A new index for a new black hole

Dario Martelli

UNIVERSITÀ DI TORINO

[based mainly on 2012.08530 & 2303.14199 + 2106.05571 & 2404.07173]

EUROSTRINGS 2024 FUNDAMENTAL PHYSICS L

Southampton, 2 - 6 September, 2024

University of Southampton

 QQ

イロト イ押ト イヨト イヨト

Outline

- **1** Topological twist vs no twist (intro)
- **2** The supersymmetric and accelerating black holes
- ³ Rigid supersymmetry on the spindle
- ⁴ The spindle index from localization
- **5** Outlook

4 D F

 QQ

The set up

- \bullet In this talk I will focus on four-dimensional, asymptotically AdS $_4$, supersymmetric black holes with three-dimensional SCFT duals
- These can also be thought of as arising from wrapping M2-branes on two-dimensional surfaces Σ , in a way that preserves supersymmetry
- The 3d $\mathcal{N} = 2$ theory living on the M2-branes (e.g. ABJM) is compactified to a 1d SCQM
- The black hole can be viewed as a flow from the 3d theory at the conformal boundary to the 1d theory at the extremal horizon
- Much of what I will discuss have higher dimensional analogs, but I will focus on AdS_4/CFT_3 today

 Ω

イロト イ押ト イヨト イヨト

Supersymmetry with the topological twist

• Couple the theory to a background R-symmetry gauge field A_{μ}

$$
\nabla_{\mu}\epsilon = (\partial_{\mu} + \omega_{\mu})\epsilon = 0 \quad \rightarrow \quad (\partial_{\mu} + \omega_{\mu} - A_{\mu})\epsilon = 0
$$

where $\omega_\mu\equiv {\omega_\mu}^{12}$ is the spin connection on $\mathit{\Sigma}=\mathit{\Sigma}_\mathit{g}$

- Taking $A_{\mu} = \omega_{\mu}$ supersymmetry is preserved by $\partial_{\mu} \epsilon = 0$
- ϵ becomes effectively a scalar \rightarrow topologically twisted theory
- Geometrically: **A** is the connection on a line bundle \boldsymbol{L} , that gets identified with the tangent bundle of Σ_g :

$$
\int_{\Sigma_{\mathcal{S}}} c_1(L) = \int_{\Sigma_{\mathcal{S}}} \frac{dA}{2\pi} = \int_{\Sigma_{\mathcal{S}}} \frac{d\omega}{2\pi} = \int_{\Sigma_{\mathcal{S}}} c_1(\mathcal{T}\Sigma_{\mathcal{S}}) = 2(1-g)
$$

イロト イ押 トイヨ トイヨ トーヨ

Supersymmetry with no twist

For genus $\boldsymbol{g}=\boldsymbol{0}$, namely \boldsymbol{S}^2 , supersymmetry can also be preserved differently, by the standard Killing spinors that exist on all spheres

$$
\nabla_\mu \epsilon = \gamma_\mu \epsilon
$$

- \bullet In this case there is no background R-symmetry gauge field \bm{A}
- More generally, we can couple the theories to a number of "flavour" background fields $\boldsymbol{A_{i}}$, with the Killing spinors charged under a linear combination, e.g. the diagonal $\bm A_{\bm R} = \sum \bm A_{\bm R}$
- The supersymmetry constraints on the fluxes $n_i \equiv 1$ Σ_{g} $\frac{dA_i}{2\pi}$ become

i

topological twist
$$
\sum_i n_i = 2(1-g)
$$

i $\sum n_i = 0$

no twist X

Topologically twisted vs untwisted BPS black holes

- These two mechanisms to preserve supersymmetry are realized by
	- **1** Topologically twisted (static, magnetic) black holes
	- 2 Kerr-Newman (rotating, dyonic) black holes
- The details of these two classes of black holes differ, but in all cases their entropy is a function of the magnetic fluxes $S = S(n_i)$ (as well as of the electric charges for the Kerr-Newman BHs)
- The challenge is to reproduce this entropy from a microscopic computation, using holography. The key ingredients are:
	- \bullet Identify the dual $d = 3$ SCFT from the internal geometry
	- 2 Identify the $d = 3$ background from the conformal boundary
	- ³ Compute the exact partition function through localization
	- \bullet Compute and extremize the free energy at large N

イロト イ母ト イヨト イヨト

Orbifold holography

- \bullet [Ferrero, Gauntlett, DM, Perez-Ipiña, Sparks] proposed that p -branes can be wrapped on a "spindle" **Σ**, extending the AdS/CFT correspondence to the realm of orbifolds
- This is a nickname for $\mathbb{WP}^1_{[n_+,n_-]}$, that is a two-sphere with two orbifold singularities $\mathbb{C}/\mathbb{Z}_{n_+}$, $\mathbb{C}/\mathbb{Z}_{n_-}$ at its poles

• The focus of this talk is M2-branes, namely $p = 2$, where the (1 + 0)−dimensional SCQM has a dual AdS² × **Σ** solution

 Ω

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁

The spindle's new features

Besides the obvious difference with respect to smooth Σ due to the conical singularities, the spindle has additional features

- \bullet it does not admit metrics with constant curvature
- ² it is a "bad" orbifold, i.e. not a global quotient of a manifold
- **3** it has a $U(1)$ _Σ symmetry
- **4** supersymmetry preserved in two ways [Ferrero, Gauntlett, Sparks]

$$
\sum_{l} n_{l} = \frac{\sigma_{1}}{n_{+}} + \frac{\sigma_{2}}{n_{-}} \qquad \sigma_{1}\sigma_{2} \equiv \sigma = \pm 1: \quad \text{twist/anti-twist}
$$

$$
\sigma = +1 \text{ is topologically a twist: } \pm \int_{\Sigma} \frac{dA_R}{2\pi} = \int_{\Sigma} c_1(\mathcal{T}\Sigma) = \frac{1}{n_+} + \frac{1}{n_-}
$$

$$
\sigma = -1 \text{ for } n_+ = n_- = 1 \text{ reduces to } S^2 \text{ with no twist}
$$

Supersymmetric accelerating black holes

- Asymtotically AdS₄ black holes constructed in minimal gauged supergravity in $D = 4$ (partial generalizations in STU model)
- Can be thought of as solutions deforming the (supersymmetric or otherwise) Kerr-Newman-AdS black hole: rotating (J), electrically (Q_e) and magnetically (Q_m) charged and accelerating
- The horizon S 2 is replaced by a spindle **Σ**. The asymptotic boundary is (topologically) $\mathbb{Z} \times \mathcal{S}^1$, with anti-twist for $\boldsymbol{A_R}$ through $\mathbb{\Sigma}$
- There is a magnetic flux

$$
Q_m = \frac{1}{4\pi} \int_{\Sigma} dA_R \left(= \sum_i n_i \right) = \frac{1}{n_-} + \sigma \frac{1}{n_+}
$$

• In the minimal case only the anti-twist ($\sigma = -1$) is realized, while in STU one can have $\sigma = \pm 1$ (although the solutions are known only in special cases [Ferrero,Inglese,DM,Sparks][Ferrero,Gauntlett,Sparks]) QQ (□) () →

$On-shell action = entropy function$

Deforming the BPS black hole to a "supersymmetric but not extremal" and complex solution, leads to the on-shell action [Gauntlett,Cassani,DM,Sparks]

$$
\mathcal{E}(\varphi,\epsilon;Q_m)=\frac{1}{2i}\left(Q_m^2\epsilon+\frac{\varphi^2}{\epsilon}\right),\quad \varphi-\frac{\chi}{4}\epsilon=\pi i\,,\quad \chi\equiv\frac{n_++n_-}{n_+n_-}
$$

and can be written in terms of gravitational blocks $\mathcal{F}_{3}(\varDelta) \propto \mathsf{N}^{3/2}\varDelta^{2}$:

$$
\mathcal{E}(\varphi,\epsilon;Q_m)=\frac{1}{\epsilon}\big(\mathcal{F}_3(\varphi+Q_m\epsilon)+\mathcal{F}_3(\varphi-Q_m\epsilon)\big)
$$

• From the Legendre transform of this, namely extremizing

$$
\mathcal{S}(\varphi,\epsilon;Q_m,Q_e,J)=\mathcal{E}(\varphi,\epsilon;Q_m)-(\epsilon J+\varphi Q_e)
$$

and further imposing that this is real, one obtains the BH entropy

$$
S(Q_e, Q_m) = \frac{\pi}{4} \left(-\chi + \sqrt{\chi^2 + 16 \left(Q_e^2 + Q_m^2 \right)} \right)
$$

Rigid background from the accelerating black hole

- We want to reproduce this from a microscopic computation of the partition function of the dual $\mathcal{N} = 2$ SCFTs, using as background the boundary geometry on $\mathbb{Z}\times\mathcal{S}^{1}$
- The gauge field with anti-twist through **Σ** reads

$$
A = -\frac{\cos\theta}{1 + \alpha^2 a^2 \cos^4\theta} \left[\frac{\alpha}{\kappa} \left(e - g\alpha a \cos^2\theta \right) dt + \left(g + g\alpha^2 a^2 \cos^2\theta - e\alpha a \sin^2\theta \right) d\phi \right]
$$

- \bullet a, α , g, e, m are related by supersymmetry, leaving two parameters on which the background depends. I won't write the 3d metric...
- This background has novel features
	- \bullet It has conical orbifold singularities at the poles of the spindle
	- 2 It has a complex metric (inherited by the bulk analysis)
	- **3** The gauge field obeys the anti-twist

General rigid backgrounds

- Before attempting to implement localization on this background we need to tame these features in rigid new minimal supergravity
- Our complexified rigid geometry does not fit in the analysis of [Closset,Dumitrescu,Festuccia,Komargodski], that assumed
	- \blacktriangleright The metric is real
	- ► The Killing vector bilinear $K^{\mu} = \zeta_{+} \gamma^{\mu} \zeta_{-}$ is real

both of which are false for our background \rightarrow start from scratch

• Inglese, DM, Pittelli) studied the most general Euclidean-complex background admitting two Killing spinors ζ_+ , ζ_- satisfying

$$
(\nabla_{\mu} \mp iA_{\mu})\zeta_{\pm} = -\frac{H}{2}\gamma_{\mu}\zeta_{\pm} \mp iV_{\mu}\zeta_{\pm} \mp \epsilon_{\mu\nu\rho}\frac{V^{\nu}}{2}\gamma^{\rho}\zeta_{\pm}
$$

• Conditions imposed by these on the complex spinor bilinears

$$
\mathbf{v} = \zeta_+ \zeta_- \qquad \mathbf{K}^\mu = \zeta_+ \gamma^\mu \zeta_- \qquad \mathbf{P}^\mu_\pm = \zeta_\pm \gamma^\mu \zeta_\pm / \mathbf{v}
$$

 Ω

KONKAPRA BRADE

General rigid backgrounds

- \mathcal{K}^μ is a complex Killing vector $\;\rightarrow\; \mathcal{K}=\partial_\psi+\omega\partial_\varphi$, where ω is a complex constant \rightarrow two real Killing vectors $\partial_{\psi}, \partial_{\varphi}$
- The most general metric can be written as

 $ds^2 = f^2 dx^2 + h_{ij} d\psi_i d\psi_j$ with $\psi_1 = \psi, \psi_2 = \varphi$ where $f(x)$, $h_{ii}(x)$ are complex functions of x

• Denoting $h = \det(h_{ii})$ the bilinears read

$$
K = (h_{11} + \omega h_{12})d\psi + (h_{12} + \omega h_{22})d\varphi
$$

\n
$$
P_{\pm} = e^{\pm i(\alpha_1\psi + \alpha_2\varphi)} (\pm f dx + i(\sqrt{h}/v)(-\omega d\psi + d\varphi))
$$

\n
$$
v^2 = h_{11} + 2\omega h_{12} + \omega^2 h_{22}
$$

and the background fields read $\bm V=\frac{\bm 1}{\bm \tau}$ v $\left[\text{iHK} - \star \text{dK}\right]$ and

$$
A^{C} \equiv A - \frac{3}{2}V = \frac{v^{3}}{4f\sqrt{h}} \Big[\frac{1}{\omega} \Big(\frac{h_{11}}{v^{2}}\Big)' \mathrm{d}\psi - \Big(\frac{h_{22}}{v^{2}}\Big)' \mathrm{d}\varphi\Big] + \mathrm{d}\theta
$$

Twist and anti-twist

- Specialize to $\boldsymbol{S^1}\times \mathbb{Z}\colon \psi \sim \psi + 2\pi$ parameterizes the $\boldsymbol{S^1}$ and $x \in [-1,1], \varphi \sim \varphi + 2\pi$ are coordinates on Σ
- Boundary conditions at the N $\equiv \{x = 1\}$ and S $\equiv \{x = -1\}$ poles: setting $f = 1$ and denoting by ρ_{\pm} the coordinates near to N/S poles

$$
h_{11} \sim h_{11}^{\pm}
$$
 $h_{22} \sim \frac{1}{n_{\pm}^2} \rho_{\pm}^2$ $h_{12} \sim h_{12}^{\pm} \rho_{\pm}^2$

at the north and south poles, where $\bm{h^{\pm}_{12}}, \bm{h^{\pm}_{11}}$ are constants

• The type of twist for a generic background is fixed by the function v

$$
\frac{1}{2\pi}\int_{\Sigma} dA = -\frac{1}{2}\left(\frac{s_+}{n_+} + \frac{s_-}{n_-}\right)
$$

where s_\pm denote the signs of $\mathsf{v}/\sqrt{h_{11}}$ at the N and S poles of $\mathbb Z$

$$
\bullet \ -s_+ = s_- (= -1) \rightarrow \text{anti-twist}
$$

$$
\text{I} \cdot s_+ = s_- (= -1) \rightarrow \text{twist}
$$

ഹാദര

Simple backgrounds

- The boundary of the accelerating black hole of course fits into this general framework and we can now start the localization procedure
- However, since the final result will depend only on the type of twist and the Killing vector parameter ω we can consider "simple" background metrics such as, for example:

$$
ds^{2} = f^{2}(x)dx^{2} + (1 - x^{2})(d\varphi - \varOmega d\psi)^{2} + \beta^{2}d\psi^{2}
$$

with Ω , β constants and $f(x)$ a function subject to the previous boundary conditions:

- \triangleright anti-twist: $\omega = \Omega i\beta \quad \leftrightarrow \quad v/\beta = x$
- \triangleright twist: $\omega = \Omega \quad \leftrightarrow \quad \nu/\beta = -1$
- \bullet The background fields \overline{A} , \overline{V} and the Killing spinors are obtained from the general expressions

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @

Two new indices at the price of one

- For $n_+ = n_- = 1$ the backgrounds reduce to 1) $\mathcal{S}^1 \ltimes \mathcal{S}^2$ with no twist and 2) $\boldsymbol{S^1}\ltimes \boldsymbol{S^2}$ with the standard topological twist
- As a check on our calculations, in these limits we must recover 1) the superconformal index and 2) the topologically twisted index
- The partition functions on these backgrounds defines two new indices
- Anti-twisted spindle index, that reduces to the superconformal index for $n_{+} = n_{-} = 1$
- Twisted spindle index, that reduces to the (refined) topologically twisted index for $n_{+} = n_{-} = 1$
- In fact, in [Inglese, DM, Pittelli] we obtained more than what we hoped: a single formula for a new index that we called the spindle index, unifying and generalising the above two indices!

 Ω

イロト イ押 トイヨ トイヨト

Localization

- To implement localization we follow the well-established strategy [Pestun], with suitable modifications, where required
- The intermediate calculations are done separately for the twist and anti-twist case, but the end results can then be written in terms of universal expressions, typically depending on $\sigma = \pm 1$
- Strategy: derive the BPS locus, compute the classical (Chern-Simons) contribtions and the 1-loop determinants
- As usual, to compute the 1-loop determinants we write these as

$$
Z_{1\text{-}L} = \frac{\det_{\text{Ker}L_{P_{+}}} \left(L_{K} + \mathcal{G}_{\Phi_{G}} \right)}{\det_{\text{Ker}L_{P_{-}}} \left(L_{K} + \mathcal{G}_{\Phi_{G}} \right)}
$$

where $\delta^2_{\rm susy} = \textsf{L}_\textsf{K} + \mathcal{G}_{\varPhi_\textsf{G}}$

1-loop determinants

• L_K , $L_{P_{+}}$ are explicit linear differential operators given by

$$
L_K = \mathcal{L}_K - i q_R^{\phi} \Phi_R
$$

$$
L_{P_{\pm}} = \mathcal{L}_{P_{\pm}} - i q_R^{\phi} \nu_{P_{\pm}} \left(A^C + V \right) - i \nu_{P_{\pm}} \mathcal{A}
$$

with
$$
\Phi_R \equiv \iota_K (A^C + V) - i v H = \frac{1}{2} (\alpha_1 + \omega \alpha_2)
$$

 \bullet The gauge field $\mathcal A$ has fluxes through the spindle

$$
\frac{1}{2\pi}\int_{\Sigma}d\mathcal{A}=\frac{m_-}{n_-}-\frac{m_+}{n_+}\qquad m_+,m_-\in\mathbb{Z}
$$

 \bullet Unpaired eigenmodes: the modes annihilated by L_{P+} take the form

$$
e^{\textbf{i} m_{\varphi}^{\pm}\varphi+\textbf{i} m_{\psi}^{\pm}\psi}B^{\pm}_{m_{\varphi}^{\pm},m_{\psi}^{\pm}}(x) \qquad m_{\varphi}^{\pm},m_{\psi}^{\pm}\in\mathbb{Z}
$$

 Ω

 $A \sqcap A \rightarrow A \sqcap A \rightarrow A \sqsupseteq A \rightarrow A \sqsupseteq A \rightarrow A \sqsupseteq A$

1-loop determinants

• Normalizability at the poles of Σ gives, for example in the twist case:

$$
-\left\lfloor-\frac{p_-}{n_-}\right\rfloor \leq m_{\varphi}^- \leq \left\lfloor \frac{p_+}{n_+}\right\rfloor
$$

where $p_+ \equiv m_+ - \sigma r/2$ and $p_- \equiv m_- + r/2$

- The "floor functions" or "integer parts" are a new distinctive feature associated to orbifolds and are the main technical complication
- **In this way one obtains infinite products depending on** ω **and various** combinations of these integer parts of the fluxes; after regularization, lead to q -Pochammers
- The same results can be obtained extracting the eigenvalues from the equivariant orbifold index theorem [Vergne], which picks up contributions at the N and S poles of the spindle!

KOD KAP KED KED E VAA

Orbifold index theorem

• The equivariant orbifold index theorem gives the index as a sum over 1) the two fixed points of the spindle and 2) at each fixed point there are \pmb{n}_\pm "images", each weighted by a root of unity $\omega_\pm = e^{2\pi i/n_\pm}$

$$
ind(L_{P_{-}}; e^{-i\omega\delta^{2}}) = \frac{1}{n_{+}} \sum_{j=0}^{n_{+}-1} \frac{\omega_{+}^{-j p_{+}} q_{+}^{-p_{+}}}{1 - \omega_{+}^{j \sigma} q_{+}^{\sigma}} + \frac{1}{n_{-}} \sum_{j=0}^{n_{-}-1} \frac{\omega_{-}^{-j p_{-}} q_{-}^{-p_{-}}}{1 - \omega_{-}^{-j} q_{-}^{-1}}
$$

where $\boldsymbol{q} = e^{i\omega}$, $\boldsymbol{q}_{\pm} = \boldsymbol{q}^{1/n_{\pm}}$

• Remarkably (using $r \in 2 \mathbb{Z}$) this can be resummed into

$$
ind(L_{P_-}; e^{-i\omega\delta^2}) = \frac{q^{-\sigma\lfloor\sigma p_+/n_+\rfloor}}{1-q^{\sigma}} + \frac{q^{\lfloor -p_-/n_- \rfloor}}{1-q^{-1}}
$$

- **1** Extracting the eigenvalues from this reproduces exactly those obtained with the unpaired modes method
- 2 Setting $n_{+} = n_{-} = 1$, for $\sigma = \pm 1$ reduces to the index theorem used f[or](#page-18-0) the topologically twisted and superconfor[mal](#page-20-0) [i](#page-18-0)[nd](#page-19-0)[e](#page-20-0)[ce](#page-0-0)[s, r](#page-24-0)[es](#page-0-0)[pec](#page-24-0)[ti](#page-0-0)[vely](#page-24-0)

Chern-Simons terms contributions

For each gauge flux $\frac{1}{2\pi}$ Z **Σ** $\mathcal{F} = \frac{m}{\sqrt{m}}$ n_+n_- , $m \in \mathbb{Z}$ the contribution of a CS term with level \boldsymbol{k} is

$$
e^{S_{\text{CS}}}=e^{2\pi i k\frac{m}{n+n_-}u}
$$

- \bullet Under a large gauge transformation of the gauge holonomy \boldsymbol{u} . $u \to u + \ell, \ell \in \mathbb{Z}$ this is not invariant (unless $n_+ = n_- = 1$)
- To restore gauge invariance we proposed that the naive CS term is modified to an effective CS term (as in [Beem,Dimofte,Pasquetti])

$$
e^{S_{\rm CS|eff}}=e^{2\pi i k b u}
$$

where $b = 1 + \sigma |\sigma p_{+}/n_{+}| + |-p_{-}/n_{-}|$

 \bullet Checks: partition function makes sense, dualities, large N

Entropy (function) from the large N limit

- \bullet In [Colombo, Hosseini, DM, Pittelli, Zaffaroni] we studied the large N limit of the spindle index (a more detailed paper will appear soon..)
- The main technical difficulty that was solved is how to deal with the fractional parts of the magnetic fluxes, that appear in the matrix model representation of the spindle index
- Write out the matrix model resulting from assembling the pieces for a generic ("non-chiral") $\mathcal{N} = 2$ Chern-Simons quiver theory, with gauge group \mathcal{G} , $|\mathcal{R}|$ chiral multiplets transforming in bi-fundamental or adjoint representations and a global symmetry $U(1)^{\delta}$
- For example, for ABJM: $\mathcal{G} = U(N) \times U(N)$, $|\mathcal{R}| = 4$ (bi-fundamentals), the CS levels are $(k_1, k_2) = (k, -k)$, $\delta = 4$

 Ω

Black holes microstates from the large N limit

 \bullet The upshot is that at leading order in the large N limit, the logarithm of the spindle index, $\log Z_{\bar{y} \times S^1}$, takes the form of gravitational blocks

$$
\log Z_{\mathbb{Z}\times S^1} = \frac{\mathcal{F}_3(\Delta_I^-)}{\omega} - \sigma \frac{\mathcal{F}_3(\Delta_I^+)}{\omega} + \mathcal{O}(N)
$$

for either choice of twist $\sigma = \pm 1$, and with generic flavour charges satisfying (for the anti-twist)

$$
\sum_{l\in W}\Delta_l^{\pm}=2\pi\left(1-\frac{\omega}{n_{\pm}}\right)
$$

For example, for ABJM: $\mathcal{F}_{3}(\mathit{\Delta}_{I}) \propto \textit{N}^{3/2} \sqrt{\mathit{\Delta}_{1} \mathit{\Delta}_{2} \mathit{\Delta}_{3} \mathit{\Delta}_{4}}$

• If you are interested in hearing about the details of this computation, that presents several novel features with respect to previous large N limit computations, I refer you to the talk by E . Colombo on Thursday

 Ω

イロト イ押ト イヨト イヨト

Outlook

- \bullet ... \rightarrow BPS accelerating black holes in AdS₄ \rightarrow localization on $\mathbb{Z} \times \mathsf{S}^1 \to \mathsf{s}_P$ indle index \to microstates from the large $\mathsf N$ limit $\to ...$
- First example of "orbifold holography" program has been completed!
- Extensions to other sugra solutions $\frac{4}{SQFT_3}$ will appear soon [Colombo,Hosseini,DM,Pittelli,Zaffaroni], [Crisafio,Fontanarossa† ,DM]
- Corrections sub-leading in N (extending work by [Bobev] and others..)
- Numerous other constructions involving branes wrapped on spindles (or "half spindles").... [many authors]
- Supergravity solutions containing higher (than two) dimensional orbifolds, e.g. $AdS_2 \times M_4$, 6d black holes, ...
- Supersymmetric field theories on orbifolds promise to lead to several interesting new features and surprises!

[†] See the talk by A. Fontanarossa on Thursday

KOD KARD KED KED A BA YOUR

Thank you!

Ε

 2990

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ ...