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Maximally supersymmetric AdS3 backgrounds

These backgrounds have 16 susys (half of AdSs x S°):

AdSz x S3 x T*, AdS; x §3 x K3, AdS; x S3 x §3 x St
They should be dual to (largely unknown) A = (4,4) two-dimensional SCFTs.
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Maximally supersymmetric AdS3 backgrounds

These backgrounds have 16 susys (half of AdSs x S°):
AdSz x S3 x T*, AdS; x §3 x K3, AdS; x S3 x §3 x St

They should be dual to (largely unknown) A = (4,4) two-dimensional SCFTs.

In this talk | will focus on the planar spectrum of
AdS; x S® x T*

which is actually a family of backgrounds.
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Isometries and spectrum
The AdS; isometries are 50(2,2) = su(1,1)%? = 5[(2, R)®? with generators

Ln,, m=0,+1, L, m=0,=£l.
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Isometries and spectrum
The AdS; isometries are 50(2,2) = su(1,1)%? = 5[(2, R)®? with generators

Ln,, m=0,+1, L, m=0,=£l.
Similarly for S we have s0(4) = s5u(2)“? with generators

18 B=%, 1 a4 p=x,

The energy spectrum is related to global time in AdSs3
EtOt: L0+EQ ER

It will also be convient to consider the lightcone energy

Hiot = Etor — Jtor, Jior = 377 +]+_
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“Simplest” AdS3 backgrounds: pure NSNS backgrounds

Near-horizon limit of k NS5 branes and N > 1 fundamental strings.
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“Simplest” AdS3 backgrounds: pure NSNS backgrounds

Near-horizon limit of k NS5 branes and N > 1 fundamental strings.
In this case, there is only the metric G*” and Kalb-Ramond field B*" so that
H = dB = vol(AdS3) + vol(S®)
The only (interesting) parameter is k = 1,2,3,4,..., which becomes the string tension.

In units where Rags, = Rg3 = 1, the tension is

T=—
21
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“Simplest” AdS3 backgrounds: pure NSNS backgrounds

Near-horizon limit of k NS5 branes and N >> 1 fundamental strings.
In this case, there is only the metric G*” and Kalb-Ramond field B*" so that

H = dB = vol(AdS3) + vol(S®)

The only (interesting) parameter is k = 1,2,3,4,..., which becomes the string tension.

In units where Rags, = Rg3 = 1, the tension is

T=—
21

The classical string action is that of a WZW model. [Giveon, Kutasov, Seiberg '98] [...]
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Pure NSNS backgrouds as WZW models (k > 1)
AdSz x §3 x T* can be realised as a WZW model in the RNS formalism, based on

@2
(5[(2,R)k+2 @ su(2)k_2) Ka&-Moody representations, plus free fermions
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Pure NSNS backgrouds as WZW models (k > 1)
AdSz x §3 x T* can be realised as a WZW model in the RNS formalism, based on

@2
(5[(2,R)k+2 @ su(2)k_2) Ka&-Moody representations, plus free fermions

The short-string spectrum is generated by the modes of the Ka&-Moody currents (and of the
free fermions and free T* bosons) on a reference state |(g, jo), o € R, jo € N. Schematically

Viny) = (a—m : "Ot—n,lfo,jo>) ® (07—51 ' "d—hsfgo,j&)
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Pure NSNS backgrouds as WZW models (k > 1)
AdSz x §3 x T* can be realised as a WZW model in the RNS formalism, based on

@2
(5[(2,R)k+2 @ 5u(2)k_2> Ka&-Moody representations, plus free fermions

The short-string spectrum is generated by the modes of the Ka&-Moody currents (and of the
free fermions and free T* bosons) on a reference state |(g, jo), o € R, jo € N. Schematically

Viny) = (a—m : "Ot—n,lfo,jo>> ® (07—51 ' "d—hsfgo,j&)

The Virasoro constraint gives a quadratic equation for /5 = {o, so that [Maldacena, Ooguri 0] [...]

Etot|Vin.i}) = \/(jo + 1) 2k (T ) (Wi a)
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Spectrum for pure-NSNS backgrouds

For a state of the form
|V iy y) = (O‘fnl : "Oéfn,|fo,jo>> ® <077Fu : "&fﬁswo,jo))

the specturm is

Et°t|w{"j:ﬁj}> = \/(jO + %)2 + 2k (m A4 e iAo i) }w{"jﬁj}>

This is highly degenerate as it does not depend on the individual n;.
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Spectrum for pure-NSNS backgrouds

For a state of the form

W in}) = (Oéfnl : "Oé—n,!fo,jo>> ® <5Lﬁl : "54—775|570Jo>)

the specturm is

. 2 - -
Etot|Vin 7)) = \/(jo +3) 2k (mA4 A4+ ) (Wi ag)
This is highly degenerate as it does not depend on the individual n;.
It is also much simpler than what happens for RR backgrounds like AdSs and AdS;.

(There is also a “long string” continuum spectrum.)
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Mixed-flux backgrouds

It is possible to continuously turn on a RR flux for fixed k, e.g. by switching on an axion in
the F1-NS5 system. [O-Sax, Stefanski '18]
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Mixed-flux backgrouds

It is possible to continuously turn on a RR flux for fixed k, e.g. by switching on an axion in

the F1-NS5 system. [O-Sax, Stefanski '18]

This gives a IIB background with the same metric but fluxes

H =dB = q (vol(AdS3) +vol(S®)) ,  F3=+/1— q? (vol(AdS3) + vol(5?)) .
where 0 < g < 1 is a new parameter. The tension is now larger
-1k
q2m
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Mixed-flux backgrouds

It is possible to continuously turn on a RR flux for fixed k, e.g. by switching on an axion in

the F1-NS5 system. [O-Sax, Stefanski '18]

This gives a IIB background with the same metric but fluxes

H =dB = q (vol(AdS3) +vol(S®)) ,  F3=+/1— q? (vol(AdS3) + vol(5?)) .
where 0 < g < 1 is a new parameter. The tension is now larger
-1k
q2m

It is convenient to use two parameters, h > 0 and kK € N

k
h = 1—q2T7 :qT, T = h2+4 .
27
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Mixed and pure-RR background

We expect that turning on h > 0 will lift the degeneracies of the spectrum, and give rather
intricate expression for the energies (like for AdSs x S°).

It is very difficult to compute the spectrum in the RNS formalism. [Cho, Collier, Yin '20]
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Mixed and pure-RR background

We expect that turning on h > 0 will lift the degeneracies of the spectrum, and give rather
intricate expression for the energies (like for AdSs x S°).

It is very difficult to compute the spectrum in the RNS formalism. [Cho, Collier, Yin '20]
There is also a family of pure-RR backgrounds, for which
k=0 = Bu,=0, h>0

They arise from the D1-D5 system, and are even harder to study in the RNS formalism.
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Integrability: an alternative way to quantise the string

The classical Green-Schwarz action for AdSz x S3 x T# is integrable for any h, k.

[Cagnazzo, Zarembo '12]

This provides a scheme to quantise the model in lightcone gauge, like for AdSs x S°.

[Arutyunov, Frolov, Zamaklar '06] [...]

Using this approach, one may compute the spectrum for any k, h, as we shall see.

8/26



Lightcone gauge for the GS string
Schematically we take ¢ € S3 and t € AdS; to make ligthcone coordinates X* and set:

Xt =7 & P_=1 where P”:<5((i{f§5“)
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Lightcone gauge for the GS string

Schematically we take ¢ € S3 and t € AdS; to make ligthcone coordinates X* and set:

Xt =7 & P_=1 where 77”:5((?;5‘?3)

The worldsheet Hamiltonian H,, s is precisely H;.;
L
Hys = — /dO‘P+ = Etor — Jtor = Hior
0

For convenience we split Hior = H + H = (Lo—J"7) + (to — ]+_).
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Lightcone gauge for the GS string
Schematically we take ¢ € S3 and t € AdS; to make ligthcone coordinates X* and set:

Xt =7 & P_=1 where 77”:5((?;5‘?3)

The worldsheet Hamiltonian H,, s is precisely H;.;
L
Hys = — /dO‘P+ = Etor — Jtor = Hior
0

For convenience we split Hior = H + H = (Lo—J"7) + (to — ]+_).

The worldsheet size L is also fixed
L
L= /dO'P = J+_ +]+_ = Jtot
0
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Symmetries

The full symmetry algebra is psu(1, 1|2)®2, with BPS bound

H=L—J"">0, H=L—-J"">0 = Hy>0
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Symmetries

The full symmetry algebra is psu(1, 1|2)®2, with BPS bound

H=L—J"">0, H=L—J"">0 = Hy>0

The AdS3 x S x T* Killing spinors fit in psu(1,1]2)®? as
GY\, m=+3 a=+  G¥ m=+i a=+,

and A= 1,2 is common to the two families.
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Symmetries

The full symmetry algebra is psu(1, 1|2)®2, with BPS bound

H=L,-Jt >0,

The AdS3 x S x T* Killing spinors fit in psu(1,1]2)®? as
G, m==£l a=x = G

and A= 1,2 is common to the two families.

In lightcone gauge, only half of the supercharges survive.
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Symmetries in lightcone gauge
There are four “left” and four “right” superchages

GA G A=1,2, GA GHA A=12
T2 2 +3 3
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Symmetries in lightcone gauge

There are four “left” and four “right” superchages

GA G A=1,2, GA GHA A=12
T2 2 +3 3

Their algebra is quite simple when J;or ~ L — 00

{67.6,8} =="H, {6,620} ="H.

11/26



Symmetries in lightcone gauge

There are four “left” and four “right” superchages

G4, G+/f, A=1,2, GA GHA A=12
+ & -

Their algebra is quite simple when J;or ~ L — 00
A ~-B AB A AB R
{67,677} =<""H, {G+ c-: } H,

{G+A G B} _ EAB Cf;

(614,655} = Actt |
2

T

N\»—l
m

[Borsato, O-Sax, AS '12] [Lloyd, O-Sax, AS,

1 )
+3,13

Stefanski '1

4]
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Symmetries in lightcone gauge

There are four “left” and four “right” superchages

GA G A=1,2, GA GHA A=12
T2 2 +3 3

Their algebra is quite simple when J;or ~ L — 00
(G465} =B, (GH,GB) =€ R,
2 T2 -3 +3

{GMGTB} =BT ., (GAGE=eMC ] .,
-7 _1 _1_ 17 174 1,17
2 2 272 2 2 +3713

[Borsato, O-Sax, AS '12] [Lloyd, O-Sax, AS, Stefanski '14]

The charges C = C+1+ . and Cf = C*j ., are central extensions due to the gauge fixing.

1
272 +3.13
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On the central extensions
If we consider an asymptotic state on the worldsheet (at L — o0)

1P1, -+ oy = Al(p1) -+ AT(pn)|0)1
we find n
i T
Clos,. - pabe = 5 (0420 — 1) py, .. pa)

Level-matching: p1 + - -+ p, = 0 mod27.
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On the central extensions
If we consider an asymptotic state on the worldsheet (at L — o0)
P1s- - pa)L = Al(p1) - - - AT(pn)[0)1
we find .
ih( gitprt-tpn)
C|pl7---Pn>L:5(e " —1) |p1, .- pn)L

Level-matching: p1 + - -+ p, = 0 mod27.
Fundamental excitations of the model (the modes of the transverse AdS; x S3 x T*) obey
HH =C'C

This allows to derive an exact dispersion relation w(p)

n

Hiot [P1, .- pn)L = Z’w'(Pj) Py Pa)L -
j=1
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The dispersion relation
Exact dispersion relation (L = OO)Z [Hoare, Stepanchuk, Tseytlin '13] [Lloyd, O-Sax, AS, Stefanski '14]

w(p) = \/<2l;p + M)2 + 4h2 sin? (g),

where 4 =0,1,... k — 1 labels the representations.
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The dispersion relation

Exact dispersion relation (L = OO)Z [Hoare, Stepanchuk, Tseytlin '13] [Lloyd, O-Sax, AS, Stefanski '14]

k 2
- | (o) s (3),
where 4 =0,1,... k — 1 labels the representations.

If h =0, it is chiral (WZW model) [Baggio, AS '17] [Dei, AS '18]

k

If Kk =0, periodic (|Ike for AdSs x 55) [Borsato, O-Sax, AS '12]

w(p) = \//ﬂ + 4h2 sin? (g), weZ
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S-matrix and spectrum

The symmetries allow to fix an S matrix for worldsheet excitations

S AL(P1)AL(P2) [0)c = €"1PP2) SSE (p1, p2) AL(p2)Ali(pa) 10)cc

The dressing factor ®(p1, p2) is hardest to fix.
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S-matrix and spectrum

The symmetries allow to fix an S matrix for worldsheet excitations

S Al(p1)AY(P2) 10)00 = &P 7) SF (py. p2) AL(p2) Al (p4) [0}

The dressing factor ®(p1, p2) is hardest to fix.

The energy spectrum at fixed L is then fixed by taking

ioil n . 271'1/,' F,'({I/j}) _3
e Hs(phpj):]-? i=1...n = p= L + 12 +O(L )7 vi €L
Jj=1

and plugging the solutions in

n

Hiot = Zw(p,-(y)) up to “wrapping” corrections
i=1
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Results

Spectrum at h = 0 and any k € N, which agrees with the WZW construction. [Dei, AS '18]

Spectrum at k = 0 and any h > 0, which displays new intriguing features.
[Ekhammar, Volin '21] [Cavaglia, Gromov, Stefanski, Torrielli '21] [Frolov, AS '21] [Brollo, le Plat, AS, Suzuki '23]

S-matrix and dressing factors when k > 0 and h > 0.
[Lloyd, O-Sax, AS, Stefasnki '14] [Frolov, Polvara, AS '23] [O-Sax, Riabchenko, Stefanski '23] [Frolov, Polvara, AS '24]
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Weak-tension limit

Recall that the string tension is
| k2 5
T=\-—+h
472 +
Tensionless limit(s):

@ k=0 and h < 1, related to the D1-D5 system of branes

@ k=1 and h < 1, related to the symmetric-orbifold CFT
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Weak tension at k=1

At k =1 and h = 0 the CFT dual is the symmetric-orbifold CFT of T*: N-fold tensor
product of a free theory, symmetrised under Sy.
[Giribet, Hull, Kleban, Porrati, Rabinovici '18] [Gaberdiel, Gopakumar '18] [Eberhardt, Gaberdiel, Gopakumar '19]
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Weak tension at k=1

At k =1 and h = 0 the CFT dual is the symmetric-orbifold CFT of T*: N-fold tensor
product of a free theory, symmetrised under Sy.
[Giribet, Hull, Kleban, Porrati, Rabinovici '18] [Gaberdiel, Gopakumar '18] [Eberhardt, Gaberdiel, Gopakumar '19]

States are labeled by conjugacy classes of Sy (cycles). If N — oo consider single-cycle states.

This is a N = (4,4) theory (4 bosons and fermions). In the sector with a cycle of length L
there is a susy BPS state |0); with J;[0); = L|0),. We have

Winay) =oAL (antichiral) [0),
o T T2l 3T

subject to the physical state condition [Lunin, Mathur '01] [...]
Zn;—Zﬁ;zO mod L

17/26



Weak tension at kK = 1: energy at h=20

Viniy) = aAlﬁ?l xf'i\’ o X+’§‘S s - - - (anti-chiral) [0)

L
the lighcone energy from the symmetric orbifold CFT is

n, n; J
Hiot = g

J

We can reproduce this spectrum by setting k =1 and h =0 in w(p)

1
w(p) = olpl,  Hror = Zw(pj)
J
with )
pj = 72”’ ij =0 mod 27
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Weak tension at kK = 1: turning on h >0

We want {G+A(z), E*B(Z)} #0 in the deformed theory
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Weak tension at kK = 1: turning on h >0

We want {G+A(z), EJ*B(Z)} #0 in the deformed theory

The marginal operator that correponds to turning RR flux comes from the L = 2 sector:

S—S+ )\/dZdE'DQ)(Z, )

where \ < 1 is a deformation parameter such that h(\) = g\ + O(A\?) for h < 1.
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Weak tension at kK = 1: representations at h > 0

In the deformed theory we expect e.g.

=N

GHE, oa™M0) = c(n, 1)ePAu ! L (01, c(n, 1) = O(),
L 27 [+1

which only makes sense as L — oc.
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Weak tension at kK = 1: representations at h > 0

In the deformed theory we expect e.g.

GIPp 02410 = e(n, )Py 1, [0)14a,

which only makes sense as L — oc.

The coefficients c(n, L) should give the representations of [Lioyd, O-Sax, AS, Stefanski '14] in the

limit

m™n
L—>OC‘, n— oo, p:T

fixed
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Weak tension at kK = 1: computing the representation coefficients

(n, L) fdg )\/dzdz (53(00) G(Q) Doy(2.2) Vi (0)
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Weak tension at kK = 1: computing the representation coefficients

(n,L) 7{ dé A / dzdz %;g 0) G({) Do) (2. 2) V((Z")—")(O)>

@ [Gava, Narain '02] computed for n/L < 1; tried to match this with k = 0, h = O()) strings.
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Weak tension at kK = 1: computing the representation coefficients

(n,L) fdg )\/dzdz %;g 0) G({) Do) (2. 2) V((f‘)—")(O)>
@ [Gava, Narain '02] computed for n/L < 1; tried to match this with k = 0, h = O()) strings.

@ [Gaberdiel, Gopakumar, Nairz '24] computed for n/L fixed (with dubious manipulations to get
L — 00). Matched to k =1 and h < 1 but mis-identified the representations.
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Weak tension at kK = 1: computing the representation coefficients

c(n, L) fﬁgA/dmz (ﬁg )G@)qa@j)ﬁgﬂm»

@ [Gava, Narain '02] computed for n/L < 1; tried to match this with k = 0, h = O()) strings.

@ [Gaberdiel, Gopakumar, Nairz '24] computed for n/L fixed (with dubious manipulations to get
L — 00). Matched to k =1 and h < 1 but mis-identified the representations.

@ [AS, Frolov '24] corrected the match, reproduces [Lloyd, O-Sax, Stefanski, Sfondrini '14] at

h(A) = X+ 0O(\?)
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Weak tension at k = 0 (the D1-D5 system)

For worldsheet integrability we know

n
Hiot = Z \/“12 + 4h2 sin®(p;/2) + corrections
j=1

with momentum p; = 27v; /L + corrections.

Leading-order anomalous terms come from z = 0 modes, ie from T4
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Weak tension at k = 0 (the D1-D5 system)

For worldsheet integrability we know

n
Hiot = Z \/“12 + 4h2 sin®(p;/2) + corrections
j=1

with momentum p; = 27v; /L + corrections.
Leading-order anomalous terms come from z = 0 modes, ie from T4

Expand the exact answer

n

Hiot(v1,...vp) = h Hy + (’)(h2), Hy ~ Z 2‘ sin (LLVJ)’ + corrections
j=1
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Weak tension at kK = 0: numerical results

Two excitations with ;4 = 0 and p; = —p», ie ¥1 = —15. [Brollo, le Plat, AS, Suzuki '23]
44 L=4 e 9 44 L=16 ”‘_r—‘—x
,,/’ ,’K,’
3’ ,//’ 3, ,,/
,/,X ,’/%
— 7 — ’
- /, B :l /'><
fo o ° 2 T o o
s R
/ e
1 el e Exact 1- e
/,/' X Bethe-Yang /,7.(
4 —-—-— /
o- L, V1 Free 0 L, V1
0 1 2 0 2 4 6 8

23/26



Weak tension at k = 0: Four excitations, py = —p>, p3 = —ps

8 L=16 BT
/”’ -
-7 R
T T %
= el e
7 e e’ )
47 - P >.< ’/’X [ J
,/>< ’¢§< [ ]
7 e ,5{ °
51 % ° L] \)1_1
X ° ° vi=4
-7 e o Vv
0 Vs =0
0 2 4 6 8
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Summary

Pure-NSNS (max B,,)

- 5((2) & su(2) WZW model

— From F1-NS5 system

— Partially known dual

— Quantised tension k € N

— Simple, degenerate spectrum

— Can do integrability too

Mixed-flux case

— Hardest case

— From generic setup

— Both h>0and ke N
— Dual known for k =1

— Nondegenerate spectrum

— “Only” S-matrix so far

Pure-RR, B,, =0

— Most similar to AdS5

— From D1-D5 system

— Continuous tension h > 0
— Nondegenerate spectrum
— Spectrum known

— Weak-tension dual?

[see Seibold, AS '24 for a review and references]
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