-B} \right\} = \varepsilon^{AB} \mathbf{H}, \qquad \qquad \left\{ \widetilde{\mathbf{G}}_{-\frac{1}{2}}^{+A}, \widetilde{\mathbf{G}}_{+\frac{1}{2}}^{-B} \right\} = \varepsilon^{AB} \widetilde{\mathbf{H}},
$$

There are four "left" and four "right" superchages

$$
\mathbf{G}_{+\frac{1}{2}}^{-A}, \ \mathbf{G}_{-\frac{1}{2}}^{+A}, \quad A = 1, 2, \qquad \qquad \widetilde{\mathbf{G}}_{+\frac{1}{2}}^{-A}, \ \widetilde{\mathbf{G}}_{-\frac{1}{2}}^{+A}, \quad A = 1, 2
$$

Their algebra is quite simple when $J_{tot} \sim L \rightarrow \infty$

$$
\begin{aligned}\n\left\{ \mathbf{G}_{-\frac{1}{2}}^{+A}, \mathbf{G}_{+\frac{1}{2}}^{-B} \right\} &= \varepsilon^{AB} \mathbf{H}, & \left\{ \widetilde{\mathbf{G}}_{-\frac{1}{2}}^{+A}, \widetilde{\mathbf{G}}_{-\frac{1}{2}}^{-B} \right\} &= \varepsilon^{AB} \widetilde{\mathbf{H}}, \\
\left\{ \mathbf{G}_{-\frac{1}{2}}^{+A}, \widetilde{\mathbf{G}}_{-\frac{1}{2}}^{+B} \right\} &= \varepsilon^{AB} \mathbf{C}_{-\frac{1}{2},-\frac{1}{2}}^{+A}, & \left\{ \widetilde{\mathbf{G}}_{-\frac{1}{2}}^{+A}, \mathbf{G}_{-\frac{1}{2}}^{-B} \right\} &= \varepsilon^{AB} \mathbf{C}_{-\frac{1}{2},+\frac{1}{2}}^{-A}.\n\end{aligned}
$$

[Borsato, O-Sax, AS '12] [Lloyd, O-Sax, AS, Stefanski '14]

There are four "left" and four "right" superchages

$$
\mathbf{G}_{+\frac{1}{2}}^{-A}, \ \mathbf{G}_{-\frac{1}{2}}^{+A}, \quad A = 1, 2, \qquad \qquad \widetilde{\mathbf{G}}_{+\frac{1}{2}}^{-A}, \ \widetilde{\mathbf{G}}_{-\frac{1}{2}}^{+A}, \quad A = 1, 2
$$

Their algebra is quite simple when $J_{tot} \sim L \rightarrow \infty$

$$
\begin{aligned}\n\left\{ \mathbf{G}_{-\frac{1}{2}}^{+A}, \mathbf{G}_{+\frac{1}{2}}^{-B} \right\} &= \varepsilon^{AB} \, \mathbf{H} \,, & \left\{ \widetilde{\mathbf{G}}_{-\frac{1}{2}}^{+A}, \widetilde{\mathbf{G}}_{-\frac{1}{2}}^{-B} \right\} &= \varepsilon^{AB} \, \widetilde{\mathbf{H}} \,, \\
\left\{ \mathbf{G}_{-\frac{1}{2}}^{+A}, \widetilde{\mathbf{G}}_{-\frac{1}{2}}^{+B} \right\} &= \varepsilon^{AB} \, \mathbf{C}_{-\frac{1}{2},-\frac{1}{2}}^{+i}, & \left\{ \widetilde{\mathbf{G}}_{-\frac{1}{2}}^{+A}, \mathbf{G}_{-\frac{1}{2}}^{-B} \right\} &= \varepsilon^{AB} \, \mathbf{C}_{-\frac{1}{2},+\frac{1}{2}}^{-+i}, \\
\end{aligned}
$$

[Borsato, O-Sax, AS '12] [Lloyd, O-Sax, AS, Stefanski '14]

The charges $C \equiv C^{+\frac{1}{2}}$ $-\frac{1}{2}, -\frac{1}{2}$ and $C^{\dagger} \equiv C^{-\frac{1}{4}}$ $+\frac{1}{2},+\frac{1}{2}$ are central extensions due to the gauge fixing.

On the central extensions

If we consider an asymptotic state on the worldsheet (at $L \to \infty$)

$$
|p_1,\ldots p_n\rangle_L \equiv A^{\dagger}(p_1)\cdots A^{\dagger}(p_n)|0\rangle_L
$$

we find

$$
\mathbf{C}|p_1,\ldots p_n\rangle_L=\frac{i h}{2}\left(e^{i(p_1+\cdots+p_n)}-1\right)|p_1,\ldots p_n\rangle_L
$$

Level-matching: $p_1 + \cdots + p_n = 0$ mod 2π .

On the central extensions

If we consider an asymptotic state on the worldsheet (at $L \to \infty$)

$$
|p_1,\ldots p_n\rangle_L \equiv A^{\dagger}(p_1)\cdots A^{\dagger}(p_n)|0\rangle_L
$$

we find

$$
\mathbf{C}|p_1,\ldots p_n\rangle_L=\frac{i h}{2}\left(e^{i(p_1+\cdots+p_n)}-1\right)|p_1,\ldots p_n\rangle_L
$$

Level-matching: $p_1 + \cdots + p_n = 0$ mod 2π .

Fundamental excitations of the model (the modes of the transverse $AdS_3\times S^3\times T^4)$ obey $H \widetilde{H} = C^{\dagger} C$

This allows to derive an exact dispersion relation $\omega(p)$

$$
\mathbf{H}_{tot} | p_1, \ldots p_n \rangle_L = \sum_{j=1}^n \omega(p_j) | p_1, \ldots p_n \rangle_L.
$$

The dispersion relation

Exact dispersion relation $(L = \infty)$: [Hoare, Stepanchuk, Tseytlin '13] [Lloyd, O-Sax, AS, Stefanski '14]

$$
\omega(\rho) = \sqrt{\left(\frac{k}{2\pi}\rho + \mu\right)^2 + 4h^2\sin^2\left(\frac{\rho}{2}\right)},
$$

where $\mu = 0, 1, \ldots k - 1$ labels the representations.

The dispersion relation

Exact dispersion relation $(L = \infty)$: [Hoare, Stepanchuk, Tseytlin '13] [Lloyd, O-Sax, AS, Stefanski '14]

$$
\omega(\rho) = \sqrt{\left(\frac{k}{2\pi}\rho + \mu\right)^2 + 4h^2\sin^2\left(\frac{\rho}{2}\right)},
$$

where $\mu = 0, 1, \ldots k - 1$ labels the representations.

If $h = 0$, it is chiral (WZW model) [Baggio, AS '17] [Dei, AS '18]

$$
\omega(p) = \left|\frac{k}{2\pi}p + \mu\right|, \qquad \mu = 0, 1, \ldots k - 1.
$$

If $k=0$, periodic (like for $AdS_5\times S^5)$ [Borsato, O-Sax, AS '12]

$$
\omega(\rho)=\sqrt{\mu^2+4h^2\sin^2\left(\frac{\rho}{2}\right)},\qquad \mu\in\mathbb{Z}
$$

S-matrix and spectrum

The symmetries allow to fix an S matrix for worldsheet excitations

$$
{\sf S} \; A^\dagger_a(p_1) A^\dagger_b(p_2) \, |0\rangle_{\infty} = e^{i \Phi(p_1,p_2)} \, S^{cd}_{ab}(p_1,p_2) \; A^\dagger_c(p_2) A^\dagger_d(p_4) \, |0\rangle_{\infty}
$$

The dressing factor $\Phi(p_1, p_2)$ is hardest to fix.

S-matrix and spectrum

The symmetries allow to fix an S matrix for worldsheet excitations

$$
\mathsf{S} \; A^\dagger_a(\rho_1) A^\dagger_b(\rho_2) \, |0\rangle_{\infty} = e^{i \Phi(\rho_1, \rho_2)} \, S^{cd}_{ab}(\rho_1, \rho_2) \; A^\dagger_c(\rho_2) A^\dagger_d(\rho_4) \, |0\rangle_{\infty}
$$

The dressing factor $\Phi(p_1, p_2)$ is hardest to fix.

The energy spectrum at fixed L is then fixed by taking

$$
e^{ip_iL}\prod_{j=1}^n S(p_i,p_j)=1, \qquad i=1,\ldots n \quad \Rightarrow \quad p_i=\frac{2\pi\nu_i}{L}+\frac{F_i(\{\nu_j\})}{L^2}+\mathcal{O}(L^{-3}), \quad \nu_i\in\mathbb{Z}
$$

and plugging the solutions in

$$
H_{\text{tot}} = \sum_{i=1}^{n} \omega(p_i(\nu))
$$
 up to "wrapping" corrections

Results

Spectrum at $h = 0$ and any $k \in \mathbb{N}$, which agrees with the WZW construction. [Dei, AS '18]

Spectrum at $k = 0$ and any $h > 0$, which displays new intriguing features. [Ekhammar, Volin '21] [Cavaglià, Gromov, Stefanski, Torrielli '21] [Frolov, AS '21] [Brollo, le Plat, AS, Suzuki '23]

S-matrix and dressing factors when $k > 0$ and $h > 0$. [Lloyd, O-Sax, AS, Stefasnki '14] [Frolov, Polvara, AS '23] [O-Sax, Riabchenko, Stefanski '23] [Frolov, Polvara, AS '24]

Weak-tension limit

Recall that the string tension is

$$
T=\sqrt{\frac{k^2}{4\pi^2}+h^2}
$$

Tensionless limit(s):

- $k = 0$ and $h \ll 1$, related to the D1-D5 system of branes
- $k = 1$ and $h \ll 1$, related to the symmetric-orbifold CFT

Weak tension at $k = 1$

At $k=1$ and $h=0$ the CFT dual is the ${\bf symmetric\text{-}orbifold}$ ${\bf CFT}$ of \mathcal{T}^4 : $N\text{-}$ fold tensor product of a free theory, symmetrised under S_{N} .

[Giribet, Hull, Kleban, Porrati, Rabinovici '18] [Gaberdiel, Gopakumar '18] [Eberhardt, Gaberdiel, Gopakumar '19]

Weak tension at $k = 1$

At $k=1$ and $h=0$ the CFT dual is the ${\bf symmetric\text{-}orbifold}$ ${\bf CFT}$ of \mathcal{T}^4 : $N\text{-}$ fold tensor product of a free theory, symmetrised under S_{N} .

[Giribet, Hull, Kleban, Porrati, Rabinovici '18] [Gaberdiel, Gopakumar '18] [Eberhardt, Gaberdiel, Gopakumar '19]

States are labeled by conjugacy classes of S_N (cycles). If $N \to \infty$ consider single-cycle states.

Weak tension at $k = 1$

At $k=1$ and $h=0$ the CFT dual is the ${\bf symmetric\text{-}orbifold}$ ${\bf CFT}$ of \mathcal{T}^4 : $N\text{-}$ fold tensor product of a free theory, symmetrised under S_M .

[Giribet, Hull, Kleban, Porrati, Rabinovici '18] [Gaberdiel, Gopakumar '18] [Eberhardt, Gaberdiel, Gopakumar '19]

States are labeled by conjugacy classes of S_N (cycles). If $N \to \infty$ consider single-cycle states.

This is a $\mathcal{N} = (4, 4)$ theory (4 bosons and fermions). In the sector with a cycle of length L there is a susy BPS state $|0\rangle$, with $J_{tot}|0\rangle = L |0\rangle$. We have

$$
|\Psi_{\{n_i,\tilde{n}_i\}}\rangle = \alpha_{-\frac{n_1}{L}}^{A_1\dot{A}_1}\cdots\chi_{+\frac{1}{2}-\frac{n_r}{L}}^{-\dot{A}_r}\cdots\chi_{-\frac{1}{2}-\frac{n_s}{L}}^{+\dot{A}_s}\cdots(\text{anti-chiral})\,|0\rangle_L
$$

subject to the physical state condition **Example 2018** [Lunin, Mathur '01] [...]

$$
\sum n_i - \sum \tilde{n}_i = 0 \text{ mod } L
$$

Weak tension at $k = 1$: energy at $h = 0$

$$
|\Psi_{\{n_i,\tilde{n}_i\}}\rangle = \alpha_{-\frac{n_1}{L}}^{A_1\dot{A}_1}\cdots\chi_{+\frac{1}{2}-\frac{n_r}{L}}^{-\dot{A}_r}\cdots\chi_{-\frac{1}{2}-\frac{n_s}{L}}^{+\dot{A}_s}\cdots(\text{anti-chiral})\,|0\rangle_L
$$

the lighcone energy from the symmetric orbifold CFT is

$$
H_{\text{tot}} = \sum_{j} \frac{n_i}{L} + \sum_{j} \frac{\tilde{n}_j}{L}
$$

We can reproduce this spectrum by setting $k = 1$ and $h = 0$ in $\omega(p)$

$$
\omega(p) = \frac{1}{2\pi} |p|, \qquad H_{tot} = \sum_j \omega(p_j)
$$

with

$$
p_j = \frac{2\pi\nu_j}{L} \qquad \sum p_j = 0 \text{ mod } 2\pi
$$

Weak tension at $k = 1$: turning on $h > 0$

We want
$$
\{G^{+A}(z), \tilde{G}^{+B}(\bar{z})\}\neq 0
$$
 in the deformed theory

Weak tension at $k = 1$: turning on $h > 0$

We want
$$
\{G^{+A}(z), \tilde{G}^{+B}(\bar{z})\}\neq 0
$$
 in the deformed theory

The marginal operator that correponds to turning RR flux comes from the $L = 2$ sector:

$$
S\to S+\lambda\int \mathsf{d}z\mathsf{d}\bar{z}\,\mathcal{D}_{(2)}(z,\bar{z})
$$

where $\lambda \ll 1$ is a deformation parameter such that $h(\lambda)=c_0\lambda+\mathcal{O}(\lambda^2)$ for $h\ll 1$.

Weak tension at $k = 1$: representations at $h > 0$

In the deformed theory we expect e.g.

$$
\widetilde{\mathbf{G}}_{-1/2}^{+B} \alpha_{-\frac{n}{L}}^{A\dot{A}}|0\rangle_L = c(n,L) \,\varepsilon^{BA} \psi_{+\frac{1}{2}-\frac{n}{L+1}}^{-\dot{A}}|0\rangle_{L+1} \,, \qquad c(n,L) = \mathcal{O}(\lambda),
$$

which only makes sense as $L \to \infty$.

Weak tension at $k = 1$: representations at $h > 0$

In the deformed theory we expect e.g.

$$
\widetilde{\mathbf{G}}_{-1/2}^{+B} \alpha_{-\frac{n}{L}}^{\mathcal{A}\dot{\mathcal{A}}}|0\rangle_{L} = c(n,L) \,\varepsilon^{\mathcal{B}\mathcal{A}} \psi_{+\frac{1}{2}-\frac{n}{L+1}}^{-\dot{\mathcal{A}}}|0\rangle_{L+1}, \qquad c(n,L) = \mathcal{O}(\lambda),
$$

which only makes sense as $L \to \infty$.

The coefficients $c(n, L)$ should give the representations of [Lloyd, O-Sax, AS, Stefanski '14] in the limit

$$
L \to \infty
$$
, $n \to \infty$, $p = \frac{2\pi n}{L}$ fixed

$$
c(n,L) = \oint d\bar{\zeta} \,\lambda \int dz d\bar{z} \,\left\langle \mathcal{V}_{(L+1)}^{(\chi_{-n})}(\infty) \,\widetilde{\mathbf{G}}(\bar{\zeta}) \,\mathcal{D}_{(2)}(z,\bar{z}) \,\mathcal{V}_{(L)}^{(\alpha_{-n})}(0) \right\rangle
$$

$$
c(n,L) = \oint d\bar{\zeta} \,\lambda \int dz d\bar{z} \,\left\langle \mathcal{V}_{(L+1)}^{(\chi_{-n})}(\infty) \,\widetilde{\mathbf{G}}(\bar{\zeta}) \,\mathcal{D}_{(2)}(z,\bar{z}) \,\mathcal{V}_{(L)}^{(\alpha_{-n})}(0) \right\rangle
$$

• [Gava, Narain '02] computed for $n/L \ll 1$; tried to match this with $k = 0$, $h = \mathcal{O}(\lambda)$ strings.

$$
c(n,L) = \oint d\bar{\zeta} \,\lambda \int dz d\bar{z} \,\left\langle \mathcal{V}_{(L+1)}^{(\chi_{-n})}(\infty) \,\widetilde{\mathbf{G}}(\bar{\zeta}) \,\mathcal{D}_{(2)}(z,\bar{z}) \,\mathcal{V}_{(L)}^{(\alpha_{-n})}(0) \right\rangle
$$

- [Gava, Narain '02] computed for $n/L \ll 1$; tried to match this with $k = 0$, $h = \mathcal{O}(\lambda)$ strings.
- \bullet [Gaberdiel, Gopakumar, Nairz '24] computed for n/L fixed (with dubious manipulations to get $L \to \infty$). Matched to $k = 1$ and $h \ll 1$ but mis-identified the representations.

$$
c(n,L) = \oint d\bar{\zeta} \,\lambda \int dz d\bar{z} \,\left\langle \mathcal{V}_{(L+1)}^{(\chi_{-n})}(\infty) \,\widetilde{\mathbf{G}}(\bar{\zeta}) \,\mathcal{D}_{(2)}(z,\bar{z}) \,\mathcal{V}_{(L)}^{(\alpha_{-n})}(0) \right\rangle
$$

- [Gava, Narain '02] computed for $n/L \ll 1$; tried to match this with $k = 0$, $h = \mathcal{O}(\lambda)$ strings.
- \bullet [Gaberdiel, Gopakumar, Nairz '24] computed for n/L fixed (with dubious manipulations to get $L \to \infty$). Matched to $k = 1$ and $h \ll 1$ but mis-identified the representations.
- [AS, Frolov '24] corrected the match, reproduces [Lloyd, O-Sax, Stefanski, Sfondrini '14] at

$$
h(\lambda)=\lambda+\mathcal{O}(\lambda^2)
$$

Weak tension at $k = 0$ (the D1-D5 system)

For worldsheet integrability we know

$$
H_{tot} = \sum_{j=1}^{n} \sqrt{\mu_j^2 + 4h^2 \sin^2(p_j/2)} + \text{corrections}
$$

with momentum $p_i = 2\pi \nu_i/L$ + corrections.

Leading-order anomalous terms come from $\mu=0$ modes, ie from $\mathcal{T}^4.$

Weak tension at $k = 0$ (the D1-D5 system)

For worldsheet integrability we know

$$
H_{tot} = \sum_{j=1}^{n} \sqrt{\mu_j^2 + 4h^2 \sin^2(p_j/2)} + \text{corrections}
$$

with momentum $p_i = 2\pi \nu_i/L$ + corrections.

Leading-order anomalous terms come from $\mu=0$ modes, ie from $\mathcal{T}^4.$

Expand the exact answer

$$
H_{tot}(\nu_1,\ldots\nu_n)=h\,H_{(1)}+\mathcal{O}(h^2),\qquad H_{(1)}\approx\sum_{j=1}^n2\Big|\sin\Big(\frac{\pi\nu_j}{L}\Big)\Big|+\text{corrections}
$$

Weak tension at $k = 0$: numerical results

Two excitations with $\mu = 0$ and $p_1 = -p_2$, ie $\nu_1 = -\nu_2$. [Brollo, le Plat, AS, Suzuki '23]

Weak tension at $k = 0$: Four excitations, $p_1 = -p_2$, $p_3 = -p_4$

Summary

Pure-NSNS (max $B_{\mu\nu}$)

- $\mathfrak{sl}(2)$ \oplus $\mathfrak{su}(2)$ WZW model
- From F1-NS5 system
- Partially known dual
- Quantised tension $k \in \mathbb{N}$
- Simple, degenerate spectrum
- Can do integrability too

Mixed-flux case

- Hardest case
- From generic setup
- Both $h > 0$ and $k \in \mathbb{N}$
- $-$ Dual known for $k = 1$
- Nondegenerate spectrum
- "Only" S-matrix so far

Pure-RR, $B_{\mu\nu}=0$

- Most similar to AdS5
- From D1-D5 system
- Continuous tension $h > 0$
- Nondegenerate spectrum
- Spectrum known
- Weak-tension dual?

[see Seibold, AS '24 for a review and references]

August 25–28, 2025 Stockholm

