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This talk in three slides

• Relativistic hydrodynamics: EFT for IR behavior of conserved currents.

➥ Instrumental in nuclear physics, astrophysics and cosmology.

• When stochastic fluctuations are negligible, relativistic hydrodynamics is a classical

EFT built in a gradient expansion: operators + transport coefficients

Tµν = T ideal
µν − η[T ]∇⟨µUν⟩ − ξ[T ]∆µν∇αU

α + O(∇2)
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Does an arbitrary sequence of transport coefficients define

a valid theory of relativistic hydrodynamics?
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• No!

• Relativistic causality implies that all consistent theories of relativistic hydrodynamics

are contained inside a universal convex geometry in the infinite-dimensional space of

transport coefficients: the hydrohedron.
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The actual talk

1. Basics

2. The natural UV cutoff of relativistic hydrodynamics

3. Two-sided bounds on transport and the hydrohedron

4



Basics



QFT near thermal equilibrium

In this talk: relativistic hydrodynamics
⋂

linear response theory
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Linear response basics

• Basic object: retarded two-point function.

GR(x , y) = −iθ(x0 − y0)⟨[O(x),O(y)]⟩ −→ GR(ω, k), pµ = (ω, k), k = (k, 0).

• Basic notion: mode. A mode is a singularity of GR(ω, k) characterized by a

dispersion relation

ω = ω(k).

➤ Modes organize the spatiotemporal response of the equilibrium state to external

perturbations,

⟨O(t, x)⟩ =

∫
k
ρ(t, k)e ik·x, ρ(t, k) =

∑
n

e−iωn(k)tνn(k) + . . .

• In holography, modes = single poles of GR(ω, k) = black brane quasinormal modes.
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Two fundamental kinds of modes: hydrodynamic vs nonhydrodynamic

➤ Hydrodynamic, ωH(k) → 0 for k → 0: long-lived and slowly-varying excitation.

➤ Nonhydrodynamic, ωNH(0) finite: transient excitation.
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Dispersion relations and the hydrodynamic gradient expansion

• The crucial fact for us is that relativistic hydrodynamics predicts the small-k

expansion of the dispersion relations,

ω(k) =
∞∑
n=1

cnk
n, cn = αn + iβn,

• cn: transport coefficients.

• Example: hydrodynamic shear and sound modes of a neutral relativistic fluid,

ωshear(k) = −iDk2 + . . . , ω±
sound(k) = ±csk − i

Γs

2
k2 + . . .

8



Relativistic causality

Relativistic causality imposes a positivity constraint on ω(k)

• Causality: GR(x , 0) = 0 outside the future lightcone.

➥ If GR(x , 0) is a tempered distribution, then GR(p) is analytic in the open future

lightcone of Im(p),

pµ = (ω, k), − Im(ω)2 + Im(k)2 < 0, Im(ω) > 0.

[Streater & Wightman, ’89] [Haag, ’92]

➥ All dispersion relations must obey the fundamental causality condition

| Im(k)| − Im(ω(k)) ≥ 0
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Analyticity

• We will assume that the dispersion relations in the microscopic QFT are analytic at

k = 0.

➥ This means that their small-k expansion can be matched exactly to the prediction

of relativistic hydrodynamics.

➤ Physically, the absence of nonanalytic terms implies that stochastic fluctuations are

negligible.

➤ This assumption restricts us to large-N QFTs.
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Relativistic causality & analyticity consequences

In the rest of the talk, we will explore the consequences

of the causality inequality and analyticity

• Sanity check: at low orders, |cs | ≤ 1, D ≥ 0.

• This is just the tip of the iceberg: relativistic causality & analyticity impose

powerful nontrivial constraints on relativistic transport.

• These constraints take the form of a novel infinite set of two-sided bounds on all

the transport coefficients.

• These two-sided bounds are optimal when expressed in units of R, the

convergence radius of the small-k expansion.
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A word on bounds on transport

• Bounds on transport are not a new topic. Most celebrated example:

Kovtun-Son-Starinets conjecture,

η

s
≥

ℏ
4πkB

.

• Our methods cannot prove such Planckian lower bounds on diffusivities (see

2310.16948 by Delacrétaz for advances on this front).

• They do provide the sharp counterpart of previous qualitative upper bounds on the

diffusivity obtained from causality considerations (see 1706.00019 by Hartman,

Hartnoll & Mahajan).
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The natural UV cutoff of relativistic
hydrodynamics



Empirical properties of R

• R can be measured or computed explicitly provided the underlying microscopic QFT

is known.

• R has been under intense scrutiny in holography in recent years.

[Withers, ’18] [Grozdanov, Kovtun, Starinets & Tadic, ’19] [Abbasi & Tahery, ’20]

[Jansen & Pantelidou, ’20] [Areán, Davison, Goutéraux & Suzuki, ’20] [Baggioli, Gran

& Tornso, ’21] [Wu, Baggioli & Li, ’21] [Asadi, Soltanpanahi & Taghinavaz, ’21]

[Grozdanov, Starinets & Tadic, ’21] [Jeong, Kim & Sun, ’21] [Huh, Jeong, Kim &

Sun, ’21] [Liu & Wu, ’21] [Cartwright, Amano, Kaminski, Noronha & Speranza,

’21]...

• In every example known to date, R is finite and set by a branch-point singularity of

ω(k).
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First-principle constraints on R

The empirical properties of R follow from the causality condition and analyticity

[arXiv:2212.07434].

1. If ω(k) is entire, it is a polynomial of at most degree one,

ω(k) = c0 + c1k.

➥ Since dissipative transport coefficients appear at O(k2) or higher, R is finite in any

dissipative relativistic theory of transport.

➥ R is set by the singularity of ω(k) closest to the origin in the complex k-plane.

2. If ω(k) has a pole of any finite order, it violates the causality condition sufficiently

close to it.

➥ R is set by a branch-point singularity.
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Nonhydrodynamic modes are inevitable

Example: ⟨Tµν⟩.

(a) Relativistic hydrodynamics predicts a single ω
(shear)
H in the shear

channel.

(b) Our analysis predicts that ω
(shear)
H is endowed with a branch-point

singularity.

(c) Rotational invariance implies that shear and sound modes degenerate

at k = 0.

(a+b) Going through the branch cut of ω
(shear)
H to the secondary sheet, we

must find a nonhydrodynamic shear mode at k = 0.

(a+b+c) There has to be a nonhydrodynamic mode in the sound channel as well.
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R as a UV cutoff

• R marks the momentum scale at which nonhydrodynamic degrees of freedom

become relevant and cannot be neglected anymore.

➥ Natural UV cutoff of relativistic hydrodynamics in the linear response regime.

• This general interpretation of R agrees with all the previous explicit examples in

holography: mode collisions.

From arXiv:1803.08058 by Withers
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Two-sided bounds on transport and
the hydrohedron



The moment problem

We carve out the space of transport coefficients by transforming the causality

condition into a moment problem.

This strategy is borrowed from the S-matrix bootstrap program.
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➤ The causality condition implies that the unit-normalized density (k = re iθ)

µ(θ) =
r | sin(θ)| − Im(ω)(r , θ)

4r
,

is positive semidefinite,∫ π

−π
dθµ(θ)P(θ) ≥ 0, for P(θ) ≥ 0.

• Let PN(θ) be the most general positive semidefinite trigonometric polynomial of

order N, and focus on the moments of µ(θ),

γn =

∫ π

−π
dθe−inθµ(θ), n = 0,±1,±2, . . .

• From
∫ π
−π dθµ(θ)PN(θ) ≥ 0, it follows that

(TN)ij = γj−i , i , j = 0, 1, . . . ,N

is a positive semidefinite Hermitean matrix.
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• The moments γn are related to the transport coefficients,

ω(k) =
∞∑
n=0

α2n+1k
2n+1 +

∞∑
n=1

iβ2nk
2n

α2n+1, β2n ∈ R

=⇒
γ0 = 1, γ2n+1 = i

π

4
r2nα2n+1,

γ2n = −
1

(4n2 − 1)
−

π

4
r2n−1β2n.

➥ Imposing that TN ⪰ 0 for N = 1, 2, 3, . . . gives rise to an infinite set of hierarchical

two-sided bounds on all transport coefficients.
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The hydrohedron

• This infinite set of bounds leads to a convex geometry in the infinite-dimensional

space spanned by the transport coefficients: hydrohedron.

• Every theory lying outside the hydrohedron is incompatible with relativistic

causality: the landscape of all consistent theories of relativistic transport lies

inside or at the edges of the hydrohedron.

• To make manifest this universal structure, it is essential to measure the transport

coefficients in units of R.

R absorbs dependence on: spacetime dimension, coupling strength, temperature

and thermodynamic potentials...

R = R(T , λi , µi , . . .)

• This makes learning new general lessons about R extremely valuable.
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Diffusion cross-section

• Dispersion relation,

ω(k) =
∞∑
n=1

iβ2nk
2n, β2n ∈ R, β2 = −D

• Hierarchical bounds,

−
16

3π
≤ Rβ2 ≤ 0,

−
64

15π
≤ R3β4 ≤

256 − 15πRβ2(8 + 3πRβ2)

90π
,

−32768 + 1575π2
(
Rβ2 − R3β4

)2 − 240π
(
13Rβ2 + 14R3β4

)
525π (16 + 3πRβ2)

≤ R5β6 ≤

4096 − 525π2(Rβ2 + R3β4)2 − 120π(31Rβ2 + 14R3β4)

175π (8 − 3πRβ2)
,

. . .
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Sound cross-section

• Dispersion relation,

ω(k) =
∞∑
n=0

α2n+1k
2n+1 +

∞∑
n=1

iβ2nk
2n, α2n+1, β2n ∈ R, α1 = cs , β2 = −Γs/2

• Hierarchical bounds,

|α1| ≤ 1,

−
16

3π
+

π

2
α2

1 ≤ Rβ2 ≤ 0,

128 − 9π2(α1 − Rβ2)2 − 12π(α1 + 2Rβ2)

9π(−4 + πα1)
≤ R2α3 ≤

128 − 9π2(α1 + Rβ2)2 + 12π(α1 − 2Rβ2)

9π(4 + πα1)
,

. . .
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The edge of the hydrohedron

Is there any special physical theory lying at the boundary of the hydrohedron?

➤ The hydrohedron boundaries set by the moment problem are open: they correspond

to sequences of transport coefficients that can be obtained in closed form,

resummed, and always feature poles.

➤ Other boundaries such as |cs | = 1, D = 0 are not necessarily open.

➥ There are physical theories living at special points at these other boundaries.

➥ One can demonstrate that when |cs | = 1, all higher-order transport coefficients

vanish and the dispersion relation is

ω(k) = ±k.

In hydrodynamics: stiff perfect fluid, fluid boosted to the speed of light.

Outside hydrodynamics: free massless fields, 2D CFTs.
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Some open questions

Regarding R:

• Is there a Planckian bound on R, R ≥ cT?

• Is R related to the nonhydrodynamic gap?

Regarding the hydrohedron:

• Is there a generalization of the hydrohedron to nonlinear transport?

• Can one incorporate stochastic effects?
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Take-home messages

• Bootstrap approach to relativistic transport based on microscopic causality.

➥ Nontrivial consequences in the linear response regime!

➤ Nonhydrodynamic d.o.f. are unavoidable in dissipative relativistic systems.

➤ Hydrohedron: universal convex geometry in the space of transport coefficients

containing the landscape of consistent theories.

➤ Crucial role of R, the natural cutoff of the hydrodynamic gradient expansion.

27



Many thanks for your time!
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