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In the CFT, the exact spectrum gets replaced by a 

continuous coarse grained spectral density.

What is coarse graining?

Alternatively, we can write an equation which 

involves some notion of averaging

where            is semi-classically indistinguishable 

from           . 



Coarse graining/averaging is an ambiguous procedure.

 

Statistical physics gives us a preferred method to deal with 

situations like this (Wigner ‘55 Balian ’68).

Maximize ignorance (=entropy) subject to the constraints 

imposed by the semi-classical approximation:

One finds

where V is arbitrary but needs to be fixed to yield the 

right partition function (or spectral density).   

JdB, Liska, Post, Sasieta ‘23



This shows that in the absence of other information the best 

description of the Hamiltonian of a theory with a continuous 

spectral density is in terms of a matrix model.

For a chaotic theory, it may be difficult to obtain more 

detailed information about the spectrum and this may be the 

best one can do.

(Black holes are very chaotic  Maldacena, Stanford, Shenker ’15)

This would resonate with the Bohigas–Giannoni–Schmit 

(BGS) conjecture(1984) which asserts that the spectral 

statistics of quantum systems whose classical counterparts 

exhibit chaotic behavior are described by random matrix 

theory.



One can play a similar game for much more general choices 

of data. Suppose for example that we know some correlators 

of an operator A and we want to extract a probability 

distribution         on the space of operators. 

The general picture is one where if one e.g. inputs connected 
≤k-point correlators, one gets a “matrix model” with up to k-th 

order interactions in the exponent. 



Consider for example the finite temperature one and two-

point functions of some operator A.

These correlation functions (which can be semi-classically 

computed by a propagator in a black hole background) can 

be used to produce a statistical model for             and the 

result is a quadratic matrix model.



This quadratic matrix model is a familiar result. It is usually 

stated as the so-called Eigenstate Thermalization 

Hypothesis:

 

Deutsch ’91

Srednicki ’94

Foini, Kurchan ‘19

: one point functions of simple operators

: two point functions of simple operators

: Gaussian random variables

JdB, Liska, Post, Sasieta, ‘23



As before, this shows that in the absence of other 

information the best description of the matrix elements of a 

simple operator is in term of ETH.

As before, for a chaotic theory, it may be difficult to obtain 

more detailed information about these matrix elements and 

this may be the best one can do.

One can also include thermal higher-point functions and 

these will give rise to higher order moments for the matrices 

(non-gaussianities). 



We now apply this logic to semi-classical gravity in AdS.

This will result in a statistical description which contains all 

(not necessarily consistent) microscopic theories which are 

semi-classically indistinguishable. 

Semi-classical gravity involves a coarse-graining over high-

energy microstates (i.e. black hole microstates). Therefore 

the ignorance and statistical description will mostly involved 
the high-energy spectrum. → typicality

The equivalence between semi-classical gravity and a 

statistical description is the coarse grained version of 

holograpy we were looking for.

To be concrete will mostly focus on AdS3 from now on.



As argued, the spectrum as obtained from semi-classical 

black hole computations is best modeled by a (double 

scaled) random matrix model with a suitable choice of 

potential V(M).

In the presence of additional quantum numbers, we can 

compute black hole entropy as a function of energy and the 

charges. 

Charges are quantized and not chaotic. So we get a family of 

random matrices labeled by the additional quantum 

numbers. Will mostly ignore this.

Beyond the spectrum, an important part of any CFT are the 

Operator Product Expansion (OPE) coefficients. How to 

model those with semi-classical computations?



For 2d theories with a holographic AdS3 dual:

➢ we only have explicit access to low-lying operators 

(denoted L) and not to very high dimension operators 

corresponding to black holes (denoted H)

➢ we can compute correlation functions where the number of 

operators is <<c

➢ we can compute partition functions on surfaces with genus 

<<c

➢ we can compute correlation functions in Lorentzian 

signature as long as the center of mass is sub Planckian

➢ all computations are at best done up to non-perturbative 

errors of order e-c
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Input gives rise to quadratic matrix model for the C’s
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Connected 

sum of two 

times      

Sd-1xS1

Benjamin, Lee, Ooguri, 

Simmons-Duffin ‘23



Semi-classical 

gravity 
=



This is what gave rise to the OPE randomness hypothesis 

(Belin, JdB ’20):

Slowly varying 

function of 

arguments

• Pseudorandom

• Mean=0

• Variance=1

• Can have higher moments 

which are exponentially 

suppressed.

Example of 

ETH



H
L

=

Example:

Pappadopulo, Rychkov, Espin, Ratazzi ‘12



In 2d, the result of all of this is a mixed matrix/tensor model 

which encodes statistics in the spectrum and statistics of 

OPE coefficients. 

In d>2, we do not know what the minimal set of data is to 

fully describe a CFT, but whatever those are, we get a 

corresponding statistical model. (Casimir energy on          is 

not obviously expressible in terms of      and         )   

cf Jafferis, Kolchmeyer, Mukhametzhanov, Sonner ’22

Belin, JdB, Kruthoff, Michel, Shaghoulian, Shyani ’16

Belin, JdB, Kruthoff’’18

Of course, general computations involve both the OPE 

coefficients and the spectrum of the theory so there will also 

be cross-correlations.



Semi-classical 

gravity 
=

+ interactions

+



Overlaps of states

In the same spirit, suppose we prepare semiclassically a set 

of states         with some high energy E. If these states form 

black holes (possibly after some time evolution) they become 

semi-classically indistinguishable. 

Model these states as                         with some random 

unit norm vector acting in a microcanonical energy window 

and         some fixed orthonormal basis for that window.

Semiclassical computation yields       

Maximal ignorance principle yields the flat measure on the 

C’s. Indeed 



What is this good for???

➢ It sheds light on the chaotic nature of CFTs

➢ It explains the factorization problem

➢ It explains replica wormholes and state overlaps

➢ It sheds light on how the semi-classical approximation is still 

compatible with the Page curve

➢ It is a useful perspective on situations with multiple 

boundaries or replicas



The factorization problem Harlow ’15

Guica, Harlow ‘15

Harlow, Jafferis ‘18

Saad, Shenker, Stanford ’19

Marolf, Maxfield, ‘20

……..

The gravitational path integral includes connected 

geometries with multiple boundaries

These seem to violate factorization of the CFT on disconnected 

manifold: 



This apparent lack of factorization arises as follows: above we 

built a statistical model using gravitational computations with 

a single boundary. 

This produced a “single trace” matrix/tensor model. 

Statistical models predict correlations between multiple 

copies of the theory.

We propose that in gravity these correlations precisely 

correspond to connected wormhole geometries. 

Conjecture: wormholes compute the correlations of the one-

sided statistical model. They contain no new information. 



Intuition for the conjecture: one-sided computations allow 

one to reconstruct the bulk Lagrangian. Crossing symmetry 

is closely related to bulk locality. So all information which is 

needed to compute wormholes semi-classically is in 

principle available

This conjecture has been tested fairly extensively (Alex Belin, 

JdB ’20; Chandra, Collier, Hartman, Maloney ’22) for computations 

involving OPE coefficients in AdS3. More general 

understanding for pure 3d gravity follows from the Virasoro 

TQFT (Collier, Eberhardt, Zhang ‘23).



A simple example

Belin, JdB, ‘20



Test of the conjecture for the spectral part of the theory

Cotler, Jensen ’21 – see also Di Ubaldo, Perlmutter ’23 and Haehl, Reeves, 

Rozali ‘23 

The off-shell gravity computation agrees to leading order 

with the universal random matrix theory result 

Ambjørn, Jurkiewicz, Makeenko ’90

Saad, Shenker, Sanford ’19



Overlaps of states and replica wormholes

Recall that semiclassically prepared states were modeled 

as                        with the flat measure on C. Then

In particular 

This is sometimes written as (R is unit random matrix)



Versions of this statistical picture appears in many papers, 

for example

Goel, Lam, Turiaci, Verlinde ‘18

Penington, Shenker, Stanford, Yang ’20

Pollack, Rozali, Sully, Wakeham ‘20

Liu, Vardhan ’20

Freivogel, Nikolakopoulou, Rotundo ’21

Chadra, Hartman ’22

Bah, Chen, Maldacena ’22

Balasubramanian, Lawrence, Magan, Sasieta ’22

JdB, Liska, Post, Sasieta ‘23

Climent, Emparan, Magan, Sasieta, Vilar Lopez ’24

Iliesiu, Levine, Lin, Maxfield, Mezei ‘24

picture from Liu, Vardhan ‘20

Correction is due to “replica wormholes



Information recovery in the semiclassical approximation

Time evolution of an initial state

JdB, Hollander, Rolph ‘23

produces a classical statistical mixture of states.

In general                 will increase: information loss. But 

since

a suitable semi-classical replica computation knows that 

information is actually not lost. 



Can be illustrated with a simple model which is a cartoon of 

the microcanonical Hilbert space of a black hole coupled to a 

bath

with 

Black hole Vacuum



Features:

➢ Timescale is set by spectral form factor of matrix model

➢ “Wormholes” are related to types of contractions of random 

unitaries.

➢ Model has dynamics as opposed to many discrete qubit 

setups people have considered

➢ Mechanism is very simple and robust

➢ The final result is a classical statistical ensemble of pure 

states, not a mixed state. A replica computation like              

can distinguish the two. A non-replica computation can not. 

➢ No prediction for final state, just for unitarity.



A few issues



Restoring factorization?

It is an interesting question what the minimum number of 

ingredients are that we need to add to semiclassical gravity in 

order to uncover more detailed features of the UV and restore 

factorization.

Several suggestions exist in the literature, like half-

wormholes, various branes, non-local interactions, ….

See e.g. 

Gao, Jafferis, Kolckmeyer ‘21

Saad, Shenker, Stanford, Yao ’21

Blommaert, Kruthoff ‘21

Mukhametzhanov ‘21

Blommaert, Iliesiu, Kruthoff ‘21

A simple universal explanation 

could be that wormholes are 

unstable due to brane creation by 

an analogue of Schwinger pair 

production. The Swampland 

cobordism conjecture suggests 

that such branes always exist.
Alternative: gauging 

higher-form symmetries.
Benini, Copetti, Di Pietro ‘22Or overcounting? Eberhardt ‘20’21

But cf Marolf Santos ‘21



Are off-shell configurations needed to make this work?

Spectral correlations of the matrix model are obtained from 

geometries with two                   boundaries. There are no 

on-shell geometries except the on-shell double cone 

(identify                  in a two-sided black hole geometry) 

To reproduce the matrix model result we need to integrate 

over some off-shell configurations with the “constrained 

instanton” method (Cotler, Jensen ‘21)

Due to their topological nature, can do something more 

precise in JT gravity (Saad, Shenker, Stanford ‘19) and in 3d 

gravity (Cotler, Jensen ‘20)



But in general rules of the game are unclear. 

Perhaps one can reverse engineer a suitable gravitational 

prescription which agrees with the matrix model.

The topological recursion of matrix theory and its geometric 

interpretation (Eynard, Orantin ‘07) suggests to look for an 

effective 2d theory…



???=

=

CFT GRAVITY

JT gravity and 3d gravity

???

JT Gravity

 

Pure 3d gravity

SSS Matrix Model

unknown



Two alternatives



So far we looked at semi-classical gravitational 

computations with a closed boundary.

However, we can also use gravitational path integrals with 

boundaries to semi-classically produce states.

i

j

Freivogel, Nikolapoulou, Rotundo ‘21

Chadra, Hartman ‘22

Penington, Shenker, Stanford, Yang ’19

Bah, Chen, Maldacena ’22

Goel, Lam, Turiaci, Verlinde ‘18

Balasubramanian, Lawrence, Magan, 

Sasieta ’22

JdB, Liska, Post, Sasieta ‘23

 
One can derive a suitable state-

averaging ansatz for an open 

path integral.

Alternative 1: State Averaging



More precisely, we consider purification of density matrices

and assume such states can be prepared semiclassically (e.g. 

TFD state or PETS states). We then compute semiclassical 

overlaps of the form

and apply the maximal ignorance philosophy to obtain a 

quadratic matrix model for A.



Result:

Provides an alternative picture to OPE/spectral statistics. It 

more directly describes a coarse graining at the level of 

states. It is in particular useful for cutting/gluing 

constructions of correlation functions.

It reproduces many results of the OPE/spectral statistics 

picture. 

Interesting feature:   

JdB, Liska, Post, Sasieta, ‘23



Interestingly, the matrix model for A also gives rise to non-

gaussianities for

This makes the model subtly different from operator/spectral 

averages models, for example



Alternative 2: Matrix/Tensor model for 3d gravity

Recall that for 2d theories with a holographic AdS3 dual:

➢ we only have explicit access to low-lying operators 

(denoted L) and not to very high dimension operators 

corresponding to black holes (denoted H)

➢ we can compute correlation functions where the number of 

operators is <<c

➢ we can compute partition functions on surfaces with genus 

<<c

➢ we can compute correlation functions in Lorentzian 

signature as long as the center of mass is sub Planckian

➢ all computations are at best done up to non-perturbative 

errors of order e-c

Belin, JdB, Jafferis, Nayak, Sonner ‘23



In arXiv:2308.03829 we called a set of conformal dimensions 

and OPE coefficients for which these computations 

approximately obey the CFT axioms (crossing and modular 

invariance of 1-pt functions) an approximate CFT

Note: by changing multiple conformal dimensions of heavy 

operators in a coordinated way, can prove every 2d CFT sits 

in an island of approximate CFTs

Note: the opposite is not obviously true. An approximate CFT 

may not be close to an actual CFT. Possible example: 

approximate 2d CFTs defined by pure 3d AdS gravity. 



The idea is now to average over all CFT2 data with a 

spectrum which is very close to that of 3d gravity, and with a 

weight schematically of the form

Result is a quartic tensor model with Feynman rules

Virasoro 6j symbol



Crossing:

Square of crossing



This is reminiscent of various other discrete descriptions of 

3d gravity.

It is also connected to the so-called Teichmüller TQFT 

(Andersen, Kishaev ‘11 ’13) which was recently connected to 3d 

gravity (Collier, Eberhardt, Zhang ’23 ’24) (Jafferis, Rosenberg, Wong 

‘24)

To be continued…. Important challenge is to count three-

manifolds once while the same manifold can combinatorically 

be obtained in many different ways. 

Note: model has same generating function of correlators but 

is smarter then construction described earlier because it 

knows about CFT axioms. Model is not weakly coupled. 

e.g. Regge ’61; Boulatov ‘92; Turaev Viro ’92 + 

many more



COMMENT

None of the above implies that AdS/CFT fundamentally 

requires averaging. Averaging is purely a consequence of 

the semi-classical approximation. As one improves the 

description the averaging should become over 

increasingly smaller sets of data and ultimately disappear.

If the set of data would not become smaller as one would 

increase accuracy then the dual description would indeed 

be a proper average. This is what e.g. happens in 

topological theories like JT gravity.

But there currently is no evidence that anything like this is 

happening in standard examples of AdS/CFT.

 



OUTLOOK
➢ Are different types of coarse graining (operator versus state) 

somehow equivalent?

➢ The statistical description of the spectral part of the theory requires 

further clarification.

➢ What is the best definition of pure 3d gravity?

➢ Relation to α-vacua?

➢ It is not yet clear whether there is a simple universal mechanism 

which restores factorization in the UV. 

➢ The precise rules for off-shell computations should be understood. 

➢ Many generalizations exist: higher ETH, etc

➢ There are many different types of wormholes (e.g. axionic) whose 

interpretation is still somewhat confusing.

➢ It would be interesting to apply this logic to (observer-centric 

approaches to) quantum gravity in flat space and de Sitter (bra-ket 

wormholes?)

➢ Semi-classical gravity is averaging agnostic. 

➢ Should we stop pretending we are meta-observers who can solve 

everything? Especially when we are part of a chaotic system 

ourselves?
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