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Maximally supersymmetric AdS3 backgrounds

These backgrounds have 16 susys (half of AdS5 × S5):

AdS3 × S3 × T 4, AdS3 × S3 × K3, AdS3 × S3 × S3 × S1

They should be dual to (largely unknown) N = (4, 4) two-dimensional SCFTs.

In this talk I will focus on the planar spectrum of

AdS3 × S3 × T 4

which is actually a family of backgrounds.
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Isometries and spectrum
The AdS3 isometries are so(2, 2) ∼= su(1, 1)⊕2 ∼= sl(2,R)⊕2 with generators

Lm , m = 0,±1 , L̃ṁ , ṁ = 0,±1.

Similarly for S3 we have so(4) ∼= su(2)⊕2 with generators

Jαβ, α, β = ± , J̃α̇β̇, α̇, β̇ = ± ,

The energy spectrum is related to global time in AdS3

Etot = L0 + L̃0 ∈ R

It will also be convient to consider the lightcone energy

Htot = Etot − Jtot , Jtot = J+− + J̃+−
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“Simplest” AdS3 backgrounds: pure NSNS backgrounds

Near-horizon limit of k NS5 branes and N ≫ 1 fundamental strings.

In this case, there is only the metric Gµν and Kalb-Ramond field Bµν so that

H = dB = vol(AdS3) + vol(S3)

The only (interesting) parameter is k = 1, 2, 3, 4, . . . , which becomes the string tension.

In units where RAdS3 = RS3 = 1, the tension is

T =
k

2π

The classical string action is that of a WZW model. [Giveon, Kutasov, Seiberg ’98] [. . . ]
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Pure NSNS backgrouds as WZW models (k > 1)

AdS3 × S3 × T 4 can be realised as a WZW model in the RNS formalism, based on(
sl(2,R)k+2 ⊕ su(2)k−2

)⊕2
Kač-Moody representations, plus free fermions

The short-string spectrum is generated by the modes of the Kač-Moody currents (and of the
free fermions and free T 4 bosons) on a reference state |ℓ0, j0⟩, ℓ0 ∈ R, j0 ∈ N. Schematically∣∣Ψ{nj ,ñj}

〉
=

(
α−n1 · · ·α−nr |ℓ0, j0⟩

)
⊗
(
α̃−ñ1 · · · α̃−ñs |ℓ̃0, j0⟩

)
The Virasoro constraint gives a quadratic equation for ℓ0 = ℓ̃0, so that [Maldacena, Ooguri ’00] [. . . ]

Etot

∣∣Ψ{nj ,ñj}
〉
=

√(
j0 +

1
2

)2
+ 2k (n1 + · · ·+ nr + ñ1 + · · ·+ ñs)

∣∣Ψ{nj ,ñj}
〉
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Spectrum for pure-NSNS backgrouds

For a state of the form∣∣Ψ{nj ,ñj}
〉
=

(
α−n1 · · ·α−nr |ℓ0, j0⟩

)
⊗

(
α̃−ñ1 · · · α̃−ñs |ℓ̃0, j0⟩

)
the specturm is

Etot

∣∣Ψ{nj ,ñj}
〉
=

√(
j0 +

1
2

)2
+ 2k (n1 + · · ·+ nr + ñ1 + · · ·+ ñs)

∣∣Ψ{nj ,ñj}
〉

This is highly degenerate as it does not depend on the individual nj .

It is also much simpler than what happens for RR backgrounds like AdS5 and AdS4.

(There is also a “long string” continuum spectrum.)
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Mixed-flux backgrouds

It is possible to continuously turn on a RR flux for fixed k , e.g. by switching on an axion in
the F1-NS5 system. [O-Sax, Stefanski ’18]

This gives a IIB background with the same metric but fluxes

H = dB = q
(
vol(AdS3) + vol(S3)

)
, F3 =

√
1− q2

(
vol(AdS3) + vol(S3)

)
.

where 0 < q ≤ 1 is a new parameter. The tension is now larger

T =
1

q

k

2π

It is convenient to use two parameters, h ≥ 0 and k ∈ N

h =
√
1− q2T ,

k

2π
= qT , T =

√
h2 +

k2

4π2
.
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Mixed and pure-RR background

We expect that turning on h > 0 will lift the degeneracies of the spectrum, and give rather
intricate expression for the energies (like for AdS5 × S5).

It is very difficult to compute the spectrum in the RNS formalism. [Cho, Collier, Yin ’20]

There is also a family of pure-RR backgrounds, for which

k = 0 ⇒ Bµν = 0, h > 0

They arise from the D1-D5 system, and are even harder to study in the RNS formalism.
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Integrability: an alternative way to quantise the string

The classical Green-Schwarz action for AdS3 × S3 × T 4 is integrable for any h, k .

[Cagnazzo, Zarembo ’12]

This provides a scheme to quantise the model in lightcone gauge, like for AdS5 × S5.

[Arutyunov, Frolov, Zamaklar ’06] [. . . ]

Using this approach, one may compute the spectrum for any k , h, as we shall see.
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Lightcone gauge for the GS string
Schematically we take ϕ ∈ S3 and t ∈ AdS3 to make ligthcone coordinates X± and set:

X+ = τ & P− = 1 where Pµ =
δSGS

δ(∂τXµ)

The worldsheet Hamiltonian Hw .s. is precisely Htot

Hw .s. = −
L∫

0

dσP+ = Etot − Jtot = Htot

For convenience we split Htot = H+ H̃ =
(
L0 − J+−)+ (

L̃0 − J̃+−).

The worldsheet size L is also fixed

L =

L∫
0

dσP− = J+− + J̃+− = Jtot
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Symmetries

The full symmetry algebra is psu(1, 1|2)⊕2, with BPS bound

H ≡ L0 − J+− ≥ 0 , H̃ ≡ L̃0 − J̃+− ≥ 0 ⇒ Htot ≥ 0

The AdS3 × S3 × T 4 Killing spinors fit in psu(1, 1|2)⊕2 as

GαA
m , m = ±1

2 , α = ±, G̃α̇A
ṁ , ṁ = ±1

2 , α̇ = ±,

and A = 1, 2 is common to the two families.

In lightcone gauge, only half of the supercharges survive.
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Symmetries in lightcone gauge

There are four “left” and four “right” superchages

G−A
+ 1

2

, G+A
− 1

2

, A = 1, 2, G̃−̇A

+̇ 1
2

, G̃+̇A

−̇ 1
2

, A = 1, 2

Their algebra is quite simple when Jtot ∼ L → ∞{
G+A

− 1
2

,G−B
+ 1

2

}
= εAB H ,

{
G̃+̇A

−̇ 1
2

, G̃−̇B

+̇ 1
2

}
= εAB H̃ ,

{
G+A

− 1
2

, G̃+̇B

−̇ 1
2

}
= εAB C++̇

− 1
2
,−̇ 1

2

,
{
G̃+̇A

−̇ 1
2

,G−B
+ 1

2

}
= εAB C−−̇

+ 1
2
,+̇ 1

2

,

[Borsato, O-Sax, AS ’12] [Lloyd, O-Sax, AS, Stefanski ’14]

The charges C ≡ C++̇

− 1
2
,−̇ 1

2

and C† ≡ C−−̇
+ 1

2
,+̇ 1

2

are central extensions due to the gauge fixing.
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On the central extensions
If we consider an asymptotic state on the worldsheet (at L → ∞)

|p1, . . . pn⟩L ≡ A†(p1) · · ·A†(pn)|0⟩L

we find

C|p1, . . . pn⟩L =
ih

2

(
e i(p1+···+pn) − 1

)
|p1, . . . pn⟩L

Level-matching: p1 + · · ·+ pn = 0 mod2π.

Fundamental excitations of the model (the modes of the transverse AdS3 × S3 × T 4) obey

HH̃ = C†C

This allows to derive an exact dispersion relation ω(p)

Htot |p1, . . . pn⟩L =
n∑

j=1

ω(pj) |p1, . . . pn⟩L .
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The dispersion relation
Exact dispersion relation (L = ∞): [Hoare, Stepanchuk, Tseytlin ’13] [Lloyd, O-Sax, AS, Stefanski ’14]

ω(p) =

√(
k

2π
p + µ

)2

+ 4h2 sin2
(p
2

)
,

where µ = 0, 1, . . . k − 1 labels the representations.

If h = 0, it is chiral (WZW model) [Baggio, AS ’17] [Dei, AS ’18]

ω(p) =
∣∣∣ k
2π

p + µ
∣∣∣ , µ = 0, 1, . . . k − 1.

If k = 0, periodic (like for AdS5 × S5) [Borsato, O-Sax, AS ’12]

ω(p) =

√
µ2 + 4h2 sin2

(p
2

)
, µ ∈ Z
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ω(p) =

√
µ2 + 4h2 sin2

(p
2

)
, µ ∈ Z
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S-matrix and spectrum
The symmetries allow to fix an S matrix for worldsheet excitations

S A†
a(p1)A

†
b(p2) |0⟩∞ = e iΦ(p1,p2) Scd

ab (p1, p2) A
†
c(p2)A

†
d(p4) |0⟩∞

The dressing factor Φ(p1, p2) is hardest to fix.

The energy spectrum at fixed L is then fixed by taking

e ipiL
n∏

j=1

S(pi , pj) = 1 , i = 1, . . . n ⇒ pi =
2πνi
L

+
Fi ({νj})

L2
+O(L−3), νi ∈ Z

and plugging the solutions in

Htot =
n∑

i=1

ω(pi (ν)) up to “wrapping” corrections
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Results

Spectrum at h = 0 and any k ∈ N, which agrees with the WZW construction. [Dei, AS ’18]

Spectrum at k = 0 and any h > 0, which displays new intriguing features.
[Ekhammar, Volin ’21] [Cavaglià, Gromov, Stefanski, Torrielli ’21] [Frolov, AS ’21] [Brollo, le Plat, AS, Suzuki ’23]

S-matrix and dressing factors when k > 0 and h > 0.
[Lloyd, O-Sax, AS, Stefasnki ’14] [Frolov, Polvara, AS ’23] [O-Sax, Riabchenko, Stefanski ’23] [Frolov, Polvara, AS ’24]
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Weak-tension limit

Recall that the string tension is

T =

√
k2

4π2
+ h2

Tensionless limit(s):

k = 0 and h ≪ 1, related to the D1-D5 system of branes

k = 1 and h ≪ 1, related to the symmetric-orbifold CFT
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Weak tension at k = 1

At k = 1 and h = 0 the CFT dual is the symmetric-orbifold CFT of T 4: N-fold tensor
product of a free theory, symmetrised under SN .

[Giribet, Hull, Kleban, Porrati, Rabinovici ’18] [Gaberdiel, Gopakumar ’18] [Eberhardt, Gaberdiel, Gopakumar ’19]

States are labeled by conjugacy classes of SN (cycles). If N → ∞ consider single-cycle states.

This is a N = (4, 4) theory (4 bosons and fermions). In the sector with a cycle of length L
there is a susy BPS state |0⟩L with Jtot |0⟩L = L |0⟩L. We have

|Ψ{ni ,ñi}⟩ = αA1Ȧ1

− n1
L

· · ·χ−Ȧr

+ 1
2
− nr

L

· · ·χ+Ȧs

− 1
2
− ns

L

· · · (anti-chiral) |0⟩L

subject to the physical state condition [Lunin, Mathur ’01] [. . . ]∑
ni −

∑
ñi = 0 mod L
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ñi = 0 mod L

17 / 26



Weak tension at k = 1: energy at h = 0

|Ψ{ni ,ñi}⟩ = αA1Ȧ1

− n1
L

· · ·χ−Ȧr

+ 1
2
− nr

L

· · ·χ+Ȧs

− 1
2
− ns

L

· · · (anti-chiral) |0⟩L

the lighcone energy from the symmetric orbifold CFT is

Htot =
∑
j

ni
L

+
∑
j

ñj
L

We can reproduce this spectrum by setting k = 1 and h = 0 in ω(p)

ω(p) =
1

2π
|p| , Htot =

∑
j

ω(pj)

with

pj =
2πνj
L

∑
pj = 0 mod 2π
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Weak tension at k = 1: turning on h > 0

We want
{
G+A(z), G̃ +̇B(z̄)

}
̸= 0 in the deformed theory

The marginal operator that correponds to turning RR flux comes from the L = 2 sector:

S → S + λ

∫
dzdz̄ D(2)(z , z̄)

where λ≪ 1 is a deformation parameter such that h(λ) = c0λ+O(λ2) for h ≪ 1.
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Weak tension at k = 1: representations at h > 0

In the deformed theory we expect e.g.

G̃+̇B
−1/2 α

AȦ
− n

L
|0⟩L = c(n, L) εBAψ−Ȧ

+ 1
2
− n

L+1

|0⟩L+1 , c(n, L) = O(λ),

which only makes sense as L → ∞.

The coefficients c(n, L) should give the representations of [Lloyd, O-Sax, AS, Stefanski ’14] in the
limit

L → ∞, n → ∞, p =
2πn

L
fixed
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Weak tension at k = 1: computing the representation coefficients

c(n, L) =

∮
dζ̄ λ

∫
dzdz̄

〈
V(χ−n)
(L+1)(∞) G̃(ζ̄) D(2)(z , z̄) V

(α−n)
(L) (0)

〉

[Gava, Narain ’02] computed for n/L ≪ 1; tried to match this with k = 0, h = O(λ) strings.

[Gaberdiel, Gopakumar, Nairz ’24] computed for n/L fixed (with dubious manipulations to get
L → ∞). Matched to k = 1 and h ≪ 1 but mis-identified the representations.

[AS, Frolov ’24] corrected the match, reproduces [Lloyd, O-Sax, Stefanski, Sfondrini ’14] at

h(λ) = λ+O(λ2)
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Weak tension at k = 0 (the D1-D5 system)

For worldsheet integrability we know

Htot =
n∑

j=1

√
µ2j + 4h2 sin2(pj/2) + corrections

with momentum pj = 2πνj/L + corrections.

Leading-order anomalous terms come from µ = 0 modes, ie from T 4.

Expand the exact answer

Htot(ν1, . . . νn) = h H(1) +O(h2), H(1) ≈
n∑

j=1

2
∣∣∣ sin(πνj

L

)∣∣∣+ corrections
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Weak tension at k = 0: numerical results

Two excitations with µ = 0 and p1 = −p2, ie ν1 = −ν2. [Brollo, le Plat, AS, Suzuki ’23]
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Weak tension at k = 0: Four excitations, p1 = −p2, p3 = −p4
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Summary

Pure-RR, Bµν = 0

– Most similar to AdS5

– From D1-D5 system

– Continuous tension h > 0

– Nondegenerate spectrum

– Spectrum known

– Weak-tension dual?

Pure-NSNS (max Bµν)

– sl(2)⊕ su(2) WZW model

– From F1-NS5 system

– Partially known dual

– Quantised tension k ∈ N

– Simple, degenerate spectrum

– Can do integrability too

Mixed-flux case

– Hardest case

– From generic setup

– Both h > 0 and k ∈ N

– Dual known for k = 1

– Nondegenerate spectrum

– “Only” S-matrix so far

[see Seibold, AS ’24 for a review and references]
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