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This talk in three slides

e Relativistic hydrodynamics: EFT for IR behavior of conserved currents.
= Instrumental in nuclear physics, astrophysics and cosmology.

e When stochastic fluctuations are negligible, relativistic hydrodynamics is a classical
EFT built in a gradient expansion: operators + transport coefficients

Tuw = Ty = alTIV (U, = €[T1Au Va U™ + O(V?)



Does an arbitrary sequence of transport coefficients define
a valid theory of relativistic hydrodynamics?



e No!

e Relativistic causality implies that all consistent theories of relativistic hydrodynamics
are contained inside a universal convex geometry in the infinite-dimensional space of
transport coefficients: the hydrohedron.



The actual talk

1. Basics

2. The natural UV cutoff of relativistic hydrodynamics

3. Two-sided bounds on transport and the hydrohedron



Basics



QFT near thermal equilibrium
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In this talk: relativistic hydrodynamics () linear response theory



Linear response basics

e Basic object: retarded two-point function.

Gr(x,y) = —i0(x* = y°)([O(x), O)]) — Gr(w,k), p* = (w,k), k= (k,0).

e Basic notion: mode. A mode is a singularity of Gg(w, k) characterized by a

dispersion relation
w = w(k).

» Modes organize the spatiotemporal response of the equilibrium state to external
perturbations,

(O(t, x)) :/kp(t, k)™, p(t,k) = ety (k) + ...

e In holography, modes = single poles of Gg(w, k) = black brane quasinormal modes.



Two fundamental kinds of modes: hydrodynamic vs nonhydrodynamic
» Hydrodynamic, wy(k) — 0 for k — 0: long-lived and slowly-varying excitation.

» Nonhydrodynamic, wyy(0) finite: transient excitation.
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Dispersion relations and the hydrodynamic gradient expansion

e The crucial fact for us is that relativistic hydrodynamics predicts the small-k
expansion of the dispersion relations,

oo
w(k):Zan"7 Cn:an‘i”.ﬂm
n=1

e cp: transport coefficients.

e Example: hydrodynamic shear and sound modes of a neutral relativistic fluid,

.
Wenear(k) = —iDK2 + ..., wE (k) =dck— i§k2 +...

sound



Relativistic causality

Relativistic causality imposes a positivity constraint on w(k)

e Causality: Gg(x,0) = 0 outside the future lightcone.

= |f Ggr(x,0) is a tempered distribution, then Gg(p) is analytic in the open future
lightcone of Im(p),

p* = (w, k), —Im(w)?>+Im(k)>2 <0, Im(w)> 0.
[Streater & Wightman, '89] [Haag, '92]

= All dispersion relations must obey the fundamental causality condition

[Im(K)] — Im(w(k)) > 0



Analyticity

e We will assume that the dispersion relations in the microscopic QFT are analytic at
k =0.

= This means that their small-k expansion can be matched exactly to the prediction
of relativistic hydrodynamics.

» Physically, the absence of nonanalytic terms implies that stochastic fluctuations are
negligible.

» This assumption restricts us to large-N QFTs.



Relativistic causality & analyticity consequences

In the rest of the talk, we will explore the consequences
of the causality inequality and analyticity

e Sanity check: at low orders,

| <1,D>0.

e This is just the tip of the iceberg: relativistic causality & analyticity impose
powerful nontrivial constraints on relativistic transport.

e These constraints take the form of a novel infinite set of two-sided bounds on all
the transport coefficients.

e These two-sided bounds are optimal when expressed in units of R, the
convergence radius of the small-k expansion.



A word on bounds on transport

e Bounds on transport are not a new topic. Most celebrated example:
Kovtun-Son-Starinets conjecture,

h
47T'kB.

w3

e Our methods cannot prove such Planckian lower bounds on diffusivities (see
2310.16948 by Delacrétaz for advances on this front).

e They do provide the sharp counterpart of previous qualitative upper bounds on the
diffusivity obtained from causality considerations (see 1706.00019 by Hartman,
Hartnoll & Mahajan).



The natural UV cutoff of relativistic
hydrodynamics




Empirical properties of R

e R can be measured or computed explicitly provided the underlying microscopic QFT
is known.

e R has been under intense scrutiny in holography in recent years.

[Withers, '18] [Grozdanov, Kovtun, Starinets & Tadic, '19] [Abbasi & Tahery, '20]
[Jansen & Pantelidou, '20] [Aredn, Davison, Goutéraux & Suzuki, '20] [Baggioli, Gran
& Tornso, '21] [Wu, Baggioli & Li, '21] [Asadi, Soltanpanahi & Taghinavaz, '21]
[Grozdanov, Starinets & Tadic, '21] [Jeong, Kim & Sun, '21] [Huh, Jeong, Kim &
Sun, '21] [Liu & Wu, '21] [Cartwright, Amano, Kaminski, Noronha & Speranza,
21]...

e In every example known to date, R is finite and set by a branch-point singularity of
w(k).



First-principle constraints on R

The empirical properties of R follow from the causality condition and analyticity
[arXiv:2212.07434].

1. If w(k) is entire, it is a polynomial of at most degree one,
w(k) = ¢o + c1k.

= Since dissipative transport coefficients appear at O(k?) or higher, R is finite in any
dissipative relativistic theory of transport.

= R is set by the singularity of w(k) closest to the origin in the complex k-plane.

2. If w(k) has a pole of any finite order, it violates the causality condition sufficiently
close to it.

= R is set by a branch-point singularity.



Nonhydrodynamic modes are inevitable

Example: (T,.).

(a)

(b)

(c)

(a-+b)

(a-+b+c)

(shear)

Relativistic hydrodynamics predicts a single wy in the shear
channel.

. . (shear) . . .
Our analysis predicts that w;; is endowed with a branch-point
singularity.
Rotational invariance implies that shear and sound modes degenerate
at k =0.
Going through the branch cut of w(;hear) to the secondary sheet, we

must find a nonhydrodynamic shear mode at k = 0.

There has to be a nonhydrodynamic mode in the sound channel as well.



R as a UV cutoff

e R marks the momentum scale at which nonhydrodynamic degrees of freedom
become relevant and cannot be neglected anymore.

= Natural UV cutoff of relativistic hydrodynamics in the linear response regime.

e This general interpretation of R agrees with all the previous explicit examples in
holography: mode collisions.
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From arXiv:1803.08058 by Withers



Two-sided bounds on transport and
the hydrohedron




The moment problem

We carve out the space of transport coefficients by transforming the causality
condition into a moment problem.

This strategy is borrowed from the S-matrix bootstrap program.



» The causality condition implies that the unit-normalized density (k = reig)

r|sin()] — Im(w)(r, 0)
4r

wo) =

)
is positive semidefinite,

/ " d0u(0)P(8) > 0, for P(0) > 0.

o Let Py(0) be the most general positive semidefinite trigonometric polynomial of
order N, and focus on the moments of u(6),

™ .
%:/ doe= M (0), n=0,41,42,...
—T

e From [™ d6u(0)Pn(0) > 0, it follows that
(TN)U:’ijiv iyj:O?]-:"')N

is a positive semidefinite Hermitean matrix.



e The moments -y, are related to the transport coefficients,

o) %) -1 _ E on
w(k) = Za2n+1k2"+l + Z iﬁg,,k2" Y0 =1, Y2n41 = 14 ra2n+1,
n=0 n=1 = 1
a2nt1, B2n € R (4n2 —-1) 4

= |mposing that Ty = 0 for N =1,2,3,... gives rise to an infinite set of hierarchical
two-sided bounds on all transport coefficients.

™
2n—1
Yon=——5—— — — """ Bap.



The hydrohedron

e This infinite set of bounds leads to a convex geometry in the infinite-dimensional
space spanned by the transport coefficients: hydrohedron.

e Every theory lying outside the hydrohedron is incompatible with relativistic
causality: the landscape of all consistent theories of relativistic transport lies
inside or at the edges of the hydrohedron.

e To make manifest this universal structure, it is essential to measure the transport
coefficients in units of R.

R absorbs dependence on: spacetime dimension, coupling strength, temperature
and thermodynamic potentials...

R= R(T,)\,‘,‘u,‘,...)

e This makes learning new general lessons about R extremely valuable.
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Diffusion cross-section

e Dispersion relation,

o0
w(k) = iBank®, Pan €R, pr=-D
n=1
e Hierarchical bounds,
1
-~ <Rg, <o,
3
_674 <R < 256 — 157 R[32(8 + 37rR62),

157 907
—32768 + 157572 (R — R3(:)° — 240m (13RB2 + 14R33,) < RSB <
5257 (16 + 37Rp,) ==
4096 — 52572 (R B2 + R354)? — 1207 (31RB2 + 14R33,)

1757 (8 — 3wRB2)
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Sound cross-section

e Dispersion relation,

oo oo
w(k) =D aon1 kK™ 4+ " iBaak®",  azni1, fon €ER, a1 =5, = —Ts/2
n=0 n=1

e Hierarchical bounds,

128 — 97%(

<1

= 4

< RB2 <0,
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3
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The edge of the hydrohedron

Is there any special physical theory lying at the boundary of the hydrohedron?

The hydrohedron boundaries set by the moment problem are open: they correspond
to sequences of transport coefficients that can be obtained in closed form,
resummed, and always feature poles.

Other boundaries such as |cs| =1, D = 0 are not necessarily open.
There are physical theories living at special points at these other boundaries.

One can demonstrate that when |cs| = 1, all higher-order transport coefficients
vanish and the dispersion relation is

w(k) = tk.

In hydrodynamics: stiff perfect fluid, fluid boosted to the speed of light.
Outside hydrodynamics: free massless fields, 2D CFTs.
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Some open questions

Regarding R:

e Is there a Planckian bound on R, R > cT?

e Is R related to the nonhydrodynamic gap?

Regarding the hydrohedron:
e |s there a generalization of the hydrohedron to nonlinear transport?

e Can one incorporate stochastic effects?

26



Take-home messages

e Bootstrap approach to relativistic transport based on microscopic causality.
= Nontrivial consequences in the linear response regime!
» Nonhydrodynamic d.o.f. are unavoidable in dissipative relativistic systems.

» Hydrohedron: universal convex geometry in the space of transport coefficients
containing the landscape of consistent theories.

» Crucial role of R, the natural cutoff of the hydrodynamic gradient expansion.
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Many thanks for your time!
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